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Complexity and equivalency of multiset dimension and ID-colorings

Introduction

The concept of metric dimension in graphs is one of the classical parameters in the area of graph theory. It is understood it has been independently introduced in the decade of 1970 in the two separate works [START_REF] Harary | On the metric dimension of a graph[END_REF] and [START_REF] Slater | Leaves of trees[END_REF], which were aimed to consider identification properties of vertices in a graph. These identification properties were also connected with the Mastermind game in [START_REF] Cáceres | On the metric dimension of Cartesian products of graphs[END_REF], and problems related to pattern recognition and image processing in [START_REF] Melter | Metric bases in digital geometry[END_REF]. After these two seminal works, the research on the topic remained relatively quiet until the first years of the new century, where the number of articles on the topic exploded. From this point on, several theoretical and applied results have been appearing, and nowadays, the metric dimension of graphs is very well studied. It is not our goal to include a lot of references on this fact, and we simply suggest the interested reader to consult the two recent surveys [START_REF] Kuziak | Metric dimension related parameters in graphs: A survey on combinatorial, computational and applied results[END_REF][START_REF] Tillquist | Getting the lay of the land in discrete space: A survey of metric dimension and its applications[END_REF], which have a fairly complete amount of information on metric dimension in graphs and related topics.

where {{•}} represents a multiset. In order to facilitate our exposition, we write {{.}} + i to denote the multiset obtained from {{.}} by adding i to every element of such multiset. The set W is a multiset resolving set for G if the collection of multisets m G (u|S) with u ∈ V (G) are pairwise distinct. The multiset dimension of G, denoted dim ms (G), represents the cardinality of a smallest possible multiset resolving set of G. Multiset resolving sets do not always exist in a given graph. For those graphs G which do not contain any multiset resolving set, the agreement that dim ms (G) = ∞ was taken in [START_REF] Simanjuntak | The multiset dimension of graphs[END_REF]. Some other investigations on the multiset dimension of graphs are [START_REF] Alfarisi | A note on multiset dimension and local multiset dimension of graphs[END_REF][START_REF] Bong | Some properties of the multiset dimension of graphs[END_REF][START_REF] Isariyapalakul | The multibases of symmetric caterpillars[END_REF][START_REF] Khemmani | The characterization of caterpillars with multidimension 3[END_REF][START_REF] Khemmani | The multiresolving sets of graphs with prescribed multisimilar equivalence classes[END_REF]. It is clear that any multiset resolving set is also a resolving set, since the fact that two multisets are different implies that the vectors with the same elements are also different. This means that for any graph G, dim(G) ≤ dim ms (G).

(

) 1 
On the other hand, the following concepts were defined in [START_REF] Chartrand | Distance vertex identification in graphs[END_REF]. Consider a connected graph G of diameter d and a set of vertices S ⊂ V (G). Now, for every vertex x ∈ V (G), the code of x with respect to S is the d-vector ⃗ d(x|S) = (a 1 , a 2 , . . . , a d ) where a i , with i ∈ {1, . . . , d} represents the number of vertices in S at distance i from x. If all the codes of vertices of G are pairwise different, then S is called an identification coloring or ID-coloring. Moreover, a graph G that has an ID-coloring is called an ID-graph. In this sense, for any ID-graph G, the cardinality of a smallest ID-coloring is the ID-number of G, denoted by ID(G). Other contributions in this direction are [START_REF] Kono | A note on the identification numbers of caterpillars[END_REF][START_REF] Kono | Vertex identification in grids and prisms[END_REF][START_REF] Kono | Vertex identification in trees[END_REF].

We next show that the two parameters defined above are indeed the same. To this end, we may remark that for an ID-graph G of diameter d with an ID-coloring S, any vertex Based on the equivalence that exists between these two representations, the fact that the codes of vertices of G are pairwise different implies that the collection of multisets are pairwise distinct as well, and vice versa. Consequently, it is clear that a given set S ⊂ V (G) is an ID-coloring of G if and only S is a multiset resolving set.

x ∈ V (G) with code ⃗ d(x|S) = (a 1 , a 2 , . . . , a d ) satisfies d i=1 a i = |S| if x / ∈ S and d i=1 a i = |S| -1 if x ∈ S.
Based on the equivalence above, we conclude the next consequence.

