Decision/objective space trajectory networks for multi-objective combinatorial optimisation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Decision/objective space trajectory networks for multi-objective combinatorial optimisation

Résumé

This paper adapts a graph-based analysis and visualisation tool, search trajectory networks (STNs) to multi-objective combinatorial optimisation. We formally define multi-objective STNs and apply them to study the dynamics of two state-of-the-art multi-objective evolutionary algorithms: MOEA/D and NSGA2. In terms of benchmark, we consider two- and three-objective ρmnk-landscapes for constructing multi-objective multi-modal landscapes with objective correlation. We find that STN metrics and visualisation offer valuable insights into both problem structure and algorithm performance. Most previous visual tools in multi-objective optimisation consider the objective space only. Instead, our newly proposed tool asses algorithm behaviour in the decision and objective spaces simultaneously.
Fichier principal
Vignette du fichier
ochoa_evocop2023.pdf (4.89 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04054359 , version 1 (31-03-2023)

Identifiants

Citer

Gabriela Ochoa, Arnaud Liefooghe, Yuri Lavinas, Claus Aranha. Decision/objective space trajectory networks for multi-objective combinatorial optimisation. EvoCOP 2023 - 23rd European Conference on Evolutionary Computation in Combinatorial Optimization, Apr 2023, Brno, Czech Republic. pp.211-226, ⟨10.1007/978-3-031-30035-6_14⟩. ⟨hal-04054359⟩
68 Consultations
69 Téléchargements

Altmetric

Partager

More