Spectrum of the Laplacian with mixed boundary conditions in a chamfered quarter of layer - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Spectrum of the Laplacian with mixed boundary conditions in a chamfered quarter of layer

Résumé

We investigate the spectrum of a Laplace operator with mixed boundary conditions in an unbounded chamfered quarter of layer. The geometry depends on two parameters gathered in some vector κ = (κ_1,κ_2) which characterizes the domain at the edges. We identify the essential spectrum and establish different results concerning the discrete spectrum with respect to κ. In particular, we show that for a given κ_1 > 0, there is some h(κ_1) > 0 such that discrete spectrum exists for κ_2 ∈ (−κ_1,0) ∪ (h(κ_1),κ_1) whereas it is empty for κ_2 ∈ [0; h(κ_1)]. The proofs rely on classical arguments of spectral theory such as the max-min principle. The main originality lies rather in the delicate use of the features of the geometry.
Fichier principal
Vignette du fichier
ChNaTa.pdf (1.06 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04048228 , version 1 (27-03-2023)
hal-04048228 , version 2 (11-04-2024)

Licence

Identifiants

  • HAL Id : hal-04048228 , version 1

Citer

Lucas Chesnel, Sergei A. Nazarov, Jari Taskinen. Spectrum of the Laplacian with mixed boundary conditions in a chamfered quarter of layer. 2023. ⟨hal-04048228v1⟩
62 Consultations
60 Téléchargements

Partager

More