Corollary 2. For any graph G, dim ms (G) = ID(G).

It is then now clear that graphs defined in [START_REF] Chartrand | Distance vertex identification in graphs[END_REF] as ID-graphs are those ones satisfying that dim ms (G) < ∞ according to the terminology from [START_REF] Simanjuntak | The multiset dimension of graphs[END_REF].

Complexity results

This section is centered into considering the proof of the NP-completeness for the following decision problem, which in addition allows to conclude that computing the multiset dimension of graphs is NP-hard, and clearly, based on Theorem 1 and Corollary 2, it means that computing the ID-number of graphs is NP-hard as well. Our proof is somewhat inspired by the proof of the NP-hardness of the outer multiset dimension problem presented in [START_REF] Gil-Pons | Distance-based vertex identification in graphs: the outer multiset dimension[END_REF].

Distinct vertices u and v are called twins if they have the same set of neighbors. It is well known that if two vertices are twins, then each (multiset) resolving set contains at least one of them.

Multiset Dimension

Instance: A graph G = (V, E) and an integer k satisfying 1 ≤ k ≤ |V |. Question: Is dim ms (G) ≤ k? Theorem 3. The Multiset Dimension problem is NP-complete.
Proof. The problem is clearly in NP. We prove the NP-completeness by a reduction from 3-SAT. Consider an arbitrary input to 3-SAT, that is, a formula F with n variables and m clauses, which does not have a clause containing both the positive and the negative literals of the same variable. Let x 1 , x 2 , . . . , x n be the variables, and let C 1 , C 2 , . . . , C m be the clauses of F . We next construct a connected graph G based on this formula F . To this end, we use the following gadgets.

For each variable x i we construct a variable gadget as follows (see Figure 1(a)). Vertices T i , F i are the "true" and "false" ends of the gadget. The gadget is attached to the rest of the graph only through these vertices.

Vertices

a 1 i , a 2 i , b 1 i , b 2
i represent the value of the variable x i , that is, a 1 i and a 2 i will be used to represent that variable x i is true, and b 1 i and b 2 i that it is false. The vertices a 1 i and b 1 i are adjacent, and so are the vertices a 2 i and b 2 i . Additionally, the vertices a 1 i and a 2 i are adjacent to T i and the vertices b 1 i and b 2 i are adjacent to F i .

P t i = d 1 i d 2 i • • • d t i
i is a path such that d 1 i is adjacent to T i and F i , while d t i i is adjacent to the two vertices e 1 i and e 2 i . Notice that the vertices e 1 i and e 2 i are twins, and so, each multiset resolving set of G must contain at least one of them.

For each clause C j we construct a clause gadget as follows (see Figure 1(b)).

The vertices c 1 j , c 2 j and c 3 j form a path. The vertices c 1 j and c 3 j will be helpful in determining whether the clause C j is satisfied.

P s j = f 1 j f 2 j • • • f s j j is a path such that f 1 j is adjacent to c 2 j , while f s j
j is adjacent to the two vertices g 1 j and g 2 j . The vertices g 1 j and g 2 j are twins, and so, each multiset resolving set of G must contain at least one of them.

The orders of the paths P t i and P s j must be pairwise distinct in order for the multiset representations to be different and our reduction to work. Let t i = 5(i+1) for all i ∈ {1, . . . , n} and s j = 5(n + j + 1) for all j ∈ {1, . . . , m}. The sum of all the vertices in the variable and clause gadgets is clearly polynomial in terms of n + m.

The variable and clause gadgets are connected in the following way in order to construct our graph G.

Vertices c 1 j are adjacent to vertices T i , F i for all j and i. If a variable x i does not appear in a clause C j , then the vertices T i , F i are adjacent to c 3 j . If a variable x i appears as a positive literal in a clause C j , then the vertex F i is adjacent to c 3 j . If a variable x i appears as a negative literal in a clause C j , then the vertex T i is adjacent to c 3 j . Observe that G is connected and its order is polynomial in terms of the quantity of variables and clauses of the 3-SAT instance. We shall show that F is satisfiable if and only if dim ms (G) = 2m + n. To this end, we proceed with a series of claims that will complete our whole reduction.

a 1 i b 1 i a 2 i b 2 i T i F i d 1 i d 2 i . . .
Claim 1. We have dim ms (G) ≥ 2n + m.

