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Abstract
In this paper, we propose a semi-smooth Newton method and a primal-dual active
set strategy to solve dynamical contact problems with friction. The conditions of
contact with Coulomb’s friction can be formulated in the form of a fixed point
problem related to a quasi-optimization one thanks to the semi-smooth Newton
method. This method is based on the use of the primal-dual active set (PDAS)
strategy. The main idea here is to find the correct subsetA of nodes that are in
contact (active) opposed to those which are not in contact (inactive). For each case,
the nonlinear boundary condition is replaced by a suitable linear one. Numerical
experiments on both hyper-elastic problems and rigid granular materials are
presented to show the efficiency of the proposed method.
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1 Introduction
Nowadays, understanding dynamic contact problems and their behaviour, both de-
formable and rigid, is a major challenge for industries in several sectors. The scientific
community is particularly interested in studying these problems because of the complex
nature of the interactions governing their dynamics and their simulations, which involve
a large number of degrees of freedom. Some derivations for a model of contact dynamics
and their specific numerical methods can illustrated by these works [1–4].

According to the theory of sweeping process of Moreau [5–9], the dynamic contact
problems can be written as a measure differential inclusion due to multi-valued mappings
between contact reactions/impulses and the contact distances/velocities that introduce
a nonsmoothness contact law. In this way, convenient formulations for nonsmooth dy-
namic problems can be derived. This appears to be well adapted for problems involving
rigid bodies and elastodynamic problems.

The nonsmooth contact dynamics (NSCD) approach is an alternative simulation strat-
egy that works for both rigid body interactions and deformable problems [3, 4, 8–11].
According to Moreau’s sweeping process, it leads to implicit numerical schemes based
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on a nonregular formulation of the contact laws. There are many numerical methods in
the literature for solving these problems. In the case of rigid body problems, one can
refer to the well-known nonlinear Gauss–Seidel method (NLGS) developed by M. Jean
and J. J. Moreau [8–10, 12]. Moreover, there are several sophisticated approaches based
on the bi-potential theory and the augmented Lagrangian theory, see [13–17] for more
details. Concerning the deformable bodies, several methods have also been successfully
tested, namely, the penalty method (cf. [18, 19]), the quasi-augmented Lagrangian [20],
the bi-potential method (cf. [13, 17]), the conjugate gradient method (cf. [1, 2]), the Uzawa
method (cf. [21, 22]), and the Nitsche finite element method (cf. [23–25]). Recently pro-
posed methods of semi-smooth Newton and primal-dual active (PDAS) type appear to be
some of the most relevant methods for solving friction contact problems [26–34]. They are
based on the following principle: the conditions of contact and friction are reformulated
in terms of nonlinear complementarity functions whose solution is provided by the semi-
smooth Newton method. In practice, the conditions of contact with Coulomb’s friction
can be formulated in the form of a problem of fixed point related to quasi-optimisation
problem [26, 27, 34]. In fact, the boundary conditions are directly imposed thanks to
a semi-smooth Newton method, and therefore their implementation could be achieved
without much effort. On the basis of these prerequisites, the objective of this work is to
provide a generalisation of the semi-smooth Newton method-PDAS approach for hyper-
elastic contact problems [34, 35] and for those in rigid multi-body dynamics [33, 36]. Par-
ticular care is paid to the development of these algorithms for solving contact and friction
laws in the nonregular framework. Several numerical experiments are reported for verifi-
cation and validation purposes, but also to assess the efficiency and performance of PDAS
methods compared to other numerical methods [13, 17, 20].

The paper is organised as follows. Section 2 presents the sweeping process in the con-
text of deformable and rigid bodies. Section 3 is devoted to the semi-smooth Newton ap-
proach for solving the frictional contact conditions. In Sect. 4, we present the numerical
treatment of frictional contact conditions by using two primal-dual active set methods.
This section is divided into two parts. First, an exact PDAS strategy for unilateral contact
with Coulomb’s law of friction is considered. Next, an iterative PDAS with a fixed point
method related to the friction bound is introduced. In the last section, the results of some
simulations are presented in order to illustrate the numerical PDAS.

2 Sweeping process for frictional contact problems
According to Moreau’s sweeping process, the dynamic frictional contact problem can be
written as a measure differential inclusion due to multi-valued mappings between con-
tact reactions and the contact velocities that introduce a nonsmoothness in the contact
law. This formulation allows us to write nonsmooth dynamic problems such as dynamics
contact problems for rigid bodies and elastodynamic problems.

2.1 Dynamics of deformable bodies
Let us consider a deformable body occupying a domain � ⊂ R

d (d = 1, 2, 3). The bound-
ary � of � is assumed to be Lipschitz continuous and consists in three disjoint measurable
parts �1, �2 and �3 such that meas (�1) > 0. The notations x = (xi) and n = (ni) stand for a
point in � ∪ � and the inner unit normal at �, respectively. The dynamic of a deformable
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Figure 1 Physical setting of a deformable body against a foundation

body is a time-dependant problem with t > 0 denoting the time variable. The primary vari-
able is the displacement field u from which one can define the normal and the tangential
components of u on � by un = u · n and ut = u – unn.

In the following, we consider the dynamic frictional contact of a deformable body with
a perfectly rigid obstacle, the so-called foundation. Figure 1 shows the configuration and
the considered notations (see Fig. 1). The displacements are driven by the body force and
the boundary conditions. The displacement and the surface traction are prescribed on the
boundary �1 and �2, respectively. The contact condition is assumed to occur on �3. The
dynamic of the body is investigated on the time interval [0, T] with T > 0. For the sake
of clarity, the dependence of the functions on x and t is not formally expressed, and the
derivatives with respect to the time read ˙(·).

