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Abstract. We investigate the spectrum of a Laplace operator with mixed boundary conditions in
an unbounded chamfered quarter of layer. The geometry depends on two parameters gathered in
some vector κ = (κ1, κ2) which characterizes the domain at the edges. We identify the essential
spectrum and establish different results concerning the discrete spectrum with respect to κ. In
particular, we show that for a given κ1 > 0, there is some h(κ1) > 0 such that discrete spectrum
exists for κ2 ∈ (−κ1, 0) ∪ (h(κ1), κ1) whereas it is empty for κ2 ∈ [0;h(κ1)]. The proofs rely on
classical arguments of spectral theory such as the max-min principle. The main originality lies
rather in the delicate use of the features of the geometry.
Key words. Laplacian with mixed boundary conditions, chamfered quarter of layer, Fichera
layer, discrete spectrum, trapped modes.
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1 Formulation of the problem
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Figure 1: Domains Bκ1 (left) and Ωκ (centre). Fichera layer F (right).

In this work, we study the spectrum of a Laplace operator with mixed boundary conditions in
a chamfered quarter of layer characterized by two parameters κ1, κ2 ∈ R gathered in some vector
κ = (κ1, κ2). To describe the geometry, referring to carpentry and locksmith tools, we first define
the “blade”

Bκ1 :=
{
x = (x1, x2, x3) ∈ R3 |x1 > κ1x3, x2 ∈ R, x3 ∈ (0, 1)

}
(1)

(see Figure 1 left). Then we introduce the “incisor”

Ωκ := {x ∈ Bκ1 |x2 > κ2x3} (2)
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(see Figure 1 centre). Let us give names to the different components of the boundary ∂Ωκ of Ωκ.
First, denote by Σκ the union of the two “horizontal” quadrants:

Σκ := {x ∈ ∂Ωκ |x3 = 0 or x3 = 1}.

Then consider the laterals sides of the incisor. Set

Γκ1 := ∂Ωκ ∩ Bκ1 , Γκ2 := ∂Ωκ \ {Γκ1 ∪ Σκ}. (3)

We study the spectral problem with mixed boundary conditions

−∆xu = λu in Ωκ

u = 0 on Σκ

∂νu = 0 on Γκ1 ∪ Γκ2 ,
(4)

where ∂ν is the outward normal derivative on ∂Ωκ. Denote by H1
0(Ωκ; Σκ) the Sobolev space of

functions of H1(Ωκ) vanishing on Σκ. Classically (see e.g. [12, 13]), the variational formulation of
Problem (4) writes

Find (λ, u) ∈ R × H1
0(Ωκ; Σκ) \ {0} such that

(∇xu,∇xψ)Ωκ = λ (u, ψ)Ωκ ∀ψ ∈ H1
0(Ωκ; Σκ),

(5)

where for a domain Ξ, (·, ·)Ξ stands for the inner product of the Lebesgue spaces L2(Ξ) or (L2(Ξ))3

according to the case. Using the homogeneous Dirichlet condition on Σκ for the functions in
H1

0(Ωκ; Σκ), one can prove that there holds the Friedrichs inequality

∥u; L2(Ωκ)∥2 ≤ cκ∥∇xu; L2(Ωκ)∥2 ∀u ∈ H1
0(Ωκ; Σκ).

Classically (see e.g [3, §10.1], [18, Ch. VIII.6]), the variational problem (5) gives rise to the un-
bounded operator Aκ of L2(Ωκ) such that

Aκ : D(Aκ) → L2(Ωκ)

u 7→ Aκu = −∆u,

with D(Aκ) := {u ∈ H1
0(Ωκ; Σκ) | ∆u ∈ L2(Ωκ) and ∂νu = 0 on Γκ1 ∪ Γκ2}. The operator Aκ is

positive definite and selfadjoint. Since Ωκ is unbounded, the embedding H1
0(Ωκ; Σκ) ⊂ L2(Ωκ)

is not compact and Aκ has a non-empty essential component σess(Aκ) ([3, Thm. 10.1.5]). Let us
mention that the case

κ1 = κ2 = 1
plays a particular role. Indeed in this situation, if u is an eigenfunction associated with an eigen-
value of Aκ, by extending u via even reflections with respect to the faces Γκ1 , Γκ2 , one gets an
eigenvalue of the Dirichlet Laplacian in the Fichera layer

F =
⋃

j=1,2,3

{
x |xj ∈ (0, 1), xk > 0, k ̸= j

}
represented in Figure 1 right (see [8] for the original article that gave rise to the name). This latter
problem has been studied in [5, 1]. More precisely, in [5] the authors give a characterization of the
essential spectrum of the Dirichlet Laplacian and show that the discrete spectrum has at most a
finite number of eigenvalues. The existence of discrete spectrum is proved in [1, Thm. 2].