Proof of Claim 1. Let S be a multiset basis of G. The vertices e 1

i and e 2 i are twins, and thus S contains at least one of them for every i ∈ {1, . . . , n}. Similarly, the vertices g 1 j and g 2 j are twins and at least one of them is in S for every j ∈ {1, . . . , m}. Finally, in order to have distinct multiset representation for the vertices a 1 i , a 2 i , b 1 i and b 2 i , at least one of these four vertices must be in S. Thus, we have dim

ms (G) = |S| ≥ 2n + m. ♦ Claim 2. If F is satisfiable, then dim ms (G) = 2n + m.
Proof of Claim 2. Consider a satisfying assignment for F and construct a set S * containing 2n + m vertices as next described.

For each i ∈ {1, . . . , n}, we add the vertex e 1 i to S * . For each j ∈ {1, . . . , m}, we add the vertex g 1 j to S * . For each variable x i , if x i = true, then we add the vertex a 1 i to S * , otherwise if x i = false, then we add the vertex b 1 i to S * .

We will show that the set S * is a multiset resolving set of G. We denote by S * x i and S * C j the vertices of the set S * that are not in the gadget of x i and C j , respectively. We will first express the multiset representations of the vertices in the variable gadgets with the help of the multiset representation of T i with respect to S * x i . Since the vertices c 1 j are adjacent to all T i and F i , the distance from T i to all T i ′ and

F i ′ for i ′ ̸ = i is 2. Now, we have m(T i |S * x i ) = {{ 3, | for each i ′ ∈ {1, . . . , n}, i ′ ̸ = i t i ′ + 3, | for each i ′ ∈ {1, . . . , n}, i ′ ̸ = i s j + 3, | for each j ∈ {1, . . . , m}}}.
For instance, the distance between the vertex T i and e 1 i ′ equals t i ′ +3, because one shortest path between them is

T i c 1 1 T i ′ d 1 i ′ • • • d t i ′ i ′ e 1 i ′ .
Other cases are deduced similarly from the construction of the graph G. Now, we can write the multiset representations of the vertices in the variable gadget of x i as follows.

m

(T i |S * ) = m(T i |S * x i ) ∪ {{t i + 1, y}}, where y = 1 when a 1 i ∈ S * and y = 2 when b 1 i ∈ S * . m(F i |S * ) = m(T i |S * x i ) ∪ {{t i + 1, y}}, where y = 1 when b 1 i ∈ S * and y = 2 when a 1 i ∈ S * . m(d h i |S * ) = (m(T i |S * x i ) + h) ∪ {{t i -h + 1, h + 1}} for all h ∈ {1, . . . , t i }. m(e h i |S * ) = (m(T i |S * x i ) + t i + 1) ∪ {{t i + 2, y}}, where y = 0 when e h i = e 1 i and y = 2 when e h i = e 2 i . m(a h i |S * ) = (m(T i |S * x i ) + 1) ∪ {{t i + 2, y}},
where when a 1 i ∈ S * , we have y = 0 for a 1 i and y = 2 for a 2 i , and when b 1 i ∈ S * , we have y = 1 for a i 1 and y = 3 for As for the vertices of the clause gadgets, we will express them with an auxiliary representation as well. To that end, observe that m(c

a 2 i . m(b h i |S * ) = (m(T i |S * x i ) + 1) ∪ {{t i + 2,
1 j |S * C j ) = {{ 2, | for each i ∈ {1, . . . , n} t i + 2, | for each i ∈ {1, . . . , n} s j ′ + 4, | for each j ′ ∈ {1, . . . , m}, j ′ ̸ = j}}.
We then write the multiset representations of the vertices of the clause gadget of C j other than c 3 j as follows. m(c