2.1.1 Equations of motion
According to the fundamental principle of dynamics of deformable bodies, after a spatial
discretization using a standard finite element method, the equations of motion formulated
in terms of differential measures can be written as follows:

MdU̇ + A(U) dt = Fext(t) dt + d�, (2.1)

where
– U ∈R

d×N is the generalised displacement vector (where d = 3 for a 3D problem and
d = 2 for a 2D problem and N is the total number of degree of freedom);

– M represents the generalised mass matrix;
– A represents the internal force vector;
– Fext represent external forces;
– d� is a nonnegative real measure, representing the reaction forces between the body

in contact.

2.1.2 Frictional contact laws
Here we expressed the contact law by using the local contact variables with the vertex
α ∈ [1, Nα] (where Nα is the total number of potential contacts between the body to the
foundation). For each α ∈ [1, Nα], we have to consider the local relative displacements
uα

n and uα
t between the body to the foundation involved in the contact α, as a part of the
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generalised vector u ∈ R
d×N . Likewise, the local contact reactions λα ∈R

d are represented
by a vector � ∈ R

d×N . We recall that λα can be decomposed into the sum of a normal
component λα

n and a tangential component λα
t as follows: λα = λα

n n + λα
t . From there, the

idea would be to project the global vector from � and u to the local vector λα and uα .
In other words, λα and uα denote the coefficient vector of � and u associated with the
vertex α.

Consider for a while that the normal reaction exerted between the deformable body
against a foundation at the contact α of the boundary �3, and with these considerations,
the unilateral conditions on the contact boundary point are

uα
n ≥ g,λα

n ≥ 0,
(
uα

n – g
)
λα

n = 0, (2.2)

where the gap g measures the distance between a point on �3 and its projection onto the
rigid obstacle.

Now for the friction, we considered Coulomb’s law as follows:

⎧
⎪⎪⎨

⎪⎪⎩

‖λα
t ‖ ≤ μ|λα

n|,
‖λα

t ‖ < μ|λα
n| �⇒ u̇α

t = 0,

‖λα
t ‖ = μ|λα

n| �⇒ ∃β ≥ 0 : λα
t = βu̇α

t ,

(2.3)

where μ is the friction coefficient.
Note that conditions (2.2) are equivalent to the following subdifferential inclusion (cf.

[6, 9]):

λα
n ∈ ∂IR–

(
uα

n – g
)
, (2.4)

where ∂ represents the subdifferential operator in the sense of the convex analysis and IA

denotes the indicator function of the set A ⊂ R. A similar consideration for the frictional
stress leads to

λα
t ∈ ∂I∗

C(λα
n )

(
u̇α

t
)
, (2.5)

which is equivalent to (2.3). I∗ represents the Fenchel conjugate of the indicator function.
Finally, the objective frictional contact constitutive law can be written jointly in the sub-

differential inclusion form as

λα ∈ ∂IR–
(
uα

n – g
)

n + ∂I∗
C(λα

n )
(
u̇α

t
)
. (2.6)

As a result, the generalised frictional contact forces d� can also take this form. The so-
called Moreau’s sweeping process [5, 9, 37] is a special kind of differential inclusion with a
maximal monotone operator, which appears to be a very nice formulation for the unilateral
dynamics with friction.

2.1.3 Nonlinear elastodynamic contact problems
First, we recall some preliminary material concerning the time discretization step. Let N
be an integer, let �τ = T

N be the time step and define

tn = n�t, 0 ≤ n ≤ N .
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Finally, for a sequence {wn}N
n=1, we denote the midpoint divided differences by

ẇn– 1
2 =

(
wn – wn–1)/�t =

1
2
(
ẇn + ẇn–1), (2.7)

and, equivalently, we have ẇn = –ẇn–1 + 2
�t (wn – wn–1). Hereinafter, we use the notation

�n– 1
2 = 1

2 (�n +�n–1), where �n represents the approximation of �(tn). Note that the time
integration scheme we use is based on the implicit second order midpoint rule given in
(2.7).

Problem PS . Find a global displacement vector {un,�t}N
n=0, a global normal stress vector

{
n
n,�t}N

n=0 and a global tangential stress vector {�t
n,�t}N

n=0 such that, for all n = 1,

Mün– 1
2 ,�t + A

(
un– 1

2 ,�t) – Fext,n– 1
2 ,�t – �n– 1

2 ,�t = 0, (2.8)

λ
α,n– 1

2 ,�t
n ∈ ∂IR–

(
uα,n– 1

2 ,�t
n – g

)
, (2.9)

λ
α,n– 1

2 ,�t
t ∈ ∂I∗

C(λα
n ,n– 1

2 ,�t)

(
u̇α,n– 1

2 ,�t
t

)
, (2.10)

u0,�t = u0, u̇0,�t = u̇0,

where ün– 1
2 ,�t = u̇n,�t–u̇n–1,�t

�t is the midpoint time approximation of the acceleration ü at
the time tn– 1

2 .
To solve the global Problem PS , we can use the so-called Newton–Raphson method. For

more details about this method, see the books [1, 2].

2.2 Dynamics of rigid bodies
2.2.1 Equations of motion
To describe the motion of a multi-contact system between rigid bodies, we use the fol-
lowing writing conventions. Assuming that a particle P among Np particles is described
by the position of its centre of gravity and its rotation, we will denote by q the generalised
coordinate describing its position in space (q ∈ R

d̄×Np , where d̄ = 6 for a 3D problem and
d̄ = 3 for a 2D problem). As a consequence of the possible shocks between particles, we
introduce the generalised velocity denoted by q̇ as a function of bounded variations and
its associated differential dq̇. According to the fundamental principle of rigid dynamics,
the equations of motion formulated in terms of differential measures can be written as
follows:

Mdq̇ = F(t, q, q̇) dt + dP, (2.11)

where
– M represents the generalised mass matrix;
– F represents external forces;
– dP is a nonnegative real measure, representing the reaction forces and impulses

between particles in contact.