The goal of this paper is to get similar information for the operator Aκ with respect to the
parameter κ. Observe that by exchanging the axes or modifying their orientations, there is no loss
of generality to restrict our study to the cases

κ1 ≥ 0, |κ2| ≤ κ1. (6)
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Note that we consider mixed boundary conditions in (3) because we have in mind to study the
spectrum of the Dirichlet Laplacian in geometries similar to the Fichera layer of Figure 1. Indeed,
playing with symmetries, we can reduce the analysis of certain of these problems to the one of
(3) (see Figure 13 for an example). On the other hand, let us mention that the spectrum of the
Dirichlet Laplacian in Ωκ has a rather simple structure with only essential spectrum and no dis-
crete spectrum. This is a consequence of Proposition 8.1 in Appendix.

This note is organized as follows. In Section 2, we describe the essential spectrum of Aκ (Theorem
2.1). Then in Section 3, we state the results for the discrete spectrum of Aκ (the main outcome of
the present work is Theorem 3.2). The next four sections contain the proof of the different items
of Theorem 3.2. In Section 8, we illustrate the theory with some numericals results. Finally we
establish the above mentioned result related to the Dirichlet Laplacian in Ωκ in the Appendix.

2 Essential spectrum

ξ1

ξ2 ξ1 = ξ2 tanα1

e1

e3

e2

α1

Figure 2: Domain Πα1 corresponding with a cut of the blade Bκ1 in the plane x2 = 0.

Introducing the angle α1 ∈ [0, π/2) such that κ1 = tanα1, the blade (1) can also be defined as

B tanα1 = {(x1, x2, x3) ∈ R3 | (x1, x3) ∈ Πα1}

where Πα1 stands for the 2D pointed strip

Πα1 :=
{
ξ = (ξ1, ξ2) ∈ R2 | ξ1 > ξ2 tanα1, ξ2 ∈ (0, 1)

}
(7)

(see Figure 2). To describe σess(Aκ), we need information on the spectrum of the auxiliary planar
problem

−∆ξv = µv in Πα1

v = 0 on ςα1

∂νv = 0 on γα1

(8)

where ςα1 := {ξ ∈ ∂Πα1 | ξ2 = 0 or ξ2 = 1} denotes the horizontal part of ∂Πα1 and γα1 := ∂Πα1 \ςσ
stands for the oblique part of ∂Πα1 .

The continuous spectrum of Problem (8) coincides with the ray [π2,+∞). When α1 = 0 (straight
end), working with the decomposition in Fourier series in the vertical direction, one can prove that
the discrete spectrum is empty. On the other hand, for all α1 ∈ (0, π/2), it has been shown in [10]
that there is at least one eigenvalue below the continuous spectrum (see also [15] for more general
shapes). Notice that by extending Πα1 by reflection with respect to γα1 , we obtain a broken strip
that we can also call a V-shaped domain. This allows us to exploit all the results from [7, 17] (see
also [6] as well as the amendments in [16]) to get information on µα1

1 , the smallest eigenvalue of (8).
In particular, the function α1 7→ µα1

1 is smooth and strictly decreasing on (0, π/2). Additionally,
we have

lim
α1→0+

µα1
1 = π2, lim

α1→(π/2)−
µα1

1 = π2

4 (9)
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(see Figure 8 for a numerical approximation of α1 7→ µα1
1 ). By adapting the approach proposed

in [5, §3.1], one establishes the next assertion. The only point to be commented here is that there
holds

λκ† := µarctanκ1
1 ≤ µ

arctan |κ2|
1 (10)

because |κ2| ≤ κ1 implies arctan |κ2| ≤ arctan κ1 and because α1 7→ µα1
1 is decreasing.

Theorem 2.1. The essential spectrum σess(Aκ) of the operator Aκ coincides with the ray [λκ† ,+∞)
where λκ† is defined in (10).

Remark 2.2. Thus the lower bound of σess(Aκ) is characterized by the sharpest edge of Ωκ.

3 Discrete spectrum

For the discrete spectrum σd(Aκ), our main results are as follows:

Theorem 3.1. For κ1 = κ2 = 0 (straight edges), σd(Aκ) is empty.

Theorem 3.2. Assume that κ1 > 0.
1) σd(Aκ) is non-empty for κ2 ∈ [−κ1, 0).

2) There exists h(κ1) > 0 such that:
i) σd(Aκ) is empty for κ2 ∈ [0, h(κ1)];
ii) σd(Aκ) is non-empty for κ2 ∈ (h(κ1), κ1].

3) For κ2 ∈ [−κ1, 0) ∪ (h(κ1), κ1], denote by λκ1 the first (smallest) eigenvalue of σd(Aκ).
The function κ2 7→ λκ1 is strictly increasing on [−κ1, 0) and strictly decreasing on (h(κ1), κ1].

4) For κ2 ∈ (−κ1;κ1), σd(Aκ) contains at most a finite number of eigenvalues.