1 j |S * ) = m(c 1 j |S * C j ) ∪ {{s j + 2}}. m(c 2 j |S * ) = (m(c 1 j |S * C j ) + 1) ∪ {{s j + 1}}. m(f h j |S * ) = (m(c 1 j |S * C j ) + h + 1) ∪ {{s j -h + 1}} for all h ∈ {1, . . . , s j }. m(g h j |S * ) = (m(c 1 j |S * C j ) + s j + 2) ∪ {{y}}
, where y = 0 when g h j = g 1 j and y = 2 when g h j = g 2 j . Since the values of t i and s j are large and distinct enough (recall that t i = 5(i + 1) and s j = 5(n + j + 1)), the multiset representations of the vertices in the variable and clause gadgets (other than c 3 j ) are pairwise distinct. Indeed, notice that the values t i ′ + 3 and s j + 3 form a pattern to the multiset representations of a vertex of a variable gadget which is easy to distinguish from the corresponding pattern of t i +2 and s j ′ +4 of a vertex from a clause gadget. Thus, we readily observe that the multiset representations of the vertices in a variable gadget are distinct from those of the vertices of clause gadgets. These patterns, or the anomalies present in them, to be more precise, are also the reason why vertices in two different variable gadgets (or clause gadgets) have distinct multiset representations. Indeed, there is a "gap" in this pattern where t i + 3 should be for all vertices of the gadget of x i . Thus, the multiset representations of the vertices within the same variable or clause gadget are distinct.

Let us then consider the vertices c 3 j . Similarly to the vertex c 1 j , the multiset representation of c 3 j contains s j + 2 once, t i + 2 for each i ∈ {1, . . . , n}, and s j ′ + 2 for each j ′ ∈ {1, . . . , m}, j ′ ̸ = j. However, the distance from c 3 j to the vertices a 1 i and b 1 i is 2 or 3 depending on whether the variable x i appears in the clause C j and in which form (positive or negative), and whether x i = true or x i = false according to the truth assignment. More precisely, if the variable x i does not appear in the clause

C j , then d(c 3 j , a 1 i ) = d(c 3 j , b 1 i ) = 2.
If x i appears in C j but the clause C j is not satisfied due to x i (note that here C j can be satisfied but due to the truth value of some other variable x i ′ ), then the distance from c 3 i to whichever of a 1 i and b 1 i is in S * is again 2. However, if C j is satisfied due to x i , the distance from c 3 j to whichever of a 1 i and b 1 i is in S * is 3. (For example, if x i appears as a positive literal in C j , the edge c 3 j F i is present in G whereas c 3 j T i is not. Thus, we have d(c 3 j , a 1 i ) = 3 and d(c 3 j , b 1 i ) = 2. Now, if the truth assignment of x i leads to C j being satisfied, we have x i = true and a 1 i ∈ S * . Therefore, the multiset representation of c 3 j contains 3 due to a 1 i .) Since the set S * is constructed using a truth assignment that satisfies F , there is at least one 3 in the multiset representation of c 3 j . Thus, the multiset representation of c 3 j is almost the same as the multiset representation of c 1 j except that at least one 2 (in m(c 1 j |S * )) is swapped to 3. Thus, c 3 j and c 1 j have distinct multiset representations. Furthermore, based on the arguments concerning the multiset representations of the other vertices of G, it is clear that each c 3 j has a distinct multiset representation compared to all other vertices of G. Consequently, the set S * is a multiset resolving set of G, and the claim holds due to Claim 1.

♦ Claim 3. If dim ms (G) = 2n + m, then F is satisfiable.
Proof of Claim 3. Let S be a multiset basis of G. By the arguments in the proof of Claim 1, the set S must contain exactly one of the two vertices e 1 i or e 2 i for every i ∈ {1, . . . , n}; exactly one of the two vertices g 1 j or g 2 j for every j ∈ {1, . . . , m}; and exactly one of the vertices a 1 i , a 2

i , b 1 i or b 2 i for every i ∈ {1, . . . , n}. By the same arguments as at the end of the proof of Claim 2, the vertices c 1 j and c 3 j must have distinct multiset representations due to some a h i or b h i . Thus, the truth assignment where x i = true if a 1 i or a 2 i is in S, and

x i = false if b 1 i or b 2 i is in S for all i ∈ {1, . . . , n} satisfies F . ♦
This completes the reduction from 3-SAT to the Multiset Dimension problem.

