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NODAL REPLICATION OF PLANAR RANDOM WAVES

LOÏC THOMASSEY AND RAPHAËL LACHIÈZE-REY

Abstract. We study the almost periods of the eigenmodes of flat planar
manifolds in the high energy limit. We prove in particular that the Gaussian
Arithmetic Random Waves replicate almost identically at a scale at most
ℓn := n− 1

2 exp (Nn), where Nn is the number of ways n can be written as
a sum of two squares. It provides a qualitative interpretation of the full
correlation phenomenon of the nodal length, which is known to happen at
scales larger than ℓ′

n := n−1/2N A
n . We provide also a heuristic with a toy

model pleading that the minimal scale of replication should be closer to ℓ′
n

than ℓn.
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1. Introduction

This paper investigates random fields of the form

f(t) =
∑

λ

aλeλ(t)

where t belongs either to the Euclidean space Rd or to the torus Td,

eλ(t) := exp (2iπ⟨t, λ⟩) , t ∈ Td,

and the λ are finitely many deterministic wave vectors.
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2 NODAL REPLICATION OF PLANAR RANDOM WAVES

A primary motivation is the zero set of the random Laplace eigenfunctions on the
two-dimensional flat torus T2 = R2/Z2. In this setting, the sequence of eigenvalues,
or energy levels, are explicitly given by

En := 4π2n,

where n is expressible as a sum of two squares,
n ∈ S := {a2 + b2 : (a, b) ∈ Z2}.

and the corresponding eigenspace En is spanned by the L2-orthonormal Fourier
basis, with λ belonging to the set of frequencies

Λn := {λ ∈ Z2 : λ2
1 + λ2

2 = n}.

It is a finite-dimensional vector space whose dimension
Nn := card Λn

is equal to the number of ways an integer can be written as a sum of two squares.
The behaviour of Nn is well-understood and it is known that n ∈ S if and only if
every prime divisor of n congruent to 3 modulo 4 has an even valuation. In the
latter case, Nn has an explicit formula related to the prime decomposition of n, that
is,

(1.1) Nn = 4
k∏

i=1
(1 + αi),

where
n = 2αpα1

1 ...pαk

k q2β1
1 ...q2βl

l

with pi ≡ 1 (mod 4) and qi ≡ 3 (mod 4) prime numbers.
The preceding formula shows that the sequence Nn is subject to large fluctuations.
Yet, if we exclude some exceptional values, it is always possible to consider a
subsequence of integers n for which the following assumptions hold.
There is a density 1 subset S ′ ⊂ S of integers n such that

(1.2) Nn = log(n)log(2)/2+o(1),

in the sense that for every 0 < κ < log(2)
2

(1.3) Nn ≥ log(n)κ

for sufficiently large n ∈ S ′, and such that the angular distribution

µ̃n := 1
Nn

∑
λ∈Λn

δλ/
√

n

converges to the Haar measure σ on S1 for the weak-∗ topology as n ∈ S ′ → ∞.
Moreover, the Kolmogorov distance between σ and µ̃n satisfies the bound

(1.4) Kol(µ̃n, σ) := sup
Γarc on S1

|µ̃n(Γ) − σ(Γ)| ≤ 1
log(n)ρ

,

for any ρ < 1
2 log(π/2) and n large enough.

For the interested reader, discussions related to these results are available respectively
in [BMW20] and [EH99, Theorem 1]. From now on, we we only consider n ∈ S ′ so
that equations (1.2)-(1.4) are satisfied throughout the article.
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1.1. Planck scale Arithmetic Random Wave. To study the properties of a
generic Laplace eigenfunctions on the torus, it is possible to embed the previous
model in a probability space. Notice first that every real-valued eigenfunction of
the Laplace-Beltrami operator can be uniquely written as

Tn(t) := 1√
Nn

∑
λ∈Λn

aλeλ(t), t ∈ T2,

where (aλ) is a sequence of complex numbers satisfying a−λ = aλ. If the aλ

are chosen as a realisation of independent and identically distributed complex
standard random normal variables, then the resulting random field is an infinitely
differentiable, centered, stationary Gaussian process with covariance function

rn(t) := 1
Nn

∑
λ∈Λn

cos (2π⟨λ, t⟩) , t ∈ T2.

As expected, it satisfies almost surely the partial differential equation

∆T2Tn + EnTn = 0.

Alternatively, instead of describing the preceding field with its covariance function,
it is sometimes preferable to work directly with its spectral measure

µn := 1
Nn

∑
λ∈Λn

δλ,

which, in that instance, is a purely atomic probability measure concentrated on the
circle of radius

√
n.

It is natural to rescale the previous Gaussian process by a factor n−1/2, also known
as the Planck scale. The notations .̃ will from now on refer to the rescaled variables.

T̃n(t) := Tn

(
t√
n

)
, t ∈

√
nT2,

r̃n(t) := rn

(
t√
n

)
, t ∈

√
nT2,

µ̃n := 1
Nn

∑
λ∈Λn

δ λ√
n

.

As detailed later, the factor n−1/2 can be viewed as the characteristic distance of the
model. In domains whose diameter is below this threshold, Tn will behave almost
like an eigenvalue of the Laplacian ∆ on R2 in the sense that T̃n will converge (in
some sense) to a Berry Random Wave T , that is the unique Gaussian process on R2

which is stationary, rotation-invariant, ergodic and which satisfies almost-surely the
equation

∆T + 4π2T = 0.

The covariance function associated with T is the so-called Bessel function of the
first kind,

r̃(t) := J0(2π|t|).

As a consequence of (1.4),T̃n converges to T on a scale slightly larger than the
Planck scale:
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Lemma 1.1. [DNPR23, Proposition 5.1] Let α ∈ N2, then there is some ρ > 0 such
that

sup
|t|≤log(n)ρ

|∂αr̃n(t) − ∂αr̃(t)| −→ 0.

1.2. Nodal set. An object intensively studied in the literature is the zero set T −1
n (0),

known as the nodal set or nodal lines. Almost surely, it is a one-dimensional smooth
manifold whose length on a subdomain Ω ⊂ T2 is denoted by

Ln(Ω) := len
(
T −1

n (0) ∩ Ω
)

,

or simply
Ln,s := len

(
T −1

n (0) ∩ B(s)
)

when Ω is B(s), the centered ball of radius s.
Oravecz, Rudnick, Wigman [ORW08] were able to compute the expected nodal
length

E [Ln(Ω)] = |Ω|
2
√

2
√

En.

Higher moments were harder to resolve as Kac-Rice formulas require in those cases a
deep understanding of the behaviour of the correlation function rn and its derivatives,
turning the preceding integral computation into an arithmetical problem intrinsically
related to the distribution of the spectral measure µn alongside the circle of radius√

n. It was only in 2011 that Krishnapur, Kurlberg and Wigman [KKW13] were
finally able to evaluate the asymptotic leading term of the variance of the nodal
length on the full torus in the high energy limit :

Var
(
Ln

(
T2)) ≍ 1

512
En

N 2
n

The preceding variance is smaller than what was initially expected, but the result
corroborates Berry’s cancellation phenomenon, a principle related to the length
of the nodal set of Gaussian Random Waves, which was first noticed by Berry in
his seminal paper [Ber02]. The computation of the variance on subdomains is still
possible but it requires a more careful analysis. It was done in [BMW20], an article
in which the authors derived the following asymptotic

Var (Ln,sn
) ≍ |B(sn)|

512
En

N 2
n

,

valid as long as the radius sn is above Planck-scale, that is sn > n−1/2+ε where
ε > 0. The preceding estimate immediately implies the full-correlation of the nodal
length on the torus :

Theorem 1.2. For every ε > 0,
sup

s>n−1/2+ε

corr (Ln, Ln,s) −→ 1.