2.2.2 Frictional contact laws
As the contact law is expressed using the contact variables, we have to express the equa-
tions of motion using these same variables. Thus, a local-global mapping is defined from
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the global frame to the local one for each contact node α ∈ [1, Nα] (where Nα is the total
number of potential contacts between two rigid particles) to write the corresponding local
contact law. Local relative velocities vα

n and vα
t between the two rigid bodies involved in

the contact α can be generalised as a vector q̇ = v ∈ R
d×Nc (where d = 3 for a 3D problem

and d = 2 for a 2D problem). Likewise, the local contact impulses pα are represented by
a vector P ∈ R

d×Nc . We recall that pα can be decomposed into the sum of a normal com-
ponent pα

n and a tangential component pα
t as follows: pα = pα

n n + pα
t . From there, the idea

would be to transform the equations of motion seen in (2.11) from P and q̇ to pα and vα .
The gap Dα = D(qi, qj) represents the signed distance from particle i to particle j.
The contact and particles velocities (vα and q̇) being linearly related, the local-global

mapping to compute v to q̇ at a contact node α is

vα = H∗(q,α)q̇, (2.12)

where H∗(q,α) is a local-global mapping matrix dNc × d̄Np carrying the information on
the geometry of the contact network. Identically, we have for the impulses

P = H(q,α)pα , (2.13)

where H(q,α) is the transpose of matrix H∗(q,α).
The inelastic shock law can be written as follows:

if Dα > 0 then pα
n = 0, (2.14)

if Dα ≤ 0 then
⎧
⎪⎪⎨

⎪⎪⎩

vα
n ≥ 0,

pα
n ≥ 0,

vα
npα

n = 0.

(2.15)

Coulomb’s law of friction is written as follows:

pα
t �= 0, (2.16)

⎧
⎪⎪⎨

⎪⎪⎩

pα
n = 0 �⇒ vα

n ≥ 0,

pα
n > 0 and ‖pα

t ‖ < μpα
n �⇒ vα

t = 0,

pα
n > 0 and |pα

t || = μpα
n �⇒ ∃β ≥ 0, vα

t = β
pα

t
‖pα

t ‖ ,

(2.17)

where μ is the friction coefficient.
The frictional contact laws (2.15) and (2.17) can been also formulated in subdifferential

inclusions as

pα ∈ ∂IR–
(
vα

n
)

n + ∂I∗
C(pα

n )
(

vα
t
)
. (2.18)

2.2.3 Nonlinear Gauss–Seidel (NLGS) method for nonsmooth contact dynamics (NSCD)
This section is devoted to the description of the method used to solve the rigid body dy-
namic contact problems [14]. Following the ideas of Jean and Moreau (see for example



Abide et al. Fixed Point Theory Algorithms Sci Eng         (2022) 2022:19 Page 7 of 22

[6, 8, 38]), we use the NLGS method, which consists in considering successively each con-
tact until the convergence.

Considering that the time interval of interest is [0, T], we discretize for numerical pur-
poses the previous equation (2.11). For that, we introduce uniform time instants tn defined
by tn+1 = tn + �t for n = 0, . . . , NT – 1, where

• �t = T/NT is the time step;
• NT is the total number of time steps.

Equation (2.11) is then integrated on each time interval [tn, tn+1] and approximated us-
ing a θ -scheme, with θ ∈ [ 1

2 , 1] for stability reasons (see [9, 39]). Therefore, the classical
approximation of equation (2.11) yields

⎧
⎨

⎩
M(q̇n+1 – q̇n) = �t(θFn+1 + (1 – θ )Fn) + Pn+1,

qn+1 = qn + �tθ q̇n+1 + �t(1 – θ )q̇n,
(2.19)

where
• Pn+1 represents the value of the total impulsion over the time step [tn, tn+1];
• Fn (resp. Fn+1) is the external force computed at time tn (resp. tn+1).

Denoting by q̇n,free = q̇n +M
–1�t(θFn+1 + (1 – θ )Fn) the velocity when the contact impulses

vanish, the first equation of (2.19) becomes

q̇n+1 = q̇n,free + M
–1Pn+1. (2.20)

By combining (2.15), (2.12), (2.13), and (2.19), the discretization of the multi-contact sys-
tem’s motion with contact between rigid bodies can be written for each contact α:

⎧
⎪⎪⎨

⎪⎪⎩

ṽα,n+1 = ṽn,α,free + Wpα,n+1,

contact_law(ṽα,n+1
n , pα,n+1

n ) = .true. ∀α ∈ [1, . . . , Nα],

friction_law(ṽα,n+1, pα,n+1) = .true. ∀α ∈ [1, . . . , Nα].

(2.21)

The matrix W is called the Delassus matrix, which represents the mass matrix reduced to
local variables.

The time-stepping method combined with the NLGS algorithm takes the following
form:

• Loop on the step time n
– Prediction of a position (for the computation of the local-global mapping):

qn+ 1
2 = qn +

�t
2

q̇n; (2.22)

– Initialization of the motion: q̇0,n+1 = q̇n,free (initialization of the contact impulses
with P = 0).

– Loop on j ≥ 0 (NLGS) until convergence
∗ Loop on the contacts α:

+ Computation of the local-global mapping

v– = H∗(qn+ 1
2 ,α

)
q̇n; (2.23)
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vα,j+ = H∗(qn+ 1
2 ,α

)
q̇j,n+1. (2.24)

+ Newton shock law (using formal Moreau velocity)

ṽα,j+1
n =

vα,j+
n + env–

n
1 + en

; (2.25)

ṽα,j+1
t =

vα,j+
t + etv–

t
1 + et

. (2.26)

+ Computation of the frictional contact law:

⎧
⎨

⎩
contact_law(ṽα,j+1, pα,j+1) = .true.

friction_law(ṽα,j+1, pα,j+1) = .true.
(2.27)

+ Actualisation of the generalised displacement:

q̇j+1,n+1 = q̇j,n+1 + M
–1P

(
qn+ 1

2 ,α
)

pα,j+1.