The king grid

Based on the NP-completeness reduction made in the proof of Theorem 3, it is then desirable to consider the multiset dimension (or ID-number) of some non-trivial families of graphs. In connection with this, in this section we consider the strong product of a path P n with itself, also known as the king grid. The graph G ⊠ H is the strong product of G and H. The vertex set of G ⊠ H is the set

V (G) × V (H) = {(u, v) | u ∈ V (G), v ∈ V (H)}. Two vertices (g, h), (g ′ , h ′ ) ∈ V (G ⊠ H) are adjacent if g = g ′
and h is adjacent to h ′ in H; or g is adjacent to g ′ in G and h = h ′ ; or g is adjacent to g ′ in G and h is adjacent to h ′ in H. We write V (P n ) = {1, . . . , n} so that the vertices of P n ⊠ P n correspond to the coordinates of the Z 2 lattice. Moreover, for a vertex (i, j) ∈ V (P n ⊠P n ) and an integer q ≥ 1, by D q (i, j) we mean the set of vertices in V (P n ⊠P n ) at distance q from (i, j). Notice that such set D q (i, j) represents a kind of (not necessarily whole) "border" of a subgraph of P n ⊠ P n isomorphic to the strong product of two paths. See Figure 2 for two representative examples. Remark 4. We have dim ms (P 2 ⊠ P 2 ) = dim ms (P 3 ⊠ P 3 ) = ∞, since both of these graphs are of diameter at most 2, and such graphs have no multiset resolving sets [START_REF] Simanjuntak | The multiset dimension of graphs[END_REF]. As for the case n = 4, the set {(1, 1), (2, 1), (4, 1), (1, 3), (2, 3), (2, 4)} is a multiset resolving set of P 4 ⊠ P 4 . We have checked with an exhaustive computer search that no smaller multiset resolving sets exist for this graph, and thus dim ms (P 4 ⊠ P 4 ) = 6

We begin our exposition of the larger king grids with the two smallest cases, and further on proceed with the general case.

Proposition 5. We have dim ms (P 5 ⊠ P 5 ) = dim ms (P 6 ⊠ P 6 ) = 4.

Proof. It is known from [START_REF] Simanjuntak | The multiset dimension of graphs[END_REF] and [START_REF] Chartrand | Distance vertex identification in graphs[END_REF] that no graph has a multiset resolving set of cardinality 2. Also, the only graph that has a multiset resolving set consisting of only one element is the path graph P n . Thus, dim ms (P 5 ⊠ P 5 ) ≥ 3 and dim ms (P 6 ⊠ P 6 ) ≥ 3. We first prove that dim ms (P 5 ⊠P 5 ) ̸ = 3 by a simple counting argument. Suppose that S is a multiset resolving set of P 5 ⊠ P 5 such that |S| = 3. The maximum number of distinct multiset representations that do not contain 0 is 6 3 = 20. Since |V (G) \ S| = 22, some vertices of P 5 ⊠ P 5 have the same multiset representations, a contradiction. Thus, dim ms (P 5 ⊠ P 5 ) > 3, and the first equality follows since the set S = {(1, 1), (2, 1), (5, 1), (1, 5)} is a multiset resolving set of P 5 ⊠ P 5 . The sets S along with the multiset representations is illustrated in Figure 3.

On the other hand, observe that the set S ′ = {(2, 1), (2, 2), (6, 1), (1, 6)} is a multiset resolving set of P 6 ⊠ P 6 , as shown in Figure 3, throughout the multiset representations of each vertex with respect to S ′ , being pairwise different. Thus dim ms (P 6 ⊠ P 6 ) ≤ 4. Now, in contrast to the case of P 5 ⊠ P 5 , to prove that dim ms (P 6 ⊠ P 6 ) ̸ = 3, the counting argument used does not directly work. That is, if we suppose S ′′ is a multiset resolving set of P 6 ⊠ P 6 such that |S| = 3, then the maximum number of distinct multiset representations that do not contain 0 is required. To this end, assume there is a vertex (α, β) ∈ V (P 6 ⊠ P 6 ) such that it has multiset representation {{1, 1, a}} for some a ∈ {1, . . . , 5}. Let (i, j), (i ′ , j ′ ) be two neighbors of (α, β) in S ′′ (note that (i, j), (i ′ , j ′ ) are at distance at most two). Hence, the third vertex (i ′′ , j ′′ ) of S ′′ must be in the set D a (α, β), namely, S ′′ = {(i, j), (i ′ , j ′ ), (i ′′ , j ′′ )}.