This unexpected theorem has a nice consequence. In the high energy limit, one
may retrieve the full nodal length on the torus T2 by simply observing the nodal
length in a window slightly larger than Planck-scale. It is natural to ask whether
the previous theorem still holds below Planck-scale and the answer is negative
(see Section 2.1). As of today, the phase transition between no correlation and
full-correlation is suspected to happen at some s = n−1/2 log(n)A and some lower
and upper bounds for A have been recently derived in [Sar22] and [DNPR23].
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1.3. Full correlation and replication. The proof of theorem 1.2 relies heavily
on a careful study of the so-called spectral quasi-correlations and it requires an
extensive use of deep arithmetical results regarding the angular distribution µ̃n. An
explanation of this phenomenon, and of why full correlation does not occur on the
sphere, can be found in the work of Todino [Tod20, Section 2.1].

The reader is encouraged to view this article as an alternative qualitative explanation
of Theorem 1.2. We show that not only the length of the nodal line, but the whole
field, replicates almost identically at a scale τn that we try to estimate, and we
advocate that it should be close to the scale of full correlation. It makes sense that
if the field replicates almost identically at scale τn, then by a continuity argument
its nodal lines should replicate as well, and this is the purpose of Theorem 2.3 and
Section 4.
A rough explanation of this result is that replication occurs on the torus because
the dimension of the eigenspace on the torus is logarithmic, whereas it is polynomial
on other manifolds, such as higher dimensional tori or the sphere (see Section 2.3).
We stress that our results do not provide another proof of full correlation, for which
quasi-correlations are the right tool [BMW20, Tod20]. Let us first explain what we
mean by almost replication.

A sequence of almost periods (of the Arithmetic Random Wave) is a sequence
τn ∈ T2 such that a.s.

(1.5) sup
t∈T2

|Tn(t + τn) − Tn(t)| −→
n→+∞

0

with the complementary condition

(1.6) lim inf
√

n|τn| ≥ 1.

This latter requirement ensures that the aforementioned almost periods are far
from 0 with respect to the characteristic distance of the model. This is a necessary
condition as nothing prevents otherwise a sequence of almost periods to be arbitrary
close to 0. Hence, upon the existence of such τn, we shall say that the random waves
almost replicate at scale τn, and we try in the rest of the paper to give an upper
bound as small as possible on an almost period of τn.

1.3.1. Almost periodicity of eigenmodes. As an introduction, and instead of studying
directly full-correlation on the torus T2, one may start with a similar result on the
1-dimensional torus T1. In this case, the set of eigenvalues consists of the energy
levels En = (2π)2n2, n ∈ N, and an orthonormal basis of the associated eigenspace
is given by the standard Fourier basis cos (2πnt) and sin (2πnt). In these settings,
the Random Wave Model is a periodic centered Gaussian process whose covariance
function is cos (2πnt) and an explicit formula is given by

Xn(t) := a cos (2πnt) + b sin (2πnt) , t ∈ T1,

where a, b are independent standard normal distribution.

The characteristic distance of this model is 1/n, which is also the smallest period of
Tn. In this instance, full-correlation has a straightforward explanation which boils
down to one word, periodicity. In fact, if the zero set of Tn is known on an open
ball slightly larger than Planck scale, then it is also known on a full period of Xn,
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and a fortiori on the whole torus. Last but not least, notice that the periodicity of
Xn is encoded by the underlying periodicity of its correlation function.

It is very tempting to extend the previous reasoning to the torus T2 but unfortunately,
the covariance function is no longer periodic at Planck scale. Yet, it is possible to
circumvent in some ways this issue if the periodicity assumption is relaxed to almost
periodicity. This idea is inspired by the study of almost periodic Gaussian processes
in [LR22].

Say a function f : Rd → C is (Bohr-)almost periodic if and only if, for any ε > 0,
there exists T0(ε) > 0 such that every Euclidean ball of radius T0(ε) contains an
ε-almost period τ in the sense that

sup
t∈Rd

|f(t + τ) − f(t)| ≤ ε

The covariance function rn of the Arithmetic Random Wave being a trigonometric
polynomial, it is in particular an almost periodic function. Thus, if τ is a ε-almost
period of rn, then

rn(τ) = corr (Tn(t), Tn(t + τ)) ≥ 1 − ε.

Tn(t) and Tn(t + τ) are hence heavily correlated and one might expect that if t is
a zero of Tn, then there is probably another zero in some neighbourhood of t + τ ,
both the size of the neighbourhood and the probability depending on the precision
ε. Hence, if the zeros of Tn are known on a window Ω, then they are also known on
the translated windows τ + Ω, 2τ + Ω and so forth, at least with high probability.
If the analogy with the 1-dimensional torus T1 stills holds, the almost periods of Tn

must be of order slightly larger than Planck-scale to get full-correlation.

2. Almost periodicity and replication

The sections introduces the main results proved in this article, and the discussion
around the estimation of the pseudo-period. First, we recall that the covariance
function of the Arithmetic Random Wave is a periodic function on the lattice Z2.
Our aim is to exhibit smaller almost periods of the order slightly above Planck scale,
that is slightly above n−1/2.

2.1. Existence of almost periods in the Arithmetic Random Wave. The
first result of this article is the following theorem related to the existence of almost
periods.

Theorem 2.1. For α > 0, there exists a sequence τn of almost periods such that
asymptotically for n ∈ S ′

(2.1) |τn| ≤ exp
(
N 1+α

n

)
n−1/2

and the error term
εn := sup

t∈T2
|rn(t + τn) − rn(t)|

is asymptotically bounded above by

(2.2) εn ≤ e− log(n)κ

for κ > 0 depending on α.
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The proof of Theorem 2.1 relies on a well-known deterministic principle in Diophan-
tine approximation, known as Dirichlet’s approximation Theorem, which in our
framework can be stated in the following manner.

Theorem 2.2 (Dirichlet’s approximation Theorem). Let N ≥ 1 and consider an
almost periodic function defined by

f(t) = 1
N

N∑
k=1

cos (2π⟨γk, t⟩) , t ∈ Rd

with γk some vectors in Rd.
If ε > 0, then there is an ε-almost period τ , that is a vector τ ∈ Rd for which

sup
t∈Rd

|f(t + τ) − f(t)| ≤ ε,

satisfying
1 ≤ |τ | ≤ (2π)N /dε−N /d.

We will now prove Theorem 2.1 assuming we have already proved Dirichlet’s ap-
proximation Theorem.

Proof. Recall that
rn(t) = 1

Nn

∑
λ∈Λn

cos (2π ⟨λk, t⟩) .

Since n ∈ S ′,
Nn = log(n)log(2)/2+o(1) ⩾ log(n)κ/α

for n large enough and κ < α log(2)/2. Apply Theorem 2.2 to Tn and εn =
exp (− log(n)κ). This ensures the existence of some almost period τn ∈ R2 of rn

that satisfies asymptotically the inequality
|τn| ≤ (2π)Nn/2ε−Nn/2

n

= exp
(

1
2 log(2π)Nn + 1

2 log(n)κNn

)
≤ exp

(
1
2 log(2π)Nn + N 1+α/2

n

)
≤ eN 1+α

n .

This finishes the proof. □

Notice that this latter result does not make use of any underlying arithmetical
property satisfied by the wave vectors γk. This is in sharp contrast with the case of
the Arithmetic Random Wave for which the wave vectors λk have a deep number
theoretic flavour. This probably means that the bound obtained on the almost
periods in Theorem 2.1 is not optimal and could be improved, this is the topic of
the remainder of the section.
Let now τn be some sequence of almost periods as predicted by Theorem 2.1 and
denote hereafter

T ′
n(t) := Tn(τn + t), t ∈ T2,

the translated Gaussian process and
r′

n(t) := rn(τn + t), t ∈ T2,
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its corresponding covariance function.
The preceding theorem has a simple reformulation. In the high energy limit, Tn(t)
and T ′

n(t) are fully correlated and almost indistinguishable. The existence of almost
periods for the correlation entails an approximate replication of the whole field at
multiples of the so-called almost period. In fact, the Borell-TIS inequality [AT07,
Theorem 2.1.1] yields that the supremum of the difference between the rescaled fields
T̃n and T̃ ′

n over the whole rescaled torus goes to 0, as well as for their derivatives,
meaning that (1.5) is in order for some τn ⩽ exp

(
N 1+α

n

)
. This has some interesting

geometric consequences for nodal lines, which will be discussed now.

