Complexity and equivalency of multiset dimension and ID-colorings - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Complexity and equivalency of multiset dimension and ID-colorings

Résumé

This investigation is firstly focused into showing that two metric parameters represent the same object in graph theory. That is, we prove that the multiset resolving sets and the ID-colorings of graphs are the same thing. We also consider some computational and combinatorial problems of the multiset dimension, or equivalently, the ID-number of graphs. We prove that the decision problem concerning finding the multiset dimension of graphs is NP-complete. We consider the multiset dimension of king grids and prove that it is bounded above by $4$. We also give a characterization of the strong product graphs with one factor being a complete graph, and whose multiset dimension is not infinite.
Fichier principal
Vignette du fichier
ID-col-MSD_FinalPreprint.pdf (357.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04026222 , version 1 (13-03-2023)
hal-04026222 , version 2 (21-11-2023)

Identifiants

Citer

Anni Hakanen, Ismael G. Yero. Complexity and equivalency of multiset dimension and ID-colorings. 2023. ⟨hal-04026222v2⟩
46 Consultations
45 Téléchargements

Altmetric

Partager

More