It is now just a matter of checking all the possibilities that can occur between the two vertices (i, j), (i ′ , j ′ ) and the third vertex (i ′′ , j ′′ ), to observe that one can always find two vertices that have the same multiset representation with respect to S ′′ . In order to avoid a lengthy and time consuming case analysis, we have simply checked this by computer. Thus, the multisets representations {{1, 1, a}} are not possible for every a ∈ {1, . . . , 5} with respect to the set S ′′ , and there are 5 of them. But then this means we have a total amount of 7 3 -5 = 30 possible distinct multiset representations that do not contain 0. However, there are |V (P 6 ⊠ P 6 ) \ S ′′ | = 33 vertices, which is a contradiction. Therefore, dim ms (P 6 ⊠ P 6 ) ̸ = 3, and the equality dim ms (P 6 ⊠ P 6 ) = 4 follows.

From now on, in order to facilitate the exposition, by a row or a column in P n ⊠P n we mean the path induced by the vertices (1, j), (2, j) . . . , (n, j) or (i, 1), (i, 2) . . . , (i, n), respectively, for any i, j ∈ {1, . . . , n}.

Theorem 6. If n ≥ 7 is an integer, then 3 ≤ dim ms (P n ⊠ P n ) ≤ 4.
Proof. The lower bound follows from the fact that any graph different from a path has multiset dimension at least 3, or by using inequality (1), since dim(P n ⊠ P n ) = 3 (see [START_REF] Barragán-Ramírez | The local metric dimension of strong product graphs[END_REF][START_REF] Rodríguez-Velázquez | The metric dimension of strong product graphs[END_REF]). To show the upper bound we use an induction procedure that separately works for odd and even values of n.

Case 1: n ≥ 7 is odd. Assume that the set S n-2 = {(1, 1), (2, 1), (n -2, 1), (1, n -2)} is a multiset resolving set of P n-2 ⊠ P n-2 . This is true for n = 7 according to Proposition 5, which shows the base case of the induction process. We will show that the set S n = {(1, 1), (2, 1), (n, 1), (1, n)} is a multiset resolving set of P n ⊠ P n .

Denote F = {(x, y) ∈ V (P n ⊠ P n ) | x ∈ {1, n} or y ∈ {1, n}} and I = V (P n ⊠ P n ) \ F (see Figure 4(a)). Observe that each vertex in F has n -1 in its multiset representation with respect to S n , whereas the vertices in I do not. Thus, vertices from F and I clearly have multiset representations distinct from one another.

Consider the vertices in I. The graph P n ⊠ P n can be viewed as a graph constructed from P n-2 ⊠ P n-2 by adding an additional row or column of vertices to all four sides of the graph. The set S n can then be obtained by moving the elements of S n-2 diagonally away from the middle. Thus, for each (v [START_REF] Bong | Some properties of the multiset dimension of graphs[END_REF][START_REF] Barragán-Ramírez | The local metric dimension of strong product graphs[END_REF] have distinct multiset representations with respect to each other. Moreover, the vertex (2, 2) is the only vertex in I that is adjacent to two elements of the set S 2 . The vertex (3, 2) is adjacent to one element of the set S n , and so are two other vertices in I. However, neither of these vertices has the distance 2 in their multiset representations, which the vertex (3, 2) does have. Thus, all vertices in I have pairwise distinct multiset representations with respect to S n .

1 , v 2 ) ∈ I \ {(2, 2), (3, 2)}, we have m((v 1 , v 2 )|S n ) = m((v 1 -1, v 2 -1)|S n-2 ) + 1. Since S n-2 is a multiset resolving set of P n-2 ⊠ P n-2 , all vertices in I \ {(2, 2), (3, 2)} have distinct multiset representations with respect to S n in P n ⊠P n . Since m((2, 2)|S n ) = {{1, 1, n- 2, n -2}} and m((3, 2)|S n ) = {{1, 2, n -3, n -2}}, the vertices (2, 2) and
Consider then the vertices in F . The multiset representations of these vertices are as follows.