Theorem 2.3. Let Ω be an open convex subset of R2 with compact closure and
smooth boundary, say C1. Denote by

Z̃n(Ω) := {t ∈ Ω : T̃n(t) = 0},

Z̃ ′
n(Ω) := {t ∈ Ω : T̃ ′

n(t) = 0},

the respective zero sets of T̃n and T̃ ′
n on Ω and let H1(dt) be the one-dimensional

Hausdorff measure on R2 normalised so that any segment of length 1 has Hausdorff
measure 1.
Then, for any continuous function φ : R2 7→ R with support in Ω,

(2.3)
∫

Z̃n(Ω)
φ(t)H1(dt) −

∫
Z̃′

n(Ω)
φ(t)H1(dt) −→ 0,

the convergence holding in distribution.

In the high energy limit, the nodal sets of the Arithmetic Random Wave Tn and
its translate T ′

n are locally (that is at Planck scale) almost confounded and are
geometrically very close. Therefore, the existence of almost periods for the covariance
functions give rise to an asymptotic phenomenon of replication of the nodal lines.
Last but not least, instead of fixing an open set Ω with compact support, it is also
possible to take a sequence of slowly increasing open sets Ωn if φ has an unbounded
support, under some decay assumptions. Unfortunately, it makes the proof less
readable and enlightening and we decided to privilege clarity and concision.
Theorem 2.1 provides an upper bound on the existence of almost periods for the
Arithmetic Random Waves. Similarly, there is a corresponding lower bound which
is easily derived from (1.4).

Proposition 2.4. Let τn be any sequence of almost periods of rn. Then, there is
some A > 0 such that

|τn| ≥ log(n)A

√
n

.

for n large enough.

Contrary to the upper bound proof which depends only on the number of eigenvalues,
the lower bound relies intrinsically on a careful understanding of the angular
distribution µn. As such, it is only valid for the Arithmetic Random Wave model.

Proof. According to the conclusion of Lemma 1.1, there is some ρ > 0 such that
sup

|t|≤
√

n log(n)ρ

|r̃n(t) − r̃(t)| −→ 0.
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Let 0 < A < ρ and assume that the conclusion of Proposition 2.4 does not hold.
Then, we can find some sequence of almost periods τn and an increasing sequence
nk so that

|τnk
| ≤ log(nk)A

√
nk

.

In that case
|1 − rnk

(τnk
)| ≥|1 − J0(2πτ̃nk

)| − |r̃nk
(τ̃nk

) − J0(2π|τ̃nk
|)|

≥ |1 − J0(2πτ̃nk
)| + o(1).

But, as |τ̃nk
| ≥ log(nk)A −→ +∞ and J0 converges to 0 at infinity,

lim
k→+∞

|1 − rnk
(τnk

)| = 1.

This clearly contradicts the definition of τn as
1 − rn(τn) −→ 0.

□

2.1.1. Discussion. If we combine Theorem 2.1 and Proposition 2.4, we see that the
smallest almost period τn is located in an intermediate range, between n−1/2 log(n)ρ

and the subpolynomial range n−1/2 exp
(

log(n)κ′
)

for κ′ ∈ (log(2)/2, 1). This is
very interesting as it is suspected that the Arithmetic Random Wave exhibits some
kind of phase transition at a range n−1/2 log(n)A for some A > 0. Below this
threshold, Tn will behave similarly to the Berry Random Wave Model as it proved
by Dierickx, Nourdin, Peccati and Rossi in [DNPR23]. Above this threshold, full
correlation of the nodal length appears and our random eigenfunctions can no longer
behave like a Berry Random Wave. This observation leads to a natural question,
that is whether the phenomenon of nodal replication highlighted in this article is
linked with the phenomenon of full correlation of the nodal lines. If that was the
case, it would imply that one can find sequences of almost periods in the logarithmic
range n−1/2 log(n)A. Such a result would mean that the upper bound in theorem
2.1 obtained via Dirichlet’s approximation Theorem is far from optimal. That is not
unlikely, yet it would be surprising as for most tuple of eigenvectors, this principle
is indeed optimal. This is the topic of the forthcoming discussion.
Let N ≥ 1, d ≥ 1 and γN = (γ1, ..., γN ) be random elements in Sd−1 associated
with the random covariance function

RN (t) = 1
N

N∑
k=1

cos (2π⟨γk, t⟩) , t ∈ Rd.

We make the following assumptions:

Assumption 2.5.

• γ is isotropic, i.e. for any rotation R,

RγN L= γN .

• For a C∞ test function h : Rd → [−1, 1], Hoeffding’s inequality is satisfied

P

(∣∣∣∣∣ 1
N

N∑
k=1

h(γk) −
∫
Sd−1

h(γ)σ(dγ)

∣∣∣∣∣ > ε

)
≤ C exp

(
−cε2N

)
,
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where c, C are constants that do not depend on h and σ is the uniform
measure on Sd−1.

The most natural model is that of i.i.d. random γi uniformly distributed on S1.
Now, if εN is a positive sequence converging to 0, then we let τ̃N be the smallest
εN -almost period associated with RN , that is the smallest |τ̃N | such that

|τ̃N | ≥ 1 and RN (τ̃N ) > 1 − εN .

According to Theorem 2.1, τ̃N satisfies almost surely, for any α > 0, the inequality

(2.4) |τ̃N | ≤ eN 1+α

as long as N is large enough.
The next proposition ensures that this latter inequality is indeed optimal for a
generic sequence of wave vectors γk.

Proposition 2.6. Under Assumption 2.5 and for any a < c/d where c is the
constant in Hoeffding’s inequality,
(2.5) τ̃N ≥ eaN

with high probability in the sense that for εN → 0

P

(
sup

1≤|t|≤eaN
RN (t) ≤ 1 − εN

)
−→ 1.

In particular, the preceding theorem is satisfied when γN is a sequence of independent
and identically uniform random variables on S1. Therefore, for a generic sequence
of wave vectors, the bound obtained in Theorem 2.1 cannot be decently improved.
The proof is at Section 5.

2.2. Degrees of freedom and Dirichlet’s approximation Theorem optimal-
ity. Proposition 2.6 implies that the bound derived from Dirichlet’s approximation
Theorem is optimal and that one cannot do better for a generic sequence of wave
vectors. Yet, modelling the frequencies of the Arithmetic Random Wave as the
realisation of some independent and identically distributed uniform random variable
is not an accurate representation of reality as all the arithmetic flavour of the model
is lost in the process. Following the idea of Sartori [Sar22], it is possible to propose
a more accurate model. Recall that n is expressible as the sum of two squares if

n = 2α
k∏

j=1
p

αj

j

l∏
j=1

q
2βj

j

where pi, qk are prime numbers satisfying respectively p = 1 (mod 4) and q = 3
(mod 4). The preceding prime decomposition induces a prime decomposition in the
ring of Gaussian integers Z[i], namely

n = 2α
k∏

j=1
Pαj

j Pj
αj

l∏
j=1

q
2βj

j

where Pj is one the two squares roots of pj in Z[i]. Thus, if n = λ2
1 + λ2

2, it follows
that

λ1 + iλ2 = νZα
k∏

j=1
Pγj

j Pj
αj−γj

l∏
j=1

q
βj

j
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for some 0 ≤ γj ≤ αj and ν ∈ {1, −1, i, −i}. Here, Z refers to a square of 2 in Z[i].

For a generic integer n expressible as the sum of two squares, most of the valuations
αj are equal to 1 [Sar22]. We will make this assumption from now on. In that case,
we denote by ω(n) = k the number of prime factors congruent to 3 (mod 4) in the
decomposition n so that 2ω(n)+2 = Nn.

If we write
θj := arg(Pj), 1 ≤ j ≤ k,

and

θ := arg

(1 + ν)α
l∏

j=1
q

βj

j

 ,

the correlation function of the Arithmetic Random Wave is then given by

(2.6) r̃n(t) = 1
Nn

∑
η∈{−1,1}ω(n)

ν∈{0,1,2,3}

cos

2π

〈
exp

i
π

2 ν + i

ω(n)∑
j=1

ηjθj + iθ

 , t

〉 .