∗ End of the loop on contacts α.
– End of the loop on j of NLGS. When the convergence is reached, actualisation of

the velocity: q̇n+1 = q̇n+1,j+1.
– Actualisation of the generalised displacements: qn+1 = qn+ 1

2 + �t
2 q̇n+1.

• End of the loop on the step time k.

3 Semi-smooth Newton approach for solving the frictional contact conditions
The semi-smooth Newton-PDAS methods appear to be one of the most relevant meth-
ods for solving friction contact problems (cf. [27, 29, 30]). These methods are based on
the following principle: the conditions of contact and friction are reformulated in terms
of nonlinear complementarity functions whose solution is provided by the semi-smooth
iterative method of Newton [26, 27]. To this end, we need the generalised derivative of
complementary functions for contact and friction. In practice, the conditions of contact
with Coulomb’s friction can be formulated in terms of a fixed point problem related to a
quasi-optimisation one. From a purely algorithmic point of view, the main goal of these
methods is to separate the nodes potentially in contact into two subsets (active and inac-
tive) and to find the correct subset of all the nodes actually in active contact (subset A), as
opposed to those that are inactive (subset I). In practice, the semi-smooth Newton-PDAS
methods do not require the use of Lagrange multipliers. In fact, the boundary conditions
on the subsets A and I are directly imposed thanks to a semi-smooth Newton method,
and consequently, their implementation could be achieved without much effort.

In order to generalise the frictional contact conditions for deformable and rigid prob-
lems, we will make a change of variables. Let us take the following sthenic and kinematic
variables:

– For deformable problems: φn = λα
n , φt = λα

t , wn = uα
n , wt = u̇α

t , (3.1)

– For rigid problems: φn = pα
n , φt = pα

t , wn = vn, wt = vα
t . (3.2)
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3.1 Complementary function for frictional contact
Signorini’s conditions (2.2) or (2.15) can be formulated from the following nonlinear com-
plementary function Cφ

n (wn,φn):

Cφ
n (wn,φn) = φn – [φn – γnwn]+ ∀α ∈ S , (3.3)

where S is the set of all potential contact nodes and γn > 0 is the normal active set param-
eter. Let us state a first result.

Proposition 3.1 The unilateral contact conditions (2.2) or (2.15) for each potential contact
are equivalent to Cφ

n (wn,φn) = 0, where φn is the normal reaction (or impulse) force.

For the proof, see [35] for deformable problems and see [34] for rigid problems.
Frictional Coulomb’s conditions (2.3) or (2.17) can be formulated from the following

nonlinear complementary function Cφ
t (wn,φt ,φn,φt):

Cφ
t (wn, wt ,φn,φt) = max

(
μφn,‖φt – γtwt‖

)
φt – μφn(φt – γtwt) ∀α ∈ S , (3.4)

where γt > 0 is the tangential active set parameter. Then, let us present this result.

Proposition 3.2 The frictional contact conditions (2.3) or (2.17) for each contact are equiv-
alent to Cφ

t (wn, wt ,φn,φt) = 0, where φt is the tangential reaction (or impulse) force between
two particles in contact.

For the proof, see [34] for deformable problems and see [35] for rigid problems.

3.2 Generalised derivative of complementary functions
Now, we provide the generalised derivative of the complementary functions in the gap,
stick and slip cases.

• Gap case: φn – γnwn ≤ 0
According to the complementary functions Cφ

n (wn,φn) = φn and Cφ
t (wn, wt ,φn,φt) =

‖φt – γtwt‖φt , we have the following derivatives:

dwnCφ
n = 0, (3.5)

dφnCφ
n = dφn, (3.6)

dwnC
φ
t = 0, (3.7)

dwtC
φ
t = –γtφt

(φt – γtwt)T

‖φt – γtwt‖ dwt = 0, (3.8)

dφnC
φ
t = 0, (3.9)

dφtC
φ
t =

(
φt

(φt – γtwt)T

‖φt – γtwt‖ + ‖φt – γtwt‖I2

)
dφt . (3.10)

• Stick case: μφn ≥ ‖φt – γtwt‖ > 0
Given the complementary functions Cφ

n (wn,φn) = γnwn and Cφ
t (wn, wt ,φn,φt) = μγtφnwt ,

we have

dwnCφ
n = γn dwn, (3.11)
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dφnCφ
n = 0, (3.12)

dwnC
φ
t = 0, (3.13)

dwtC
φ
t = μγtφn dwt , (3.14)

dφnC
φ
t = μγtwt dφn, (3.15)

dφtC
φ
t = 0. (3.16)

• Slip case: ‖φt – γtwt‖ > μφn > 0
From Cφ

n (wn,φn) = γnwn and Cφ
t (wn, wt ,φn,φt) = ‖φt –γtwt‖φt –μφn(φt –γtwt), it comes

dwnCφ
n = γn dwn, (3.17)

dφnCφ
n = 0, (3.18)

dwnC
φ
t = 0, (3.19)

dwtC
φ
t =

(
–γtφt

(φt – γtwt)T

‖φt – γtwt‖ + μγtφnI2

)
dwt , (3.20)

dφnC
φ
t = –μ(φt – γtwt) dφn, (3.21)

dφtC
φ
t =

(
φt

(φt – γtwt)T

‖φt – γtwt‖ + ‖φt – γtwt‖I2 – μφnI2

)
dφt . (3.22)

By combining (3.5)–(3.22) with DCφ
n

and DCφ
t

the generalised derivatives of Cφ
n and Cφ

t ,
respectively, we obtain

DCφ
n

(wn,φn)(δwn, δφn) = γn(1Stick + 1Slip)δwn + 1Gapδφn, (3.23)

DCφ
t

(wn, wt ,φn,φt)(δwn, δwt , δφn, δφt)

= 1Gap‖φt – γtwt‖δφt + 1Stick(μγtφnδwt + μγtwtδφn)

+ 1Slip

((
–γtφt

(φt – γtwt)T

‖φt – γtwt‖ + μγtφnI2

)
δwt – μ(φt – γtwt)δφn

+
(

φt
(φt – γtwt)T

‖φt – γtwt‖ + ‖φt – γtwt‖I2 – μφnI2

)
δφt

)
, (3.24)

where

1Gap = 1, 1Stick = 0, 1Slip = 0 if φn – γnwn ≤ 0,

1Gap = 0, 1Stick = 1, 1Slip = 0 if μφn ≥ ‖φt – γtwt‖ > 0,

1Gap = 0, 1Stick = 0, 1Slip = 1 if ‖φt – γtwt‖ > μφn > 0.

