Is Twitter's recommender biased ? An audit - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Is Twitter's recommender biased ? An audit

Le système de recommandation de Twitter est-il biaisé ? Un audit

Résumé

Combining crowd-sourced data donation and a largescale server-side data collection, we provide quantitative experimental evidence of Twitter recommender distortion of users' environment reality. Twitter's algorithmically curated home feed amplifies toxic and sentimentally valenced tweets, distorts the political landscape perceived by the users, and favors small and/or usually quiet accounts. We argue the need of independent audits of social media platforms with access to large-scale data.
Fichier principal
Vignette du fichier
HAL_HORUS.pdf (199.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04036232 , version 1 (19-03-2023)
hal-04036232 , version 2 (24-03-2023)
hal-04036232 , version 3 (03-07-2023)
hal-04036232 , version 4 (01-10-2023)

Licence

Identifiants

  • HAL Id : hal-04036232 , version 1

Citer

Paul Bouchaud, David Chavalarias, Maziyar Panahi. Is Twitter's recommender biased ? An audit. 2023. ⟨hal-04036232v1⟩
703 Consultations
323 Téléchargements

Partager

More