In these settings, the wave vectors are dependent of the angles of the Gaussian
primes. So, the system has only ω(n) degrees of freedom compared to Nn before.
This potentially allows to decrease drastically the bound on almost periods from
Dirichlet’s Arithmetic principle for a system with N degrees of freedom. We were
not able to prove rigorously this idea but it is possible to hint on why Dirichlet’s
Arithmetic Principle should not be optimal in these settings.

Consider the so-called linearised covariance function, that is

(2.7) sn(t) := 4
Nn

∑
η∈{−1,1}ω(n)

cos (2πθηt) , t ∈ R2

where

(2.8) θη =
ω(n)∑
j=1

ηjθj (mod 1).

Let us stress that this covariance function is deterministic, on the contrary of Sartori
which considers a version with ω(n) random arguments θj . In this model, the
exponential terms in equation (2.6) were linearised around the origin, so that the
number of degrees of freedom of the model, which can be interpreted as ω(n), the
numbers of signs to choose, is the same as in the ARW. The latter model provides
an interesting example of a deterministic almost periodic function where the bound
given by Dirichlet’s approximation (Theorem 2.2) is no longer optimal.

If (θη) was the realisation of some independent and identically random process, we
would expect the smallest ε-almost period to be of order ε−Nn , by Proposition 2.6.
But, the family (θη) is linearly dependent and using this observation, it is possible
to improve drastically the upper bound.

Proposition 2.7. There is 1 ⩽ τ̃n ⩽ cN log(log(log(n)))
n such that

|sn(τ̃n) − 1| → 0.
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Hence this is a crude improvement over Dirichlet’s Arithmetic Principle and closer in
spirit to the scale N A

n where full correlation occurs, and Proposition 2.6 applied with
N = ω(n) yields that it is optimal if the angles θj can be considered as generic (i.e.
behave like i.i.d. variables). Yet, it is not possible to extend this result to covariance
functions of the form of (2.6) as the proof relies solely on linear considerations which
are no longer satisfied outside the scope of this particular model. Yet, it shows that,
for a model with ω(n) degrees of freedom, the bound from Dirichlet’s approximation
Theorem is no longer optimal. This leaves us with some unanswered but interesting
questions.

Question 2.8. What is the size of the smallest sequence of almost periods in model
(2.7) ? Is it the same as for the actual ARW?

2.3. Other manifolds and dimensions. The existence of sequences of almost
periods for the correlation function rn is directly related to the number of eigenvectors
Nn, and more precisely to the number of degrees of freedom of the system, this
is a core idea of our bounds. The more distinct frequencies an almost periodic
function has, the greater the almost period will likely be. In the case of the
Arithmetic Random Wave, one has to remember that the norm of the almost period
is constrained to live in the torus T2, or in the dilated torus

√
nT2 after rescaling.

Luckily, the number of frequencies Nn grows logarithmically compared to
√

n. This
is why it is possible to find almost periods slightly above Planck scale. Let us give
other examples where the dimension of the eigenspace is polynomial and where
there is no full correlation or almost replication.

2.3.1. Spherical harmonics. For the sphere S2, there is no possibility of nodal
replication. In fact, the correlation function rn of the spherical harmonics of energy
level n(n + 1) is related to the so-called Legendre Polynomials Pn and is given by

rn(x, y) = Pn(⟨x, y⟩), x, y ∈ S1.

The characteristic distance in this model is 1/n and Hilb’s formula [Sze75, Theorem
8.21.6]

Pn(cos (θ)) =

√
θ

sin (θ)J0

((
n + 1

2

)
θ

)
+ O

(
n−3/2

)
, 0 ≤ θ ≤ π − ε.

ensures that rn converges uniformly to the Bessel function, except on small spherical
caps located at the opposite pole. In particular, the latter formula prevents the
existence of any almost period at a scale 1/n or slightly larger.

2.3.2. Higher dimensional tori. The situation is similar if one considers the Arith-
metic Random Wave on the d-dimensional torus Td. In that case, the eigenvalues
consist in the energy levels En = −4π2n where n is a sum of d squares and the
associated eigenspace has dimension N (d)

n , that is the number of ways an integer n
can be written as sum of d squares. For d ≥ 5, the precise asymptotic were derived
first by Hardy and Littlewood and proved by Hua [Hua38] in 1938:

Γ(3/2)d

Γ(d/2) nd/2−1S(n),

where S(n) is the so-called singular series, bounded above and below. The leading
term of the asymptotics is nd/2−1 whereas for d = 2, it was log(n)log(2)/2. Hence,



NODAL REPLICATION OF PLANAR RANDOM WAVES 13

for large d, the number of eigenvalues does no longer grows slowly compared to√
n. Dirichlet’s approximation Theorem will thus no longer ensure the existence

of a sequence of almost periods slightly above Planck scale. The authors of this
paper are not aware of any positive or negative result related to full-correlation
in dimension d ≥ 5, but, if the preceding heuristics is true, one might expect that
nodal replication as well as full correlation no longer hold for d ≥ 5 as there are too
many eigenvalues.

3. Dirichlet’s theorem for almost periodic fields

The aim of the section is to prove the bounds on the smallest pseudo-period. To
reach our goal, we will need to recall Dirichlet’s approximation theorem. This is the
content of the next paragraph.

3.1. Dirichlet’s approximation theorem. Dirichlet’s approximation theorem
is a standard tool in Diophantine approximation and quantifies how well a generic
vector µ ∈ Rd can approximate a vector of integers. In this paper, one will need
a generalization of this principle, which deals with simultaneous approximations.
Before stating the aforementioned theorem, we introduce the following notation.
For µ ∈ Rd, let dist (µ,Z) be the distance of µ to the nearest integer in Z.

Theorem 3.1 (Dirichlet’s approximation theorem). Let (µk)1≤k≤N a sequence of
elements in Rd. For any integer m > 0, there is x ∈ Zd such that 1 ≤ |x|∞ ≤ mN /d

and
dist (⟨µk, x⟩,Z) ≤ 1

m
, 1 ≤ k ≤ N .

|.|∞ refers here to the supremum norm on Rd.

The proof of this theorem relies on a clever use of the pigeonhole principle and is
recalled briefly hereafter as it is quite interesting.

Proof. Let N = mN /d and consider QN the set of lattice points x ∈ Zd whose
coordinates satisfy 1 ≤ xk ≤ N . Notice that QN contains Nd = mN points.

There are now two possibilities. Either, there is some x ∈ QN such that

dist (⟨µk, x⟩,Z) ≤ 1
m

, 1 ≤ k ≤ n.

In that case, there is nothing to prove .

If not, split [0, 1]N in mn sub-squares of side length at most 1
m and associate with

x ∈ QN the vector yx ∈ RN defined as

yx = (⟨µk, x⟩ (mod 1))1≤k≤N .

The set {yx : x ∈ QN } contains Nd = mN elements and the above assumption
ensures that none of these elements is contained in the lower sub-square C =

[
0, 1

m

[N .
Hence, by the pigeonhole principle, they are two distinct elements yx1 and yx2

contained in the same square, that is

dist (⟨µk, yx1 − yx2⟩,Z) ≤ 1
m

, 1 ≤ k ≤ N

In that case, x = yx2 − yx1 works. □
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As we have now proved Dirichlet’s approximation theorem, it is time to concentrate
on Theorem 2.2. In fact, we will prove a slight generalisation. Let |.| be euclidean
norm. It will be preferable to work with this norm instead of the uniform norm. This
is not a limitation as all norms are equivalent on Rd and the conclusion of Dirichlet’s
approximation theorem remains the same, up to a constant we will neglect.

Corollary 3.2. Let N ≥ 1 and define the almost periodic function

f(t) = 1
N

N∑
k=1

cos (2π⟨γk, t⟩) , t ∈ Rd

with γk ∈ Rd.
For every ε > 0, then there is an 1

m -almost period τ satisfying

1 ≤ |τ | ≤ (2π)N /dmN /d

Moreover, if each γk belong to Sd−1, then τ is also an almost period for the derivatives
of f in the sense that for any α ∈ Nd, the following inequality is satisfied:

sup
t∈Rd

|∂αf(t + τ) − ∂αf(t)| ≤ (2π)α

m

where xα = xα1
1 ...xαd

d .