For vertices on the top row, i.e. (i, n) where i ∈ {1, . . . , n}, we have m

((i, n)|S n ) = {{i -1, n -1, n -1, n -1}}.
For vertices on the right column, excluding the top corner, i.e. (n, i)

where i ∈ {1, . . . , n -1}, we have m((n, i)|S n ) = {{i -1, n -2, n -1, n -1}}.
For vertices on the left column, excluding top and bottom corners, i.e. (1, i) where i ∈ {2, . . . , n -1}, we have m((

1, i)|S n ) = {{i -1, i -1, n -i -2, n -1}}.
For vertices on the bottom row, excluding both corners, i.e. (i, 1), where i ∈ {2, . . . , n -1}, we have m((i, 1

)|S n ) = {{i -1, i -2, n -i -2, n -1}}.
For the bottom left corner (1, 1), we have m((1, 1

)|S n ) = {{0, 1, n -1, n 1}}.
Since the vertices in the top row are the only ones to have (at least) three (n -1)'s in their multiset representations, the vertices on the top row have distinct representations from the other vertices of F . Moreover, the multiset representations of the vertices on the top row are pairwise distinct. Similarly, from the vertices left to be considered, the vertices in the right column are the only vertices that have exactly two (n -1)'s in their representations (other than [START_REF] Alfarisi | A note on multiset dimension and local multiset dimension of graphs[END_REF][START_REF] Alfarisi | A note on multiset dimension and local multiset dimension of graphs[END_REF], but that has a distinct multiset representation due to the 0). Thus it is clear that the vertices in the right column have distinct multiset representations with respect to each other and other vertices in F . The vertices in the left column have pairwise distinct representations with respect to each other, and the same holds also for vertices in the bottom row. The only thing left to show is that two vertices, one in the left column and the other in the bottom row, cannot have the same multiset representations.

To that end, suppose to the contrary that (i, 1) and (1, j) have the same multiset representation for some i, j ∈ {2, . . . , n -1}. Since j -1 appears twice in the multiset representation of (1, j), we must have i -

1 = n -i -2 or i -2 = n -i -2. Since n is odd, we have i -1 = n -i -2 and i -1 = n-3 2 . Now, m((i, 1)|S n ) = {{ n-3 2 , n-3 2 , n-3 2 -1, n -1}}. This implies that j -1 = n-3 2 , but now m((1, j)|S n ) = {{ n-3 2 , n-3 2 , n-3 2 , n -1}} ̸ = m((i, 1)
|S n ), a contradiction. Thus, all vertices of F have pairwise distinct multiset representations with respect to S n .

As a consequence, we obtain that S n is a multiset resolving set as claimed, and so, dim ms (P n ⊠ P n ) ≤ 4 in this case. Case 2: n ≥ 8 is even. Assume that the set S n-1 = {(1, 1), (2, 1), (n -1, 1), (1, n -1)} is a multiset resolving set of P n-1 ⊠ P n-1 . If n = 8, then by the Case 1 we know that S 7 is a multiset resolving set of P 7 ⊠ P 7 , which shows the base case. We will show that the set S n = {(2, 2), (2, 3), (n, 2), (2, n)} is a multiset resolving set of P n ⊠ P n . We now denote F = {(x, y) ∈ V (P n ⊠ P n ) | x = 1 or y = 1} and I = V (P n ⊠ P n ) \ F (see Figure 4(b)). The vertices in I clearly have pairwise distinct multiset representations as m(v|S n ) = m(v|S n-1 ) for all v ∈ I, and S n-1 is a multiset resolving set of P n-1 ⊠ P n-1 . Also, all the vertices in F have n -1 in their multiset representations with respect to S n , whereas vertices in I do not. Thus, the multiset representation of a vertex in F is always distinct from that of a vertex of I.