3.3 Fixed point conditions from Newton’s semi-smooth approach
Using now the semi-smooth Newton formalism (indexed by the subscript k) at the current
fixed point (wk

n, wk
t ,φk

n ,φk
t ) of the complementary functions Cφ

n and Cφ
t , one can derive the

new iterate (wk+1
n , wk+1

t ,φk+1
n ,φk+1

t )

DCφ
n

(
wk

n,φk
n
)(

δwk+1
n , δφk+1

n
)

= –Cφ
n
(
wk

n,φk
n
)
, (3.25)



Abide et al. Fixed Point Theory Algorithms Sci Eng         (2022) 2022:19 Page 11 of 22

DCφ
t

(
wk

n, wk
t ,φk

n ,φk
t
)(

δwk+1
n , δwk+1

t , δφk+1
n , δφk+1

t
)

= –Cφ
t
(
wk

n, wk
t ,φk

n ,φk
t
)
, (3.26)

(
wk+1

n , wk+1
t ,φk+1

n ,φk+1
t

)

=
(
wk

n, wk
t ,φk

n ,φk
t
)

+
(
δwk+1

n , δwk+1
t , δφk+1

n , δφk+1
t

)
. (3.27)

• Gap case: 1Gap = 1, 1Stick = 0, 1Slip = 0
From equations (3.25) and (3.26) we have

φk+1
n – φk

n = –φk
n , (3.28)

∥∥φk
t – γtwk

t
∥∥(

φk+1
t – φk

t
)

= –
∥∥φk

t – γtwk
t
∥∥φk

t . (3.29)

Next, the gap conditions of the semi-smooth Newton formalism are as follows:

φk+1
n = 0, (3.30)

φk+1
t = 0, (3.31)

since ‖φk
t – γtwk

t ‖ > 0.
• Stick case: 1Gap = 0, 1Stick = 1, 1Slip = 0
From equations (3.25) and (3.26) we have

γn
(
wk+1

n – wk
n
)

= –γnwk
n, (3.32)

μγtφ
k
n
(

wk+1
t – wk

t
)

+ μγtwk
t
(
φk+1

n – φk
n
)

= –μγtφ
k
nwk

t . (3.33)

Next,

wk+1
n = 0, (3.34)

wk+1
t – wk

t = –wk
t
φk+1

n
φk

n
. (3.35)

For dynamics of rigid bodies and for a given contact node α, the fundamental principle of
dynamics can be written as follows:

wα = wα,free + Wααφα +
∑

β �=α

Wβαφβ . (3.36)

Finally, the stick conditions for rigid bodies of the semi-smooth Newton formalism are as
follows:

wk+1
n = 0, (3.37)

φk+1
t +

φk+1
n
φk

n
wk

t

Wαα
tt

= φk
t . (3.38)

• Slip case: 1Gap = 0, 1Stick = 0, 1Slip = 1
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For Cφ
n , we get once again

wk+1
n = 0. (3.39)

For Cφ
t , we obtain

(
–γtφ

k
t

(φk
t – γtwk

t )T

‖φk
t – γtwk

t ‖
+ μγtφ

k
nI2

)
(

wk+1
t – wk

t
)

– μ
(
φk

t – γtwk
t
)(

φk+1
n – φk

n
)

+
(

φk
t

(φk
t – γtwk

t )T

‖φk
t – γtwk

t ‖
+

∥
∥φk

t – γtwk
t
∥
∥I2 – μφk

nI2

)(
φk+1

t – φk
t
)

= –
∥∥φk

t – γtwk
t
∥∥φk

t + μφk
n
(
φk

t – γtwk
t
)
. (3.40)

Let us introduce

F(k) = φk
t

(φk
t – γtwk

t )T

‖φk
t – γtwk

t ‖
, E(k) =

1
‖φk

t – γtwk
t ‖

. (3.41)

Therefore, after an elementary computation

– γtE(k)(F(k) – μφk
nI2

)(
wk+1

t – wk
t
)

– μE(k)(φk
t – γtwk

t
)
φk+1

n

+
(
E(k)(F(k) – μφk

nI2
)

+ I2
)
φk+1

t – E(k)(F(k) – μφk
nI2

)
φk

t = 0.

Now, let us introduce the following operators:

M∗(k)
α = E(k)(F(k) – μφk

nI2
)
,

h(k)
α = E(k)F(k)(φk

t – γtwk
t
)

= φk
t .

L∗(k)
α = –γt

(
I2 + M∗(k)

α

)–1M∗(k)
α ,

r∗(k)
α =

(
I2 + M∗(k)

α

)–1h(k)
α ,

v(k)
α = μ

(
I2 + M∗(k)

α

)–1E(k)(φk
t – γtwk

t
)
.

And, at last after computation, we have

L∗(k)
α wk+1

t – v(k)
α φk+1

n + φk+1
t = r∗(k)

α – v(k)
α φk

n .