Proof. Dirichlet approximation theorem ensures the existence of 1 ≤ |τ |∞ ≤ mn/d

such that the following inequalities are all satisfied:

dist (⟨µk, τ⟩,Z) ≤ 1
m

, 1 ≤ k ≤ N ,

or equivalently
dist (2π⟨µk, τ⟩, 2πZ) ≤ 2π

m
, 1 ≤ k ≤ N .

Now, for any t ∈ Rd:

|f(t + τ) − f(t)| = 1
N

∣∣∣∣∣
N∑

k=1
ℜe2iπ⟨µk,t+τ⟩ − ℜe2iπ⟨µk,t⟩

∣∣∣∣∣
≤ 1

N

N∑
k=1

∣∣∣e2iπ⟨µk,τ⟩ − 1
∣∣∣

(mean value theorem) ≤ 1
n

N∑
k=1

dist (2π⟨µk, τ⟩, 2πZ)

≤ 2π

m
.

If all the γk are located on S1, then we can make use of the mean value inequality,
noticing that

|∂αf(t + τ) − ∂αf(t)| = (2π)α

m

∣∣∣∣∣
N∑

k=1
γα

k

(
ℜe2iπ⟨µk,t+τ⟩ − ℜe2iπ⟨µk,t⟩

) ∣∣∣∣∣
≤ (2π)α

m

N∑
k=1

|γα
k |
∣∣∣e2iπ⟨µk,τ⟩ − 1

∣∣∣
The conclusion follows from the inequality |γα

k | ≤ 1. □



NODAL REPLICATION OF PLANAR RANDOM WAVES 15

From now on, we will work with ε > 0 instead of 1
m as the latter notation is more

readable. It is not problematic as we are mainly interested into applying the latter
result to very small ε. In that case, we can always find an integer m > 0 such that
ε ≈ 1

m .

Now, using Corollary 3.2, we can deduce a slight improvement over Theorem 2.1. Not
only Corollary 3.2 implies the existence of sequence of almost periods τn associated
with the covariance function of the Arithmetic Random Waves, but it also implies
that τn is a sequence of almost periods for the derivatives of this function. This
is a fundamental observation as derivatives of the covariance function control the
derivatives of the underlying Gaussian field. This will be especially useful when
dealing with the nodal lines. More precisely, we will need the content of the following
proposition, which is an immediate consequence of the results above.

Corollary 3.3. If τn is a sequence of almost periods satisfying the assumptions of
Theorem 2.1, then for any α ∈ N2,

sup
t∈

√
nT2

|∂αr̃n(t + τn) − ∂αr̃n(t)| −→ 0.

3.2. When Dirichlet’s approximation theorem fails. This preceding theorem
can be used to prove Proposition 2.7.

Proof. Let 0 < ε < 1. According to Theorem 3.1 applied with N = ω(n), d = 1, we

can find some |τ | ≤
(

2πω(n)
ε

)ω(n)
such that

dist (θiτ,Z) ≤ ε

2πω(n) , 1 ≤ i ≤ ω(n).

For any η ∈ {−1, 1}ω(n),

dist (θητ,Z) ≤
ω(n)∑
i=1

dist (θiτ,Z) ≤ ε

2π
.

Mirroring the proof of Corollary 3.2, we easily derive the inequality

|sn(t + τ) − sn(t)| ≤ ε, t ∈ R.

To finish the proof, one can choose for instance εn = ω(n)−1. □

4. Replication of the nodal lines

In this section, the results related to the existence of almost periods are used to
prove the phenomenon of the replication of the nodal lines as stated in Theorem
2.3. The proof is based on a nice application of the continuous mapping theorem.
But, before dwelling into the proof, we give the main ideas.

At Planck scale, the Arithmetic Random Wave behaves almost exactly like a random
eigenfunction of the Laplace operator on the plane R2 in the sense T̃n that converges
in distribution to a Berry Random Wave T for the topology of uniform convergence
on Ω. On the other hand, we expect T̃ ′

n to behave very similarly to T̃n in the high
energy limit. It is thus natural to conjecture that (T̃n, T̃ ′

n) converges to (T, T ).
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Unfortunately, the present formulation is too weak to derive any meaningful result
related to the nodal lines of the Arithmetic Random Wave. What will be needed
is a control on the behaviour of the derivatives of the underlying field and that
control will be offered by Corollary 3.3. Therefore, instead of proving that (T̃n, T̃ ′

n)
converges to (T, T ) for the topology of uniform convergence, we will prove that
the convergence holds also for the topology of uniform convergence of the first p
derivatives.

Notation. In what follows, Ω ⊂ R2 refers to a convex, bounded, open set with
smooth boundary and Cp(Ω) refers to the set of p times differentiable mappings on
Ω whose partial derivatives extends continuously to the boundary. This space is
endowed with the norm

||f ||p =
∑

|α|≤p

sup
Ω

|∂αf |

where |α| = α1 + α2. This norm turns Cp(Ω) into a Polish space. Further details
are recalled in the Appendix.

4.1. Proof of the replication phenomenon. Let

Un(s, t) := (T̃n(s), T̃ ′
n(t)), s, t ∈ Ω,

and
U(s, t) := (T (s), T (t)), s, t ∈ Ω.

Both Un and U define processes on the product space Cp(Ω)2 endowed with the
product topology. In particular, Cp(Ω)2 is a Polish space.

Proposition 4.1. Under the preceding assumptions, (Un) converges in distribution
to U .

Proof. As Cp(Ω)2 is Polish space, convergence in distribution is equivalent to tight-
ness and unicity of the limit.
Step 1: tightness

The sequence (Un) is tight if and only if its marginals (T̃n) and (T̃ ′
n) are tight. As

the Arithmetic Random Wave is a stationary process, T̃n and T̃ ′
n have the same

distribution. Hence, we only have to prove tightness for T̃n in Cp(Ω). Following the
conclusion of Proposition 6.3, this amounts to prove that (∂αT̃n) is tight in C0(Ω)
for any |α| ≤ p. This problem is very tractable as tightness in C0(Ω) is a deeply
studied topic.

We will use Kolmogorov tightness criterion [Kal02, Corollary 16.9]. ∂αT̃n is a
stationary centered Gaussian process with correlation function

r̃α,n(t) := (−1)|α|∂2αr̃n(t), t ∈ R2.

Fixed for a moment t ∈ Ω. ∂αT̃n(t) is then a centered Gaussian random variable
whose variance σ2

n is converging to

σ2 := (2π)2|α|
∫
S1

λ2ασ(dλ) > 0.

where |α| = α1 + α2 and σ is the uniform probability on S1. Hence,
(

∂αT̃n(t)
)

converge in distribution to a centered normal random variable with variance σ2.
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In the meantime, ∂αT̃n(t) − ∂αT̃n(s) is also a centered Gaussian random variable
with variance

σ2(t − s) := 2(r̃α,n(0) − r̃α,n(t − s))
Combining the triangle inequality with

1 − cos (t) ≤ t2

2 , t ∈ R2,

one has

|r̃α,n(0) − r̃α,n(t − s)| ≤ 1
Nn

∑
λ∈Λn

∣∣∣∣1 − cos
(

2π

〈
λ√
n

, t − s

〉)∣∣∣∣
≤ 1

2Nn

∑
λ∈Λn

〈
λ√
n

, t − s

〉2

(Cauchy Schwarz) ≤ 1
2 |t − s|2.

In particular,

E
[(

∂αT̃n(t) − ∂αT̃n(s)
)4
]

= 3σ(t − s)4

≤ 3|t − s|4.

The conditions of Kolmogorov criterion are met. Hence, the sequence (∂αT̃n) is
tight in C0(Ω).
Step 2: Unicity of the limit
The distribution of Cp(Ω)2 is characterised by its finite dimensional distributions
(see Lemma 6.4 and the associated discussion). It suffices thus to prove that

U (p)
n = (Un(t1), ..., Un(tp))

converges in distribution to

U (p) = (U(t1), ..., U(tp)),
where ti is a finite sequence of points in Ω.

