Graphene in silicon photovoltaic cells
Résumé
Graphene is an allotrope of carbon. Its structure is one-atom-thick planar sheets of carbon atoms that are densely packed in a honeycomb crystal lattice [1]. The richness of optical and electronic properties of graphene attracts enormous interest. Its true potential seems to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited. The optical absorption of graphene layers is proportional to the number of layers, each absorbing A=1-T=πα=2.3% over the visible spectrum [2].The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers. Current photovoltaic (PV) technology is dominated by Si cells, with an energy conversion coefficient up to 25% [3]. Such an inorganic PV consists in a current transparent conductor (TC) replacing one of the electrodes of a PIN photodiode. The standard material used so far for these electrodes is indium-tinoxide, or ITO. But indium is expensive and relatively rare, so the search has been on for a suitable replacement. A possible substitute made from inexpensive and ubiquitous carbon is graphene. Being only constituted of carbon, it will become cheap and easily recyclable. But at the moment, the major difficulty consists in its fabrication and/or transfer. Our project consists in synthetizing graphene by CVD (Chemical Vapor Deposition) on Cu and in transferring the obtained layer on silicon PV cells, and then in testing their energy conversion efficiency.
Origine | Fichiers produits par l'(les) auteur(s) |
---|