In this specific problem, and for a two-dimensional case, one can obtain a simplified equiv-
alent version of the algorithm. Let Dslip

Cφ
t

be the generalised derivative of Cφ
t in the slip case

Dslip
Cφ

t

(
wα

t ,φt
)(

δwα
t , δφt

)
= φt

(φt – γtwα
t )T

‖φt – γtwα
t ‖

(
δφt – δwα

t
)

– μφn
(
δφt – γtwα

t
)

+
∥
∥φt – γtwα

t
∥
∥δφt . (3.42)
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Denoting by t the unit slip vector, we have

φt = μφnt,
φt – γtwα

t
‖φt – γtwα

t ‖ = t, δφt – γtwα
t = ηt. (3.43)

Combining (3.42)–(3.43), we get

Dslip
Cφ

t

(
wα

t ,φt
)(

δwα
t , δφt

)
= μφnη

(
ttT – I2

)
t +

∥∥φt – γtwα
t
∥∥δφt . (3.44)

Since ttT + nnT = I2 in the 2D case, we have (ttT – I2)t = nnT t = 0. Using (3.26), we obtain

∥∥φk
t – γtwk

t
∥∥(

φk+1
t – φk

t
)

= –
∥∥φk

t – γtwk
t
∥∥φk

t + μφk
n
(
φk

t – γtwk
t
)
. (3.45)

Therefore, (3.45) becomes

φk+1
t = μφk

n
φk

t – γtwk
t

‖φk
t – γtwk

t ‖
= μφk

nt. (3.46)

Finally, the slip 2D conditions of the semi-smooth Newton formalism are as follows:

wk+1
n = 0, (3.47)

φk+1
t = μφk

n
φk

t – γtwk
t

‖φk
t – γtwk

t ‖
. (3.48)

4 Primal-dual active set methods
This section is devoted to the numerical treatment of the contact conditions using a
primal-dual active set method within the framework of dynamic contact problems. Af-
ter defining the active and inactive subsets of all nodes that are currently in contact, we
compute the contact conditions on each subset only in terms of contact reaction or im-
pulses, using the local general equations of motion in the form of (3.3) and (3.4).

4.1 “Exact” primal-dual active set method (EPDAS)
Let us denote by S the set of potential contact and by α a potential contact node belonging
to S . The frictional contact conditions (2.15)–(2.17) are realised by applying an active set
strategy which derives directly from the computation of the fixed point on the nonlinear
complementary functions Cφ

n and Cφ
t based on the Newton semi-smooth scheme derived

in part 3. The active and inactive sets are defined as follows:

Ak+1
n =

{
α ∈ S : φα,k

n – γnwα,k
n ≥ 0

}
,

Ik+1
n =

{
α ∈ S : φα,k

n – γnwα,k
n < 0

}
,

Ak+1
t =

{
α ∈ S :

∥∥φα,k
t – γtwα,k

t
∥∥ – μφα,k

n ≥ 0
}

,

Ik+1
t =

{
α ∈ S :

∥
∥φα,k

t – γtwα,k
t

∥
∥ – μφα,k

n ≤ 0
}

.

The status of a given potential α at the nonlinear iteration j depends on the set it belongs
to. It can be either in the noncontact, slip or stick status.
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Remark For rigid problems, according to Sect. 2.2.3, the numerical computation of the lo-
cal contact step inside the NLGS iteration loop of index j leads to the following primal-dual
active set algorithm indexed by k. That is to say, we make only one iteration of the PDAS
algorithm at each NLGS iteration, because the convergence of the NLGS method is slower
than the convergence of the PDAS method. Therefore k = j in the following algorithm.

(i) Choose (w(0),φ(0)), γn > 0, γt > 0 and set k = 0.
(ii) Compute: τα,k+1

n = φα,k
n – γnwα,k

n for each α ∈ S .
(iii) Compute: τα,k+1

t = ‖φα,k
t – γtwα,k

t ‖ – μφα,k
n for each α ∈ S .

(iv) Set the active and inactive sets:

Ak+1
n =

{
α ∈ S : τα,k+1

n ≥ 0
}

,

Ik+1
n = S \Ak+1

n ,

Ak+1
t =

{
α ∈ S : τα,k+1

t ≥ 0
}

,

Ik+1
t = S \Ak+1

t .

(v) Find (wα,k+1,φα,k+1) such that

φα,k+1
n = 0, φα,k+1

t = 0 for all α ∈ Ik+1
n , (4.1)

wα,k+1
n = 0 for all α ∈Ak+1

n , (4.2)

φα,k+1
t = μφα,k

n
(φα,k

t – γtwα,k
t )

‖φα,k
t – γtwα,k

t ‖ for all α ∈Ak+1
t ∩Ak+1

n , (4.3)

wα,k+1
t – wα,k

t = –wα,k
t

φα,k+1
n

φ
α,k
n

. (4.4)

(vi) If ‖(wα,k+1,φα,k+1) – (wα,j,φα,k)‖ ≤ ε, Ak+1
n = Ak

n and Ak+1
t = Ak

t stop, else go to (ii).

4.2 “Iterative” primal-dual active set method (IPDAS)
Since we have noticed that (4.4) can lead to numerical instabilities when φα,k

n is small, we
introduce a variant of the previous method. For that purpose, we have to introduce the
couple (wi,j+1,φi,k+1), which represents the value of (w,φ) at the ith fixed point iteration
and at the kth active set iteration. Moreover, (w(i–1,.),φ(i–1,.)) represents the values of (w,φ)
obtained at the convergence of the active set method for the fixed point iteration i – 1.
Therefore, for each active set iteration, we fix φ

α,(i,k+1)
n to the value φ

α,(i–1,.)
n obtained at the

previous fixed point iteration. Then, condition (4.4) leads to wα,k
t = 0.

(i) Choose (w(0),φ(0)), γn > 0, γt > 0 and set k = 0.
(ii) Compute: τα,(i,k+1)

n = φ
α,(i,k)
n – γnwα,(i,k)

n for each α ∈ S .
(iii) Compute: τα,(i,k+1)

t = ‖φα,(i,k)
t – γtwα,(i,k)

t ‖ – μφ
α,(i,k)
n for each α ∈ S .