As both U
(p)
n and U (p) are centered Gaussian processes, it is only needed to show

that the covariance U
(p)
n converges to the covariance of U (p). In terms of covariance

function, this amounts to prove that{
r̃n(tj − ti) −→ r̃(ti − tj), 1 ≤ i, j ≤ n.

r̃′
n(tj − ti) −→ r̃(ti − tj)

The latter statement is trivial as r̃n converges uniformly to r̃ (Lemma 1.1) and
r̃n − r̃′

n converges uniformly to 0 (Theorem 2.1). This finishes the proof. □

In order prove nodal replication as introduced by Theorem 2.3, it is natural to
consider the application

Γ :


C1 (Ω,R

)
−→ R ∪ {±∞}

f 7−→
∫

Zf (Ω)
φ(t)H1(dt).
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where Zf (Ω) is the zero set of f on Ω and φ : Ω → R is continuous. Instead of
considering functions f ∈ Cp(Ω), it will preferable to work with a slightly larger
domain U such that Ω ⊂ U as this will allow some more leeway.

First, the co-area formula

Γ(f) = lim
ε→0

1
2ε

∫
Ω
1(|f(t)| ≤ ε)φ(t)|∇f(t)|dt

ensures that Γ is a measurable mapping. This allows to define Γ(T̃n) and Theorem
2.3 amounts to show that Γ(T̃n) − Γ(T̃ ′

n) converges in distribution to 0. The latter
difference could be ill-defined if both Γ(T̃n) and Γ(T̃ ′

n) happens to be infinite at the
same time, but this situation is excluded by Bulinskaya’s lemma [AW09, Proposition
1.20] which ensures that almost surely T̃n is regular.

Definition 4.2. f ∈ C1(U) is regular if and only

∀t ∈ U, f(t) = 0 =⇒ ∇f(t) ̸= 0.

Regular functions have the property that their zero sets are 1 dimensional smooth
manifold. This ensures in particular that Γ(f) is not infinite and that the random
variable Γ(T̃n) − Γ(T̃ ′

n) is well-defined. Theorem 2.3 will follow easily easily from the
continuous mapping theorem [Kal02, Theorem 4.27] if we manage to prove that Γ is
PT almost-surely continuous. This result is not immediate as Γ is not continuous
everywhere.

Example 4.3. Let Ω be the open unit ball on R2. let fα(t) = α − |t|2. It is easily
checked that Γ(f1) = 0. Yet, Γ(fα) = 2πα for α → 1− even though fα → f1 as α
tends to 1−.

In the preceding example, the zeros concentrate alongside the boundary and that is
the root cause of the default of continuity. In our random settings, such situation is
very unlikely to happen as it is testified by the following proposition.

Proposition 4.4.
H1 (ZT (∂Ω)) < +∞, a.s.

Proof. Denote by H0 the counting measure. We will prove the stronger statement
that the number of intersections between Zf (∂Ω) is finite, that is H0(Zf (∂Ω)) < +∞
almost-surely.

As ∂Ω is compact, it suffices to show that the latter result holds locally. Fix ω ∈ ∂Ω
and parametrise ∂Ω in a neighbourhood of ω by a smooth map γ : V → ∂Ω where
V is a bounded neighbourhood of 0. We have to show that the Gaussian process
T ◦ γ has only a finite number of zeros in V . But, this follows immediately from
Kac-Rice formula [AW09, Theorem 6.2]. □

Excluding the latter pathological edge cases, Γ is continuous. More precisely,

Proposition 4.5. Let f be a regular function, φ continuous, such that

(4.1) H1(Zf (∂Ω)) = 0,

then Γ is continuous in f .
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The proof of this result is technical and not very enlightening. It is thus proved in
the Appendix (see Proposition 6.6). Using the latter result, we deduce in particular
that Γ is PT surely continuous and Theorem 2.3 follows easily for the continuous
mapping theorem.

Before concluding this section, we can make a few comments. The requirement
of taking a convex open set Ω with smooth boundary can be probably relaxed.
Secondly, the result still holds, if instead of taking a fixed open set Ω, we take a
sequence of slowing increasing open set Ωn. The preceding proof no longer works in
that case but it is possible to circumvent the issue with a careful use of Borel-Tis
inequality or by some coupling arguments.

5. Optimality of Dirichlet’s approximation theorem

The goal of this section is to investigate the optimality of Dirichlet’s approximation
theorem and prove Proposition 2.6.

In what follows, γN is a sequence of wave vectors satisfying Assumption 2.5. In
particular, γN can be a sequence of independent uniformly distributed on Sd−1. We
start with a preliminary and immediate lemma.

Lemma 5.1. Under the preceding assumptions, each component of γN follows a
uniform distribution on the sphere Sd−1 and we let for t ∈ Rd

R(t) = E [RN (t)] =
∫
Sd−1

cos (2π⟨γ, t⟩) σ(dγ),

where σ is the uniform measure on the sphere.

Then, R defines a radial function which converges to 0 at infinity and which has a
unique maximum at t = 0.

Proof. It is standard fact that the only rotation invariant probability on the sphere
Sd−1 is the uniform measure Hausdorff measure on Sd−1. Hence, each component
of γN has to follow a uniform distribution.

We notice that, by symmetry,

R(t) =
∫
Sd−1

e2iπ⟨γ,t⟩σ(dγ)

so that R(t) = σ̂(t) where .̂ refers to the Fourier transform. In particular, this leads
to an explicit formula for R(t), that is

R(t) = ω
Jν(2π|t|)

|t|ν

where Jν is the νth Bessel function of first kind, ν = d/2−1 and ω a constant chosen
so that R(0) = 1. The conclusion of Lemma 5.1 follows then from the standard
properties of the Bessel functions. □

We are now ready to prove Proposition 2.6. Let a < c/d where c is the constant in
Hoeffding’s inequality and let εN be a positive sequence converging to 0. We define
τN as the smallest εN -almost period of RN . According to Hoeffding’s inequality in
Assumption 2.5,

(5.1) P (|RN (t) − R(t)| ≥ 1 − εN ) ≤ Ce−c(1−εN )2N , t ∈ Rd,
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To make use of the latter inequality, we cover the centered ball with radius eaN with
dN = O

(
N dedaN ) balls of radius at most 1

N . Let Ci,N denote these latter balls and
ti,N be their respective centers. As both RN and R are 2π-Lipschitz continuous,
one has that

sup
t∈Ci,n

|RN (t) − R(t))| ≤ |RN (ti,N ) − R(ti,N )| + 2π

N
.

Hence, for any ε > 0,

P

(
lim sup
N →+∞

{
sup

|t|≤eaN
|RN (t) − R(t)| ≥ 1 − εN

})
= P

(
lim sup
N →+∞

{
sup

1≤i≤dN

|RN (ti,N ) − R(ti,N )| ≥ 1 − εN

})
.

By the union bound and Equation (5.1),

P
(

sup
1≤i≤dN

|RN (ti,N ) − R(ti,N )| ≥ 1 − εN

)
≤ dnCe−c(1−εN )2N

= O
(

N de−c(1−εN )2N +adN
)

= O
(

N de−(c−ad)N
)

which is summable as εN converges to 0. Borel-Cantelli lemma implies that

P

(
lim sup
n→+∞

{
sup

|t|≤eaN
|Rn(t) − R(t)| ≥ 1 − εN

})
= 0.

Hence, RN converges uniformly to R on balls of radius eaN . But, as R(t) is bounded
away from 1 everywhere except on a neighbourhood of 0, this implies that there is
asymptotically no εN -almost periods smaller than eaN . In particular, Dirichlet’s
approximation theorem bound is the best possible in that case and Proposition 2.7
is proved.

6. Appendix

6.1. Topology of uniform convergence of derivatives. This first chapter recalls
briefly the main results associated with the topology of uniform convergence of
the first p derivatives on a compact set. In what follows, Ω ⊂ R2 will designate
a convex, bounded open set with locally C1 boundary. These latter assumptions
can be relaxed, but in the framework of this article, there is no need to dwell into
greater generality.

Notation. When α ∈ N2, the notation |α| = α1 + α2 will be used. In other context,
it will refer to the standard euclidean norm.

Topology of uniform convergence of derivatives. Let p be a positive integer. We
define the set Cp(Ω) of p-times differentiable functions on Ω as the set of functions
f : Ω → R satisfying

(1) f is Cp(Ω), that is f is p-times continuously differentiable on Ω.
(2) ∂αf extend continuously to Ω for any |α| ≤ p.

