Nodal Replication of Planar Random Waves - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Nodal Replication of Planar Random Waves

Résumé

We study the almost periods of the eigenmodes of flat planar manifolds in the high energy limit. We prove in particular that the Gaussian Arithmetic Random Waves replicate almost identically at a scale at most ℓn := n − 1 2 exp (Nn), where Nn is the number of ways n can be written as a sum of two squares. It provides a qualitative interpretation of the full correlation phenomenon of the nodal length, which is known to happen at scales larger than ℓ ′ n := n −1/2 N A n. We provide also a heuristic with a toy model pleading that the minimal scale of replication should be closer to ℓ ′ n than ℓn. Contents 1. Introduction 1 2. Almost periodicity and replication 6 3. Dirichlet's theorem for almost periodic fields 13 4. Replication of the nodal lines 15 5. Optimality of Dirichlet's approximation theorem 19 6. Appendix 20 References 28
Fichier principal
Vignette du fichier
NodalReplication-arxiv.pdf (490.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04030237 , version 1 (15-03-2023)

Identifiants

Citer

Loïc Thomassey, Raphaël Lachièze-Rey. Nodal Replication of Planar Random Waves. 2023. ⟨hal-04030237⟩
32 Consultations
36 Téléchargements

Altmetric

Partager

More