(iv) Set the active and inactive sets:

Ak+1
n =

{
α ∈ S : τα,(i,k+1)

n ≥ 0
}

,

Ik+1
n = S \Ak+1

n ,

Ak+1
t =

{
α ∈ S : τα,(i,k+1)

t ≥ 0
}

,

Ik+1
t = S \Ak+1

t .
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(v) Find (wα(i,k+1),φα(i,k+1)) such that

pα,(i,k+1)
n = 0, φ

α,(i,k+1)
t = 0 for all α ∈ Ik+1

n , (4.5)

wα,(i,k+1)
n = 0 for all α ∈Ak+1

n , (4.6)

φ
α,(i,k+1)
t = μφα,(i,k)

n
(φα,(i,k)

t – γtwα,(i,k)
t )

‖φα,(i,k)
t – γtwα,(i,k)

t ‖ for all α ∈Ak+1
t ∩Ak+1

n , (4.7)

wα,(i,k)
t = 0 for all α ∈ Ik+1

t ∩Ak+1
n . (4.8)

(vi) If ‖(wα,(i,k+1),φα,(i,k+1)) – (wα,(i,k),φα,(i,k))‖ ≤ ε, Ak+1
n = Ak

n and Ak+1
t = Ak

t stop, else go
to (ii).

Remark For rigid problems, we do not use this fixed point iteration i because the number
of iterations of NLGS is very high, it suffices to replace relation (4.4) by

φ
α,(i,k+1)
t +

wα,(i,k)
t

Wtt
= φ

α,(i,k)
t for all α ∈ Ik+1

t ∩Ak+1
n . (4.9)

Remark For deformable problems, at the beginning to step (v), we must solve the nonlin-
ear systems (2.8).

Remark In the case of rigid problem, the stopping criterion (vi) can be enriched with
physical considerations, such as the properties of the networks of forces in the granular
medium.

5 Numerical experiments
A sweeping process based formulation for the frictional contact problem has been drawn
in the previous section. Combining the semi-smooth Newton approach with the primal-
dual active set method leads to a specific numerical method to tackle contact mechanics
problems. For illustration purpose, some simulations are presented hereafter. This intends
to outline the ability of the present numerical scheme to undergo frictional contact prob-
lems.

5.1 Bounce of a hyper-elastic ring against a rigid foundation
We first consider a representative application, a hyper-elastic ring bouncing on a perfectly
rigid foundation, to assess the performances of the active set type in a large deformation
framework. The ring is thrown toward a rigid foundation with an initial velocity at an angle
of 45◦, as depicted in Fig. 2. We provide below a description of the numerical settings:

ρ = 1000 kg/m3, T = 5 s, k =
1

500
,

u0 = (0, 0) m, u1 = (10, –10) m/s,

c1 = 0.5 MPa, c2 = 0.05 MPa, a = 0.5 × 10–4 MPa,

cν = 10, cτ = 10, rlagrangian = 0.1,

g = 50 m, μ = 0.2,
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Figure 2 Sequence of the deformed hyper-elastic ring before, during and after impact

stopping criterion: ε = 10–6.

Concerning the discretization size, it is described by a parameter nbc, which denotes
the number of contact nodes on �. The number of nodes on the outer contour of the ring
is thus taken in order to obtain sufficient regular elements. The boundary �3 is divided
into 128 equal parts, 1664 hyper-elastic finite elements were used for a total number of
degrees of freedom equal to 2048.

The compressible material response illustrated here is described by a variant of the Og-
den constitutive law (cf. [40]) defined by this energy density function

W (C) = c1(I1 – 3) + c2(I2 – 3) + a(I3 – 1) – (c1 + 2c2 + a) ln I3

with I1, I2 and I3, the three invariants of the tensor C, with C = FTF.
Details on the problem’s physical settings are given as follows:

� =
{

(x1, x2) ∈ R
2 : 81 < (x1 – 100)2 + (x2 – 100)2 < 100

}
,

�1 = ∅, �2 = ∅,

�3 =
{

(x1, x2) ∈R
2 : (x1 – 100)2 + (x2 – 100)2 = 100

}
.

� represents the section of a three-dimensional deformable body under the plane con-
straint assumption. The foundation is given by {(x1, x2) ∈ R

2 : x2 ≤ –50}. For the dis-
cretization, we use 1664 elastic nodes and 128 contact nodes.

As previously announced, we will compare the results obtained by the active set method
and the augmented quasi-Lagrangian method with regard to the convergence and the per-
formances of the methods (see Tables 1 and 2).

The results obtained above show that the performances of the active set method are
slightly better than those of the augmented Lagrangian one. According to Fig. 3, the higher
number of nodes in contact we have, the more the gap in CPU time between the methods
widens, which confirms the robustness of the active set type methods on complex and
relevant configurations. Moreover, even if the convergence of the active set method is
ensured only for small values of the numerical parameters cν and cτ (see [26, 27]), we do
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Table 1 Results of the Active set method for the unilateral contact and Coulomb friction laws in
comparison with the number of degrees of freedom (dof ), the number of contact nodes (nbc), the
total numbers of Newton iterations (Ntit), the average fixed point iterations (afpit) and the total CPU
time (CPU) in seconds

nbc 32 64 128 256 512
dof 192 384 1792 4608 15,360
Ntit 1876 1904 1944 1961 2022
afpit 4 4 4 4 4
CPU 6.32 12.39 99.22 304.62 1841.23

Table 2 Results of the Augmented Lagrangian method for the unilateral contact and Coulomb
friction laws in comparison with the number of degrees of freedom (dof ), the number of contact
nodes (nbc), the total numbers of Newton iterations (Ntit) and the total CPU time (CPU) in seconds

nbc 32 64 128 256 512
dof 256 512 2048 5120 16,384
Ntit 1462 1568 1705 1782 1866
CPU 8.59 18.03 139.69 428.80 2693.86

Figure 3 Active set and Augmented Lagrangian CPU time with respect to nbc

not observe any influence on the results, both in terms of convergence and the quality of
the solution.