It is natural to equip Cp(Ω) with the norm

||f ||p :=
∑

|α|≤p

||∂αf ||∞
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where ||.||∞ is the uniform norm on Ω.

In particular, the definition of
(
C0(Ω), ||.||0

)
coincides with the topology of uniform

convergence on compact set for continuous function. We recall now some standard
facts on Cp(Ω).

Lemma 6.1. Cp(Ω) endowed with ||.||p, is a Polish space, that is separable and
complete.

Proof. The family of polynomials Q[x, y] is a dense family in Cp(Ω). This result is
surely true, but it is not as obvious as it seems... Indeed, for pathological bounded
open sets Ω, the density of polynomials may dramatically fail (see this discussion
[Sau]).

In our setting, the regularity assumptions put on Ω forbids any pathological be-
haviour. As Ω is convex, it satisfies the assumptions of Whitney extension theorem
[Whi34], which ensures that any f ∈ Cp(Ω) can be extended to a function of class
Cp(R2).

The separability follows then from a routine argument. Consider a mollifier, for
instance the density of standard 2-dimensional random normal variable and let
φn(t) := 2−nφ(2nt). Then φn ⊛ f is a smooth function whose all partial derivatives
of order |α| ≤ p converge uniformly on compact sets to those of f . Weierstrass
theorem ensures that φn can be well-approximated by a polynomial Pn on the
euclidean unit ball B and we might choose the sequence Pn so that

sup
B

|Pn − φn| → 0.

To conclude the proof, one has to check that

1BPn ⊛ f

is a polynomial which approximates arbitrarily closely f in the Cp(Ω) topology.
We now prove the completeness of Cp(Ω). Recall that C0(Ω) equipped with ||.||∞ is
a Banach space.

Let (fn) be a Cauchy sequence in Cp(Ω). For every |α| ≤ p, (∂αfn) is a Cauchy
sequence in C0(Ω), hence there is a continuous function fα on Ω such that

||∂αfn − fα||∞ −→ 0.

We note f := f(0,0). To finish the proof, it suffices to show that f is Cp(Ω) and
∂αf = fα. This follows immediately from the following well-known lemma.

Lemma 6.2. Let (fn) be a sequence of differentiable functions such that fn converges
pointwise to f and f ′

n converges uniformly to g. Then, f is differentiable on ]a, b[
and f ′ = g.

□

Results related to the compactness of C0(Ω) such as Arzelà–Ascoli have a straight-
forward extension to Cp(Ω). This derives from the following observation.

Lemma 6.3. Let A ⊂ Cp(Ω). The two following proposition are equivalent.
(1) A is relatively compact in Cp(Ω).
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(2) For any |α| ≤ p,
A(α) := {∂αf : f ∈ A}

is relatively compact in C0(Ω)

Proof. The direct implication is immediate as

||∂αf ||∞ ≤ ||f ||p.

For the converse, consider a subsequence fn in A. Using the relative compactness
of A(α) in C0(Ω), we can extract a subsequence fσ(n) such that

||∂αfσ(n) − fα||∞ −→ 0

where each fα is some continuous function on Ω and similarly to the proof of Lemma
6.1, one has ∂αf = fα where f := f(0,0). □

Borel sets and convergence in distribution in Cp(Ω). In the previous paragraph, it
was shown that Cp(Ω) is Polish space. This is the natural framework to develop
a well-behaved notion of convergence in distribution as Prokhorov’s theorem is
satisfied. The treatment of this question is inspired by Kallenberg [Kal02, Chapter
15].

There are two natural notions of measurable sets in Cp(Ω), one is given by the
Borel-algebra B

(
Cp(Ω)

)
, the other is given by the cylindrical σ-algebra Cylp, that

is the coarsest σ-algebra making the projection

ΠI :
{

Cp(Ω) −→ RI

f 7−→ {f(t) : t ∈ I}

measurable where I is any finite subset of Ω. Luckily, these two approaches can be
unified into a unique one as they lead to the same measurable sets.

Lemma 6.4. B
(
Cp(Ω)

)
= Cylp

Proof. ΠI is continuous, hence Cylp ⊂ B
(
Cp(Ω)

)
.

For the converse, it suffices to show that any open set belongs to Cylp. As Cp(Ω) is
separable, it further reduces into showing that any closed ball B is Cylp-measurable.
We denote by f the center of B and r its radius.

If A := {α ∈ N2 : |α| ≤ p} and D is a dense countable subset of Ω, then

B =
⋂

(tα)∈DA

g ∈ Cp(Ω) :
∑

|α|≤p

|∂αg(tα) − ∂αf(tα)| ≤ r

 .

Thus, proving the reverse inclusion amounts to prove that

Πα
t :
{

Cp(Ω) −→ R
f 7−→ ∂αf(t)

is Cylp-measurable.

Let (e1, e2) be the canonical basis of R2 and let

∆i
hf(t) := f(t + hei) − f(t)

h
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be the discrete partial derivatives of order f . This definition extends naturally to
higher derivatives ∆α

h and Taylor formula ensures that

lim
h→0

∆α
hf(t) = ∂αf(t), t ∈ Ω.

As a pointwise limit of measurable functions, Πα
t is thus Cylp-measurable. □

In particular, the preceding lemma ensure that a distribution in Cp(Ω) is characterised
by its finite-dimensional distributions.

More generally, it ensures that a random variable defined on the product space
Cp(Ω)2 is also characterised by its finite dimensional. Indeed, as Cp(Ω) is separable,
one has

B
(
Cp(Ω)2) = B

(
Cp(Ω)

)
⊗ B

(
Cp(Ω)

)
= Cylp ⊗ Cylp

This result was used in the proof of Proposition 4.1.

Alongside the cylindrical topology, we will need some results relative to the tightness
of a sequence of random variables in Cp(Ω).

Proposition 6.5. Let (Xn) a sequence random variables on Cp(Ω). Then, the two
proposition are equivalent:

(1) (Xn) is tight.
(2) For any |α| ≤ p, the sequence (∂αXn) is tight for the topology of uniform

convergence on Ω.

Proof. The proof relies on Prokhorov theorem [Kal02, Theorem 16.3]. In a Polish
space, a sequence of random variable is tight if and only if it is relatively compact.

But according to Lemma 6.3, (Xn) is tight in Cp(Ω) if and only if (∂αXn) is tight
in C0(Ω) for any |α| ≤ p. □

6.2. Continuity along the nodal lines. The second part of this appendix is
dedicated to the proof of Proposition 4.5. This work is a bit tedious and it is divided
into smaller steps.

Notation. If g is continuous mapping, the notation Zg(Ω) will be used to denote
the zero sets of g on Ω.

General framework. We recall first Proposition 4.5.

Let U ⊂ R2 be a bounded convex open set with smooth boundary and f ∈ C1(U) be
a regular function. If Ω is an open convex subset of U and φ a continuous function
on Ω, then, provided that f−1(0) does not accumulate on ∂Ω, the map

Λ(g) :=
∫

Zg(Ω)
f(t)H1(dt)

is continuous at f . More precisely, the goal is to prove the following proposition.

Proposition 6.6. Under the preceding assumptions and provided that

(6.1) H1(Zf (∂Ω)) = 0,

the map Γ is continuous in f for the C1(U)-topology.
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The latter result can be extended to open sets Ω which are well-approximated above
and below in the sense that there exists Ωn and Ωn two sequences of respectfully
increasing and decreasing open sets such that⋃

n≥1
Ωn = Ω

and ⋂
n≥1

Ωn = Ω,

provided some regularity on Ω. In the case of convex sets, these conditions are
immediately satisfied.

Proof of continuity. By decomposing φ into its positive and negative parts, one has
to show that Proposition 6.6 holds whenever φ is positive. Under this additional
assumption, the latter proposition is induced by the following result.

Proposition 6.7. Let C ⊂ D be any convex open sets included in U such that
C ⊂ D. Then

lim sup
g→f

∫
Zg(C)

φ(t)H1(dt) ≤
∫

Zf (D)
φ(t)H1(dt)

and ∫
Zf (C)

φ(t)H1(dt) ≤ lim inf
g→f

∫
Zg(D)

φ(t)H1(dt).