The items 1)-3) of Theorem 3.2 are illustrated by Figure 3. Note in particular that we have the
following mechanism for positive κ2: diminishing κ2 from the value κ1 makes the eigenvalue λκ1 to
reach the threshold λκ† = µarctanκ1

1 at a certain κ2 = h(κ1) ∈ (0, κ1). The rest of the present note
is dedicated to the proof of the above statements.

−κ2 κ2

κ1

λκ† = µarctanκ1
1

λκ1

h(κ1)

Figure 3: Picture of the behaviour of λκ1 , the smallest eigenvalue of σd(Aκ), for a given κ1 > 0 and
κ2 ∈ [−κ1, 0) ∪ (h(κ1), κ1].

4 Discrete spectrum for negative κ2

In this section, we prove the item 1) of Theorem 3.2 and so we consider the case κ2 < 0. A direct
application of the minimum principle, see e.g. [3, Thm. 10.2.1], [18, Thm. XIII.3], shows that the
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Figure 4: Domains Ωκ
− and Ωκ

+.

discrete spectrum of Aκ contains an eigenvalue λκ1 if one can find a trial function ψ ∈ H1
0(Ωκ; Σκ)

such that

∥∇xψ; L2(Ωκ)∥2 < λκ† ∥ψ; L2(Ωκ)∥2. (11)

Let us construct a function satisfying (11). To proceed, first divide the incisor Ωκ into the two
domains

Ωκ
− := {x ∈ Ωκ |x2 < 0}, Ωκ

+ := {x ∈ Ωκ |x2 > 0} = Ω(0,κ2) (12)

(see Figure 4). Then for ε > 0 small, define ψε such that

ψε(x) =
v(x1, x3) in Ωκ

−

e−εx2v(x1, x3) in Ωκ
+

(13)

where v is an eigenfunction of the 2D problem (8) associated with µα1
1 , the smallest eigenvalue,

and α1 = arctan κ1. To set ideas, we choose v such that ∥v; L2(Πα1)∥ = 1. Note that ψε satisfies
the homogeneous Dirichlet condition on Σκ and decays exponentially at infinity. Using (10), we
obtain

∥∇xψ
ε; L2(Ωκ

+)∥2 − λκ† ∥ψε; L2(Ωκ
+)∥2

=
(
∥∇ξv; L2(Πα1)∥2 + (ε2 − µα1

1 )∥v; L2(Πα1)∥2) � ∞

0
e−2εx2dx2 = ε

2 .
(14)

As for the integral over the prism Ωκ
− with triangular cross-sections and the bevelled end, we

integrate by parts and take into account the boundary conditions of (4), which yields

∥∇xψ
ε; L2(Ωκ

−)∥2 − λκ† ∥ψε; L2(Ωκ
−)∥2 = −

�
Ωκ

−

v(x1, x3)
(
∆xv(x1, x3) + µα1

1 v(x1, x3)
)
dx

+
�

Γκ
1

v(x1, x3)∂νv(x1, x3) ds =: IΩκ
−

+ IΓκ
1
.

(15)

Owing to (8), there holds IΩκ
−

= 0. Now we focus our attention on the term IΓκ
1
. Let (e1, e2, e3)

denote the canonical basis of R3. Set α2 := arctan κ2 ∈ (−π/2, 0) and define the new orthonormal
basis (ẽ1, ẽ2, ẽ3) with

ẽ1 = e1; ẽ2 = cos(α2)e2 − sin(α2)e3; ẽ3 = sin(α2)e2 + cos(α2)e3. (16)

Observe that the component Γκ1 of the boundary of the incisor Ωκ is included in the plane (O, ẽ1, ẽ3).

Lκ

ν

ẽ1

ẽ3

ẽ2

Figure 5: Domain Γκ1 in the plane (O, ẽ1, ẽ3).
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Let (x̃1, x̃2, x̃3) denote the coordinates in the basis (16). We have

IΓκ
1

= −
1
2

�
Γκ

1

∂(v2)
∂x̃2

dx̃1dx̃3. (17)

Using that v is independent of x2, we obtain

0 = ∂(v2)
∂x2

= cosα2
∂(v2)
∂x̃2

+ sinα2
∂(v2)
∂x̃3

. (18)

Combining (18) and (17), we find

IΓκ
1

=
tanα2

2

�
Γκ

1

∂(v2)
∂x̃3

dx̃1dx̃3 =
tanα2

2

�
∂Γκ

1

v2 ν · ẽ3 dℓ =
tanα2

2

�
Lκ

v2 ν · ẽ3 dℓ, (19)

where Lκ := {x ∈ R3 |xj = κjx3, j = 1, 2, x3 ∈ (0, 1)} and where ν stands for the outward unit
normal vector to ∂Γκ1 (in the plane (O, ẽ1, ẽ3)). Using that α2 ∈ (−π/2, 0), ν · ẽ3 > 0 on Lκ (see
Figure 5) and v ̸≡ 0 on Lκ, we deduce that IΓκ

1
< 0. Note also that the quantity IΓκ

1
is independent

of ε. Gathering (14) and (15), we infer that the inequality (11) holds for ε > 0 small enough. This
is enough to guarantee that σd(Aκ) is non-empty for negative κ2.

