Unified primal-dual active set method for dynamic frictional contact problems - Archive ouverte HAL
Article Dans Une Revue Fixed Point Theory and Algorithms for Sciences and Engineering Année : 2022

Unified primal-dual active set method for dynamic frictional contact problems

Résumé

Abstract In this paper, we propose a semi-smooth Newton method and a primal-dual active set strategy to solve dynamical contact problems with friction. The conditions of contact with Coulomb’s friction can be formulated in the form of a fixed point problem related to a quasi-optimization one thanks to the semi-smooth Newton method. This method is based on the use of the primal-dual active set (PDAS) strategy. The main idea here is to find the correct subset $\mathcal{A}$ A of nodes that are in contact (active) opposed to those which are not in contact (inactive). For each case, the nonlinear boundary condition is replaced by a suitable linear one. Numerical experiments on both hyper-elastic problems and rigid granular materials are presented to show the efficiency of the proposed method.
Fichier principal
Vignette du fichier
s13663-022-00729-4.pdf (2.32 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04053755 , version 1 (22-05-2024)

Licence

Identifiants

Citer

Stéphane Abide, Mikaël Barboteu, Soufiane Cherkaoui, Serge Dumont. Unified primal-dual active set method for dynamic frictional contact problems. Fixed Point Theory and Algorithms for Sciences and Engineering, 2022, 2022 (1), pp.19. ⟨10.1186/s13663-022-00729-4⟩. ⟨hal-04053755⟩
51 Consultations
14 Téléchargements

Altmetric

Partager

More