The robustness of PDAS methods lies in the fact that these methods do not use the
Lagrange multipliers, unlike the classical augmented Lagrangian method. Avoiding the
Lagrange multipliers is a relevant and strong argument in favour of the active set type
methods.

5.2 Granular materials in a 2D rotating drum
The second numerical example concerns the rotating drum in which we evaluate the be-
haviour of a 2D granular flow. The choice of this test case lies in the fact that it is repre-
sentative of multi-rigid body contact problems due to the large number of simultaneous
contacts to deal with and the large amount of CPU time needed to compute the solution.
Besides, this test case has been studied in several works using both experiments and sim-
ulations, motivating the present choice. Specifically, a collection of 400 particles is consid-
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Table 3 Physical parameters of the flow in a rotating drum

Parameter Value

Particles radius (mm) r = [3.5–4]
Density (kg · m–3) ρ = 2700
Drum diameter (mm) Ddrum = 450
rotation rate (rpm) �drum = 6
Gravitational acceleration (m · s–2) g = –9.80665
Mass particle (kg) mp = ρπ r2p

Table 4 Numerical parameters for simulation in a rotating drum for each contact approach

Numerical parameter DEM Numerical parameter NSCD Other

en = 0.59 en = 0.46 T = 5 s
kn = 103 N ·m–1 et = 1 –
kt = 2

7 kn N ·m–1 γn = 10–8 μ = 0.2
ηratio = 0.5 γt = 10–8 –
- εNLGS = 10–8 –
dt ≈ 3.8.10–6 s dt = 1.10–5 s –

ered inside a 450 mm diameter drum with a rotation speed equal to 6 rpm. The uniform
random distribution chosen between 7 and 8 mm avoids the blockages during the drum
rotation process and the particles are organised in two layers: one in a sticked contact with
the inner wall of the drum and the other as a bed.

To assess the correctness of the simulation carried out using NSCD-PDAS, we com-
pare the numerical results with the ones obtained with the well-known discrete element
method (DEM) initiated and developed by Cundall and Strack [41], which consists of an
explicit treatment of particle-particle collisions using soft-sphere approach (based on the
“Spring–Dashpot” model) as detailed in [42], and opposed to the nonsmooth approach.
To ease the comparisons with the DEM-CUNDALL approach and to verify the consis-
tency of the numerical results, the NSCD-PDAS was implemented with the MFiX-EXA
framework (see [42] for more details). In this way, one can take advantage from the parallel
computing to speed up the computations. Thus, all the simulations were performed using
96 processors. A summary of the physical model and numerical parameters of the bidi-
mensional rotating drum test case is reported in Tables 3 and 4. Let us notice that in this
example the active set numerical parameters cν and cτ can be chosen in a large interval,
ranging from 10–8 to 102, in order to obtain a convergence of the fixed point in the active
set method.

We first evaluate the surface flow obtained by DEM-CUNDALL and NSCD-PDAS in
the steady state. For this purpose, we first make a simulation over a time integration of 5 s.
Therefore, one can observe according to Fig. 4 that the steady surface flow reached after
5 s of simulations is quite similar for both approaches in parallel, with dtNSCD > dtDEM.

With regard to the interpenetrations generated during a normal persistent contact be-
tween two particles, we measure them for both approaches, as depicted in Fig. 5.

The nonsmooth formulation of the frictional contact conditions in the NSCD frame-
work ensures a non-interpenetrability between the bodies (average penetration of the or-
der of 10–6 m on some contacts)(see Fig. 5(b)), while the DEM-CUNDALL approach is
characterised by a more important interpenetrability (average penetration of the order of
10–6 m on a good part of the contacts) for a normal spring constant kn = 103 Nm–1, as
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Figure 4 Perspective views of granular flow profiles in a rotating drum obtained by DEM-CUNDALL [(a)
particle diameter, (b) processor rank] and NSCD-PDAS [(c) particle diameter, (d) processor rank] when the
steady surface flow is reached

Figure 5 Visualization of interpenetrations measured (PN) during the simulations of granular flows in a
rotating drum obtained by (a) DEM-CUNDALL and (b) NSCD-PDAS when the surface flow is reached

shown in Fig. 5(a). This is an expected result since the CUNDALL model allows interpen-
etration.

To highlight the conservation property of the NSCD method, we compare the evolution
of the kinetic energy over time between the two approaches. Since the DEM-CUNDALL
approach is dependant on the normal spring constant kn, a parametric analysis is per-
formed by taking two values (kn = 103 N ·m–1 and kn = 105 N ·m–1). Figure 6 shows that the
system’s kinetic energy is conserved with the NSCD-PDAS approach (red curve), whereas
the influence of the spring constant is noticeable. The DEM-CUNDALL approach shows a
rise of the kinetic energy with respect to increasing normal spring constant kn. One can ex-
pect that for higher values of kn the kinetic energy level will converge to the NSCD-PDAS,
but using infinitely small time steps to ensure the numerical stability.

6 Conclusion
A unified modelling and numerical treatment of contact problems for both deformable
and rigid bodies has been developed in this work. In this context, the complementary
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Figure 6 Evolution of the kinetic energy in DEM-CUNDALL (for different normal stiffness constants kn) and
NSCD-PDAS simulations of granular flows in a rotating drum over time

functions for both contact and friction formulated using a semi-smooth Newton approach
lead to a fixed point problem. Therefore, the numerical treatment by the PDAS method
leads for these two problems to an algorithm easy to implement. Numerical experiments of
both hyper-elastic ring bouncing and granular materials in a rotating drum reported above
have been performed and highlight the relevance of the proposed method and its efficiency
in terms of CPU time, in comparison with the well-established DEM approach. Thus, the
present method provides a unified modelling framework for the contact mechanics of
contact discussed above and will be used for further developments.
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