5 Absence of eigenvalues for small positive κ2

The goal of this section is to prove an intermediate result to establish the item 2) of Theorem 3.2.
Therefore we assume that κ2 ≥ 0. In that situation, the integral IΓκ

1
in (19) is positive because

α2 ∈ [0, π/2) and our argument of the previous section does not work for showing the existence of
discrete spectrum. Of course, this does not yet guarantee that σd(Aκ) is empty. Actually we will
see in Section 6 that σd(Aκ) is non-empty for certain κ with κ2 > 0. For the moment, combining
the calculations of Section 4 with the approach of [14], we show the following result.

Proposition 5.1. For all κ1 > 0, there exists δ(κ1) > 0 such that σd(Aκ) is empty for

κ2 ∈ [0, δ(κ1)). (20)

Proof.

e2

e3

e1

Ωκ
1− Ωκ

1+

Figure 6: Domains Ωκ
1− and Ωκ

1+.

Fix κ2 ∈ [0,min(1, κ1)) and divide Ωκ into the two domains

Ωκ
1− := {x ∈ Ωκ |x2 < 1} and Ωκ

1+ := {x ∈ Ωκ |x2 > 1} (21)

(see Figure 6). Since Ωκ
1+ = {(x1, x2, x3) ∈ R3 | (x1, x3) ∈ Πarctanκ1 , x2 > 1}, there holds

∥∇xψ; L2(Ωκ
1+)∥2 ≥ λκ† ∥ψ; L2(Ωκ

1+)∥2 (22)

for all ψ ∈ H1
0(Ωκ; Σκ). Below we show that there is some ϱ > 0 such that for κ2 small enough,

there holds, for all ψ ∈ H1
0(Ωκ; Σκ),

∥∇xψ; L2(Ωκ
1−)∥2 ≥ (λκ† + κ1ϱ)∥ψ; L2(Ωκ

1−)∥2. (23)

Combining (22) and (23) with the minimum principle yields the result of the proposition.
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Remark 5.2. Note that estimate (22) implies that σd(Aκ) is empty for all κ = (κ1, 0) with κ1 ≥ 0.
This proves in particular the result of Theorem 3.1.

The remaining part of the proof is dedicated to establishing (23). Consider the mixed boundary-
value problem

−∆xw = τw in Ωκ
1−

w = 0 on {x ∈ ∂Ωκ
1− |x3 = 0 or x3 = 1}

∂νw = 0 on {x ∈ ∂Ωκ
1− | x3 ∈ (0, 1)}.

(24)

As pictured in Figure 6 left, the domain Ωκ
1− in (21) is a semi-infinite prism with a trapezoidal

cross-section and a skewed end. When κ2 = 0, the trapezoid is simply the unit square and the
continuous spectrum of the problem (24) coincides with the ray [π2,+∞). In that situation, the
problem (24) admits an eigenvalue at µα1

1 ∈ (0, π2) with α1 = arctan κ1 (see the text above (9) for
the definition of that quantity), a corresponding eigenfunction being w such that

w(x) = v(x1, x3),

where v is an eigenfunction of (8) associated with µα1
1 . Now let us consider the situation κ2 > 0

small. Then the map

Ωκ
1− ∋ x 7→

(
x1,

x2 − κ2x3

1 − κ2x3
, x3

)
∈ Ω(κ1,0)

1− (25)

is a diffeomorphism whose Jacobian matrix is close to the identity and whose Hessian matrix is
small. Using these properties, we deduce that the discrete spectrum of the problem (24) is still
non-empty for κ2 small enough. This comes from the fact that the cut-off point of the essential
spectrum satisfies the estimate

|τκ2
† − π2| ≤ C†κ2

and the first (smallest) eigenvalue of the discrete spectrum, which is simple, admits the expansion

τκ2
1 = µα1

1 + κ2τ
′
1 + τ̃κ2

1 (26)

with |τ̃κ2
1 | ≤ C κ2

2. Here C > 0 is a constant independent of κ2. These properties can be justified
using classical results of the perturbation theory for linear operators, see e.g. [11, Ch. 7], [3, Ch. 10],
[18, Ch. XII]. From the minimum principle, to establish (23), we see that it suffices to show that

τ ′
1 = dτκ2

1
dκ2

∣∣∣
κ2=0

> 0. (27)

Let wκ2
1 be an eigenfunction of Problem (24) associated with τκ2

1 . Together with (29), consider the
asymptotic ansatz

wκ2
1 (x) = v(x1, x3) + κ2w

′
1(x) + w̃κ2

1 (x) (28)
where w̃κ2

1 is a small remainder. Insert (29), (28) into (24) and collect the terms of order κ2. We
obtain