Before proving this result, we will show how Proposition 6.7 implies the continuity
of Λ at f .

Proof of Proposition 6.6. Let Ωn be a sequence of increasing convex sets such that
Ωn ⊂ Ωn+1 and ⋃

n≥1
Ωn = Ω.

From Proposition 6.7, one has

lim sup
n→+∞

∫
Zf (Ωn)

φ(t)H1(dt) ≤ lim inf
g→f

∫
Zg(Ω)

φ(t)H1(dt).

The left hand part converges, in virtue of the dominated convergence theorem, to∫
Zf (Ω)

φ(t)H1(dt).

Hence, ∫
Zf (Ω)

φ(t)H1(dt) ≤ lim inf
g→f

∫
Zg(Ω)

φ(t)H1(dt)

Note that this inequality is always true and is independent of condition (6.1). The
latter condition will be needed for the converse inequality.

This time, we let Ωn be a sequence of non-increasing convex open sets such that
Ωn+1 ⊂ Ωn and ⋂

n≥1
Ωn = Ω.
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Following the preceding reasoning, one has

lim sup
g→f

∫
Zg(Ω)

φ(t)H1(dt) ≤ lim inf
n→+∞

∫
Z(Ωn)

φ(t)H1(dt)

=
∫

Z(Ω)
φ(t)H1(dt)

(condition 6.1) =
∫

Z(Ω)
φ(t)H1(dt).

The two preceding inequality immediately implies that

lim
g→f

Γ(g) = Γ(f)

which finishes the proof. □

The latter part of this section is thus devoted to the proof of Proposition 6.7. The
ideas involved into proving this result are summarised hereafter.

First, we establish for g ∈ C1(Ω) sufficiently close to f a one-to-one local correspon-
dence between the connected components of f−1(0) and the ones of g−1(0). What
is meant with local correspondence is the existence of a covering of f−1(0) by open
sets Vi such that Zg(Vi) consists in exactly one connected component γg. If we
reformulate the latter statement, this means that the set Vi is crossed by exactly
one nodal line of g. The rest of the proof consists into estimating the difference
between γg and γf and showing that the latter is negligible as g tends to f . To
translate this local result into a global one, a partition of unity argument is later
invoked.

Technical lemmas. The first step of the proof consists of proving this local corre-
spondence. We will need the following lemma, which establishes that the zeros of f
and g cannot be too far away as long as g is sufficiently close to f .

First, we define some notations. As f is regular, there exists an open set W ⊂ Ω
containing Z(C) such that

inf
t∈W

|∇f(t)| ≥ m

with m > 0.

On the other hand, the uniform continuity on U ensures that

|∇f(t) − ∇f(s)| ≤ m

4 , |s − t| ≤ δ.

for some δ > 0.

Lemma 6.8. Let ε < δm/8 and g ∈ C1(U) such that ||f − g||1 ≤ ε. If f(t) = 0 and
|∂1f(t)| ≥ m/2, then there exists |η| ≤ 8ε/m such that

g(t1 + η, t2) = 0.

In particular, if f(t) = 0, either |∂1f(t)| or |∂2f(t)| is no less than m/2 and the
preceding lemma can be applied.

Corollary 6.9. There is a neighbourhood Vf of f ∈ C1(U) such that any t ∈ Zf (C)
can be associated with some s ∈ Zg(D) such that |s − t| ≤ 8ε/m.
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Proof. Without loss of generality, assume that ∂1f(t) > 0 and consider the function

F (ω) := f(t1 + ω, t2).

whose derivatives is given by

F ′(ω) = ∂1f(t1 + ω, t2)

For |ω| ≤ δ, the triangle inequality ensures that

F ′(ω) ≥ m

4 ,

so that f(t1 + 8ε/m, t2) and f(t1 − 8ε/m, t2) have opposite sign and their respective
absolute value are at least 2ε. Thus, g(t1 + 8ε/m, t2) and g(t1 − 8ε/m, t2) have
opposite sign and the conclusion follows from the Intermediate Value Theorem. □

Lemma 6.10. There is a finite open cover Vi of Zf (C) and a neighbourhood Vf of
f in C1(U) such that for any g ∈ Vf , the following assertions are satisfied

(1) Zg(Vi) has exactly one connected component.
(2)

Zg(C) ⊂
⋃

i

Vi ⊂ D.

In particular,
Zg(C) =

⋃
i

Zg(Vi) ⊂ Zg(D).

Proof. Let dg be the minimal distance between two different connected components
of Zg(D). If there is no or only one connected component, dg is arbitrarily set to 1.

As D is compact, two different connected different components of f are always
at a non zero distance and this bound holds uniformly in the sense there is a
neighbourhood Vf of f such that

d := inf
g∈Vf

dg > 0.

The proof of this result is omitted here but it requires the use of a quantitative
version of the implicit theorem. Such statement yields an explicit neighbourhood,
whose size depends only the first derivatives of the function, on which the conclusion
of the implicit theorem holds. In particular, in the latter neighbourhood, the zero set
of the related function is composed of exactly one connected component. Applying
this result to a function g in a small neighbourhood of f , one sees that the size of
the neighbourhood can be chosen so that it only depends on f . In particular, this
prevents Zg(D) from having two close connected components.

To construct the sets Vi, we choose a finite cover of Zf (C) with open balls whose
diameter is less than d and such that Zf (Vi) is non empty. By definition, Zg(Vi)
has at most one connected component for g ∈ Vf . On the other hand, Corollary 6.9
ensures there is at least one. This finishes the proof. □

In virtue of Corollary 6.10, the unique connected component of Zg(Vi) can be
parametrised by (γg,i(t), t) or (t, γg,i(t)) depending on whether |∂1f | ≥ m/2 or
|∂2f | ≥ m/2 on Vi. Note that it is always possible to choose Vi so that at least one
of these two assumptions hold. Without loss of generality, we will only consider
parametrisation of the second form.
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Lemma 6.11. As g → f , γi,g converges to γi,f for the topology of uniform conver-
gence of the first derivatives on compact sets.

Proof. The uniform convergence of γi,g to γi,f is a straightforward consequence of
Corollary 6.9 which bounds the distance between the cancellation points of f and g.
As for the convergence of derivatives, it follows from the formula

γ′
i,g(t) = −∂1g(t, γi,g(t))

∂2g(t, γi,g(t)) → −∂1f(t, γi,f (t))
∂2f(t, γi,f (t)) = γ′

i,f (t)

□

With Lemma 6.11 proved, all the necessary tools for the proof of Proposition 6.7
has been introduced.

Proof of Proposition 6.7. Consider a partition of unity associated with the open
sets Vi, that is a a family of continuous functions 0 ≤ ϕi ≤ 1 with compact support
included in Vi satisfying

n∑
i=1

ϕi(t) ≤ 1, t ∈ D,

with equality when t ∈ C.

Let fn be a sequence a sequence of functions converging to f in C1(U). The positivity
of φ implies that∫

Zfn (C)
φ(t)H1(dt) =

∑
i

∫
Zfn (Vi∩C)

ϕi(t)φ(t)H1(dt)

≤
∑

i

∫
Zfn (Vi)

ϕi(t)φ(t)H1(dt)

=
∑

i

∫
ϕ(t, γi,fn

(t))φ(t, γi,fn
(t))
√

1 + γ′
i,fn

(t, γi,fn
(t))2dt.

Lemma 6.11 implies that the latter converges to∫
ϕ(t, γi,f (t))φ(t, γi,f (t))

√
1 + γ′

i,f (t, γi,f (t))2dt

=
∑

i

∫
Zf (Vi)

ϕi(t)φ(t)H1(dt)

≤
∑

i

∫
Zf (D)

ϕi(t)φ(t)H1(dt)

≤
∫

Zf (D)
φ(t)H1(dt)

Hence,

lim sup
g→f

∫
Zg(C)

φ(t)H1(dt) ≤
∫

Zf (D)
φ(t)H1(dt),

which ultimately concludes the proof of Proposition 6.7. □
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