Crowdsourced Audit of Twitter’s Recommender Systems Impact on Information Landscapes. - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Crowdsourced Audit of Twitter’s Recommender Systems Impact on Information Landscapes.

Audit crowdsourcé de l'impact des systèmes de recommandation de Twitter sur les paysages de l'information.

Résumé

Combining crowd-sourced data donation and a largescale server-side data collection, we provide quantitative experimental evidence of Twitter recommender distortion of users' environment reality. Twitter's algorithmically curated home feed amplifies toxic and sentimentally valenced tweets, distorts the political landscape perceived by the users, and favors small and/or usually quiet accounts. We argue the need of independent audits of social media platforms with access to large-scale data.
Fichier principal
Vignette du fichier
horus_twitter_bias_main.pdf (215.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04036232 , version 1 (19-03-2023)
hal-04036232 , version 2 (24-03-2023)
hal-04036232 , version 3 (03-07-2023)
hal-04036232 , version 4 (01-10-2023)

Identifiants

  • HAL Id : hal-04036232 , version 3

Citer

Paul Bouchaud, David Chavalarias, Maziyar Panahi. Crowdsourced Audit of Twitter’s Recommender Systems Impact on Information Landscapes.. 2023. ⟨hal-04036232v3⟩
703 Consultations
323 Téléchargements

Partager

More