−∆xw
′
1 − µα1

1 w′
1 = τ ′

1v in Ω(κ1,0)
1−

w′
1 = 0 on {x ∈ ∂Ωκ

1− |x3 = 0 or x3 = 1}.
(29)

As for the Neumann boundary condition of (24), using in particular that on Γκ1 ,

∂ν · = (1 + κ2
2)−1/2

(
− ∂·
∂x2

+ κ2
∂·
∂x3

)
,

at order κ2, we find

−∂w′
1

∂x2
(x1, 0, x3) = − ∂v

∂x3
(x1, x3), ∂w′

1
∂x2

(x1, 1, x3) = 0, (x1, x3) ∈ Πα1 . (30)
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Since the smallest eigenvalue µα1
1 is simple, there exists only one compatibility condition to satisfy

to ensure that the problem (29)–(30) has a non trivial solution. It can be written as

τ ′
1 = τ ′

1∥v; L2(Πα1)∥2

= −
�

Ω(κ1,0)
1−

v(∆xw
′
1 + µα1

1 w′
1) dx =

�
Γ(κ1,0)

1

v(x1, x3)∂w
′
1

∂x2
(x1, 0, x3) ds

=
�

Πα1
v(ξ1, ξ2) ∂v

∂ξ2
(ξ1, ξ2) dξ1dξ2 = 1

2 cosα1

�
L(κ1,0)

v2dℓ > 0

where L(κ1,0) := {(ξ1, ξ2) ∈ R2 | ξ1 = ξ2 tanα1, ξ2 ∈ (0, 1)}. This shows (27) which guarantees that
estimate (23) is valid according to the minimum principle. Therefore the proof of Proposition 5.1
is complete.

6 Existence of eigenvalues for κ2 close to κ1 > 0

We start this section by proving that the discrete spectrum σd(Aκ) of the operator Aκ can also
be non-empty for certain positive κ2. This happens for example in the case κ1 = κ2, which we
now assume. We adapt the proof of [1, Thm. 2] and exhibit a function φ ∈ H1

0(Ωκ; Σκ) satisfying
(11). First, note that for κ1 = κ2, the domain Ωκ is symmetric with respect to the “bisector”
cross-section

Υκ := {x ∈ Ωκ |x1 = x2}.

Let us divide Ωκ into the two congruent domains

Ωκ
∧ := {x ∈ Ωκ |x1 > x2} and Ωκ

< := {x ∈ Ωκ |x2 > x1}. (31)

Accordingly, we set

ψε(x) =
e−εx1v(x2, x3) in Ωκ

∧

e−εx2v(x1, x3) in Ωκ
<

(32)

where v is as in (13). Since ψε is continuous on Υκ and decays exponentially at infinity, it belongs
to H1

0(Ωκ; Σκ). Moreover, we have

∥∇xψ; L2(Ωκ
∧)∥2 − µα1

1 ∥ψ; L2(Ωκ
∧)∥2

= −
�

Ωκ
∧

e−2εx1v(x2, x3)
(
∆xv(x2, x3) + (µα1

1 + ε2)v(x2, x3)
)
dx

+
�

Υκ

e−εx1v(x2, x3)∂ν
(
e−εx1v(x2, x3)

)
ds =: IεΩκ + IεΥκ .

(33)

Using that v solves (8), we get IεΩκ = O(ε). Now consider the integral IεΥκ . Define the new
orthonormal basis (ê1, ê2, ê3) with

ê1 =
√

2
2 e1 +

√
2

2 e2; ê2 = −
√

2
2 e1 +

√
2

2 e2; ê3 = e3. (34)

Remark that Υκ is included in the plane (O, ê1, ê3). Let (x̂1, x̂2, x̂3) denote the coordinates in the
basis (34). We have

IεΥκ =
�

Υκ

e−ε
√

2(x̂1−x̂2)/2v
∂

∂x̂2

(
e−ε

√
2(x̂1−x̂2)/2v

)
dx̂1dx̂3

=
�

Υκ

ε
√

2
2 e−ε

√
2(x̂1−x̂2)v2 dx̂1dx̂3 +

�
Υκ

1
2 e

−ε
√

2(x̂1−x̂2) ∂(v2)
∂x̂2

dx̂1dx̂3.

(35)
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Exploiting the exponential decay of v(ξ) as ξ1 → +∞, (see Section 2), one finds that the first
integral of the right hand side above is O(ε). For the second one, using that v is independent of
x1, we can write

0 = ∂(v2)
∂x1

=
√

2
2
∂(v2)
∂x̂1

−
√

2
2
∂(v2)
∂x̂2

.

