Améliorer la portabilité du neurofeedback bimodal : prédire par apprentissage automatique les scores NF-IRMf à partir des signaux EEG - Archive ouverte HAL
Poster De Conférence Année : 2023

Améliorer la portabilité du neurofeedback bimodal : prédire par apprentissage automatique les scores NF-IRMf à partir des signaux EEG

Caroline Pinte
  • Fonction : Auteur
  • PersonId : 1170974
Claire Cury
Pierre Maurel

Résumé

Le neurofeedback (NF) est une méthode permettant à un individu d'apprendre à réguler son activité cérébrale. Les acquisitions simultanées par électroencéphalographie (EEG) et imagerie par résonance magnétique fonctionnelle (IRMf) permettent un entraînement NF plus efficace (Perronnet et al., 2017, https://doi.org/10.3389/fnhum.2017.00193). Cependant, l'utilisation de l'IRM étant très contraignante et coûteuse, nous souhaitons minimiser son utilisation. Ainsi, nous proposons une méthode basée sur un réseau de neurones convolutif unidimensionnel (CNN 1D) permettant de prédire les scores NF-IRMf à partir des signaux EEG.
CarolinePinte_IABM_2023.pptx (3.75 Mo) Télécharger le fichier

Dates et versions

hal-04040883 , version 1 (22-03-2023)

Identifiants

  • HAL Id : hal-04040883 , version 1

Citer

Caroline Pinte, Claire Cury, Pierre Maurel. Améliorer la portabilité du neurofeedback bimodal : prédire par apprentissage automatique les scores NF-IRMf à partir des signaux EEG. IABM 2023 - Colloque Français d'Intelligence Artificielle en Imagerie Biomédicale, Mar 2023, Paris, France. 2023. ⟨hal-04040883⟩
105 Consultations
0 Téléchargements

Partager

More