Remarking also that x̂1 = 0 on Υκ, this gives
�

Υκ

1
2 e

−ε
√

2(x̂1−x̂2) ∂(v2)
∂x̂2

dx̂1dx̂3 =
�

Υκ

1
2 e

−ε
√

2 x̂1
∂(v2)
∂x̂1

dx̂1dx̂3

=
�

Υκ

ε
√

2
2 e−ε

√
2 x̂1 v2 dx̂1dx̂3 +

�
Lκ

1
2 e

−ε
√

2 x̂1 v2 ν · ê1 dℓ

(36)

where Lκ := {x ∈ R3 |xj = κjx3, j = 1, 2, x3 ∈ (0, 1)} and where ν stands for the outward unit
normal vector to Υκ (in the plane (O, ê1, ê3)). Using that κ1 = κ2 > 0, we find ν · ê1 < 0 on Lκ.
Since there holds v ̸≡ 0 on Lκ, gathering (35) and (36), we deduce that we have IεΥκ < 0 for ε
small enough. From (33), we deduce

∥∇xψ; L2(Ωκ
∧)∥2 − µα1

1 ∥ψ; L2(Ωκ
∧)∥2 < 0

for ε small enough. Then by symmetry, we obtain

∥∇xψ; L2(Ωκ)∥2 − µα1
1 ∥ψ; L2(Ωκ)∥2 = 2∥∇xψ; L2(Ωκ

∧)∥2 − 2µα1
1 ∥ψ; L2(Ωκ

∧)∥2 < 0.

We conclude that the inequality (11) is satisfied by the function (32) which proves the following
statement.

Theorem 6.1. For κ1 = κ2 > 0, the discrete spectrum σd(Aκ) of the operator Aκ is not empty.

Since the eigenvalues of the discrete spectrum are stable with respect to small perturbations of the
operator, Theorem 6.1 and diffeomorphisms similar to (25) imply that σd(Aκ) is not empty for κ2
in a neighbourhood of κ1. With Proposition 5.1, this allows us to introduce h(κ1) ∈ (0, κ1) as the
infimum of the numbers δ such that σd(Aκ) is non-empty for all κ2 ∈ (δ, κ1].

On the other hand, we have the following monotonicity result:

Proposition 6.2. Consider some κ = (κ1, κ2) with κ1 > 0 and κ2 ∈ (0, κ1] such that Aκ has a
non-empty discrete spectrum. Let λκ1 denote the first (smallest) eigenvalue of σd(Aκ). For ε > 0
small, set κε := (κ1, κ2 + ε) and denote by λκε

1 the first eigenvalue of σd(Aκ
ε). Then, we have

λκ
ε

1 < λκ1 . (37)

Proof. Using again the minimum principle, we can write

λκ
ε

1 = min
ψε∈H1

0(Ωκε ;Σκε )\{0}

∥∥∇xψ
ε; L2(Ωκε)

∥∥2∥∥ψε; L2(Ωκε)
∥∥2 . (38)

Now define the function ψε such that

ψε(x) = uκ
(
x1,

κ2x2
κ2 + ε

, x3
)
,

where uκ ∈ H1
0(Ωκ; Σκ) is an eigenfunction associated with the first eigenvalue of σd(Aκ). Clearly

ψε is a non zero element of H1
0(Ωκε). Besides, we find

∥∥ψε; L2(Ωκε)
∥∥2 =

κ2 + ε

κ2

∥∥uκ; L2(Ωκ)
∥∥2
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and
∥∥∇xψ

ε; L2(Ωκε)
∥∥2 = κ2

κ2 + ε

∥∥∥∂uκ
∂x2

; L2(Ωκ)
∥∥∥2

+
κ2 + ε

κ2

∑
j=1,3

∥∥∥∂uκ
∂xj

; L2(Ωκ)
∥∥∥2
.

According to (38), these identities imply

λκ
ε

1 ≤ ∥uκ; L2(Ωκ)∥−2
(

κ2
2

(κ2 + ε)2

∥∥∥∂uκ
∂x2

; L2(Ωκ)
∥∥∥2

+
∑
j=1,3

∥∥∥∂uκ
∂xj

; L2(Ωκ)
∥∥∥2)

≤ ∥∇xu
κ; L2(Ωκ)∥2

∥uκ; L2(Ωκ)∥2 = λκ1 .

The strict inequality in (37) follows from the fact that the derivative ∂uκ/∂x2 cannot be null in
the whole domain Ωκ. This completes the proof of the proposition.

According to relation (37), the function κ2 7→ λκ1 is strictly decreasing on (h(κ1), κ1). Besides,
Proposition 6.2 ensures that σd(Aκ) cannot be non-empty for some h̃(κ1) ∈ (0, h(κ1)) otherwise
σd(Aκ) would be non-empty for all κ2 ∈ (h̃(κ1), κ1] which contradicts the definition of h(κ1). This
completes the proof of the item 2) of Theorem 3.2.
Remark 6.3. For κ2 ∈ [−κ1, 0), we have seen in Section 4 that σd(Aκ) is non-empty. Let λκ1 denote
the smallest eigenvalue of σd(Aκ). By adapting the proof of Proposition 6.2, one establishes that
the map κ2 7→ λκ1 is strictly increasing on [−κ1, 0). Together with Proposition 6.2, this shows the
item 3) of Theorem 3.2.

7 Finiteness of the discrete spectrum

Finally, we establish the item 4) of Theorem 3.2 and so assume that κ2 ∈ (−κ1, κ1). Set again
α1 = arctan κ1, α2 = arctan κ2. Since |α2| < α1, similarly to (10), we have

λκ† = µα1
1 < µ

|α2|
1 = µα2

1 . (39)

We remind the reader that µαj

1 stands for the smallest eigenvalue of the 2D problem (8) set in the
pointed strip Παj appearing in (7). Observe that Πα2 can be obtained from Π−α2 by a symmetry
with respect to the line ξ2 = 1/2 and a translation, which ensures that µ−α2

1 = µα2
1 and so

µ
|α2|
1 = µα2

1 .

ξ1

ξ2 ξ1 = ξ2 tanα2
α2

Re2

e3

e1

Ωκ
III

Ωκ
II

Ωκ
I

Re2

e1

e3

Figure 7: Left: truncated pointed strip Πα2(R). Right: bottom view of the decomposition of Ωκ.

For R > 0, define the truncated pointed strip

Πα2(R) := {(ξ1, ξ2) ∈ Πα2 | ξ1 < R}

(see Figure 7 left) and consider the problem

−∆ξv = µv in Πα2(R)
v = 0 on {ξ ∈ ∂Πα2(R) | ξ2 = 0 or ξ2 = 1}

∂νv = 0 on {ξ ∈ ∂Πα2(R) | ξ2 ̸= 0 and ξ2 ̸= 1}.
(40)
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Denote by µα2
1 (R) the smallest eigenvalue of (40). Since µα2

1 (R) converges to µα2
1 as R → +∞,

according to (39), we can fix R > |κ2| such that

µα2
1 (R) > λκ† . (41)

Then let us divide Ωκ into the three domains

Ωκ
I := {x ∈ Ωκ |x1 > κ1 and x2 < R}, Ωκ

II := {x ∈ Ωκ |x2 > R},

Ωκ
III := {x ∈ Ωκ |x1 < κ1 and x2 < R}

(see the representation of Figure 7 right). Using (41), we obtain

∥∇xψ; L2(Ωκ
I )∥2 ≥ λκ† ∥ψ; L2(Ωκ

I )∥2 ∀ψ ∈ H1
0(Ωκ; Σκ). (42)

On the other hand, from (22), we get

∥∇xψ; L2(Ωκ
II)∥2 ≥ λκ† ∥ψ; L2(Ωκ

II)∥2 ∀ψ ∈ H1
0(Ωκ; Σκ). (43)

Besides, since Ωκ
III is bounded, the max-min principle ([3, Thm. 10.2.2]) guarantees that there is

n ∈ N := {0, 1, 2, . . . } such that

λκ† ≤ max
E⊂En

inf
ψ∈E\{0}

�
Ωκ

III

|∇ψ|2 dx
�

Ωκ
III

ψ2 dx
, (44)

where En denotes the set of subspaces of H1
0(Ωκ

III; Σ0 ∩∂Ωκ) := {φ ∈ H1(Ωκ
III) |φ = 0 on Σ0 ∩∂Ωκ}

of codimension n. Gathering (42)–(44), we deduce that there holds

λκ† ≤ max
E⊂Ẽn

inf
ψ∈E\{0}

�
Ωκ

|∇ψ|2 dx
�

Ωκ

ψ2 dx
,

where this times Ẽn stands for the set of subspaces of H1
0(Ωκ; Σ0) of codimension n. From the

max-min principle, this proves that σd(Aκ) contains at most n (depending on κ) eigenvalues.

Remark 7.1. Our simple proof above does not work to show that σd(Aκ) is discrete when κ2 = ±κ1.
However we do not expect particular phenomenon and think the result also holds in this case. It is
proved in [5, Thm. 1.2] when κ2 = κ1 = 1.

8 Numerics and discussion

In this section, we illustrate some of the results above. In Figure 8, we represent an approxima-
tion of the first eigenvalue of the 2D problem (8) set in the pointed strip Πα1 with respect to
α1 ∈ (0; 9π/20). We use a rather crude method which consists in truncating the domain at ξ2 = 12
(see the picture of Figure 7 left) and imposing homogeneous Dirichlet boundary condition on the
artificial boundary. Then we compute the spectrum in this bounded geometry by using a classical
P2 finite element method. To proceed, we use the library Freefem++ [9] and display the results
with Matlab1 and Paraview2. The values we get are coherent with the ones recalled in (9).

In Figure 9–11, we fix κ1 = 1 (equivalently α1 = π/4) and compute the first eigenvalue of σd(Aκ)
for different κ2. For κ1 = 1, the bound of the essential spectrum of Aκ is λκ† ≈ 0.929π2 (see

1Matlab, http://www.mathworks.com/.
2Paraview, http://www.paraview.org/.
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Figure 8 as well as [5]). For each of the three κ2, in agreement with Theorem 3.2, we find an
eigenvalue below the essential spectrum. Actually, in each situation our numerical experiments
seem to indicate that there is only one eigenvalue in the discrete spectrum, which is a result that
we have not proved. Interestingly, for κ2 = −0.1 (Figure 10), the eigenfunction is not particularly
localized at the intersection of the obliques sides. We emphasize that here we simply compute
the spectrum of the Laplace operator with mixed boundary conditions in the bounded domain
{x ∈ Ωκ |x1 < 6 and x2 < 6}. At x1 = 6 and x2 = 6, we impose homogeneous Neumann boundary
condition. Admittedly, this is a very naive approximation, especially in the case of Figure 10 where
the eigenfunction has a poor decay at infinity. In the latter situation, the corresponding eigenvalue
is very close to λκ† and we do not give its value because our approximation probably lacks precision.

In Figure 12, we represent eigenfunctions associated with two different eigenvalues of σd(Aκ) for
κ = (3,−3). For the 2D problem (8) in the pointed strip, the cardinal of the discrete spectrum
can be made as large as desired by considering sufficiently sharp angles. We imagine that a similar
phenomenon occurs in our geometry Ωκ. However to prove such a result is an open problem. At
least the numerics of Figure 12 suggest that we can have more than one eigenvalue in σd(Aκ).

As mentioned in the introduction, the fact that the discrete spectrum of Aκ for κ = (1, 1) is
not empty ensures that the Dirichlet Laplacian in the so-called Fichera layer F of Figure 1 right
admits an eigenvalue below the essential spectrum. This can be proved by playing with symme-
tries and reconstructing F from three versions of Ω(1,1). Now, gluing six domains Ω(1,−1), we can
create the cubical structure pictured in Figure 13. Then, from Theorem 3.2 which guarantees that
σd(Aκ) contains at least one eigenvalue, we deduce that the Dirichlet Laplacian in this geometry
has at least one eigenvalue.

0 /8 /4 3 /8 /2
0

2/4

2/2

3 2/4

2

Figure 8: Curve α1 7→ µα1
1 for α1 ∈ (0; 9π/20). According to Theorem 2.1, this gives the bound

λκ† of the essential spectrum of Aκ. The two pictures correspond to eigenfunctions associated with
µα1

1 for α1 = π/4 and α1 = 9π/20.

Figure 9: Two views of an eigenfunction associated with the first eigenvalue of σd(Aκ) for κ =
(1,−1). We find λκ1 ≈ 0.81π2.

12



Figure 10: Eigenfunction associated with the first eigenvalue of σd(Aκ) for κ = (1,−0.1).

Figure 11: Eigenfunction associated with the first eigenvalue of σd(Aκ) for κ = (1, 1). We find
λκ1 ≈ 0.90π2.

Figure 12: Eigenfunctions associated with two different eigenvalues of σd(Aκ) for κ = (3,−3).

Figure 13: Cubical structure obtained by gluing six domains Ωκ with κ = (1,−1).
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Appendix

Here we show that the Dirichlet Laplacian in Ωκ has no isolated eigenvalue nor eigenvalues em-
bedded in the essential spectrum.

Proposition 8.1. Fix κ = (κ1, κ2) ∈ R2. Assume that u ∈ H1(Ωκ) satisfies

−∆xu = λu in Ωκ

u = 0 on ∂Ωκ
(45)

for some λ ∈ C. Then there holds u ≡ 0 in Ωκ.

Proof. The result is clear when λ ∈ C\(0,+∞). Let us apply the Rellich trick [19] to deal with
the case λ > 0. If u solves (45), the function ∂x1u satisfies

−∆x(∂x1u) = λ∂x1u in Ωκ

∂x1u = 0 on Σκ.
(46)

Note that since Ωκ is convex, classical regularity results (see e.g., the second basic inequality in
[12, §II.6]) ensure that u belongs to H2(Ωκ) so that ∂x1u falls in H1(Ωκ). Multiplying (45) by ∂x1u,
(46) by u, integrating by parts and taking the difference, we obtain

0 =
�

Γκ
2

∂u

∂ν

∂u

∂x1
ds (47)

(note that ∂x1u = 0 on Γκ1 because u = 0 on Γκ1). On Γκ2 , the fact that u = 0 implies

−κ1
∂u

∂x1
=

∂u

∂x3
.

Therefore we get

∂u

∂ν
= (1 + κ2

1)−1/2
(

−
∂u

∂x1
+ κ1

∂u

∂x3

)
= −

√
1 + κ2

1
∂u

∂x1
.

Using this in (47) gives ∂u/∂ν = 0 on Γκ2 . Since we also have u = 0 on Γκ2 and ∆xu+λu = 0 in Ωκ,
the theorem of unique continuation (see e.g. [2], [4, Thm. 8.6]) guarantees that u ≡ 0 in Ωκ.
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