We will show next that the multiset representations of vertices of F are pairwise distinct. To that end, we first consider the vertices that are adjacent to some element of S n . Their multiset representations are the following:

m((1, 1)|S n ) = {{1, 2, n -1, n -1}}, m((1, n)|S n ) = {{1, n -2, n -2, n -1}}, m((1, 2)|S n ) = {{1, 2, n -2, n -1}}, m((1, n -1)|S n ) = {{1, n -3, n -3, n -1}}, m((1, 3)|S n ) = {{1, 2, n -3, n -1}}, m((n, 1)|S n ) = {{1, n -3, n -2, n -1}}, m((4, 1)|S n ) = {{1, 2, n -4, n -1}}, m((n -1, 1)|S n ) = {{1, n -4, n -3, n -1}}, m((2, 1)|S n ) = {{1, 1, n -2, n -1}}, m((3, 1)|S n ) = {{1, 1, n -3, n -1}}.
Since n ≥ 8, we have n -4 ̸ = 2 and all these multiset representations are pairwise distinct. Moreover, since these vertices are the only vertices in F that have the distance 1 in their multiset representations, these multiset representations are distinct from the multiset representation of other vertices in F as well. Let us then consider the rest of the vertices in F . The vertices (i, 1) where i ∈ {5, . . . , n -2} have multiset representations of the form {{i -2, i -3, n -i -2, n -1}}, and these representations are pairwise distinct. Similarly, the vertices (1, j) where j ∈ {4, . . . , n -2} have multiset representations of the form {{j -2, j -2, n -j -2, n -1}}, and these representations are clearly pairwise distinct. Suppose then that (i, 1) and (1, j) have the same multiset representation for some i ∈ {5, . . . , n -2} and j ∈ {4, . . . , n -2}. As in the proof for odd n, the distance j -2 appears twice in the multiset representation of (1, j). This implies that i

-2 = n -i -2 or i -3 = n -i -2.
As n is even, we have i -2 = n -i -2, and thus i -

2 = n-4 2 . Now, m((i, 1)|S n ) = {{ n-4 2 , n-4 2 , n-4 2 -1, n -1}}. This implies that j -2 = n-4 2 . However, now m((1, j)|S n ) = {{ n-4 2 , n-4 2 , n-4 2 , n -1}} ̸ = m((i, 1)|S n ), a contradiction.
Thus, all vertices in F have pairwise distinct multiset representations with respect to S n .

Therefore, we again conclude that S n is a multiset resolving set in this situation, and so, dim ms (P n ⊠ P n ) ≤ 4 follows as well, which completes the proof.

Strong products involving a complete graph

Several graphs with infinite multiset dimension (or equivalently that are not ID-graphs) are already known from the seminal works [START_REF] Chartrand | Distance vertex identification in graphs[END_REF][START_REF] Simanjuntak | The multiset dimension of graphs[END_REF], in their corresponding terminologies. For instance, it is known from these mentioned works that for a given graph G of diameter two, dim ms (G ⊠ K n ) < ∞ if and only G is P 3 . From this result we can identify a lot of interesting and non-trivial families of graphs like for instance the join of two non-complete graphs, the Cartesian or direct product of two complete graphs, and the Kneser graph K(n, 2), among others, having infinite multiset dimension.

We next describe some other graphs with diameter larger than two that have infinite multiset dimension. Specifically, we consider the case of strong product graphs G ⊠ H when H is a complete graph. We first need the following definition from [START_REF] Klavzar | Further contributions on the outer multiset dimension of graphs[END_REF]. A graph G is called a multiset distance irregular graph if for any two vertices x, y ∈ V (G) it follows that m(x|V (G)) ̸ = m(y|V (G)). A example of a multiset distance irregular graph is for instance a tree obtained from a star S n with leaves v 0 , . . . v n-1 (n ≥ 3) and center x, by subdividing i times the edge xv i for every i ∈ {0 . . . , n -1}.

Theorem 7. Let G be a graph and let n ≥ 2 be an integer. We have dim ms (G ⊠ K n ) < ∞ if and only if n = 2 and G is a multiset distance irregular graph.

Proof. Notice that the n vertices of each copy of K n are twins, that is, they have the same closed neighborhood. Hence, if S is a multiset resolving set of G ⊠ K n , then at least n -1 vertices from each copy of K n must be in S. If n ≥ 3, then from each copy of K n there are at least two vertices in S. But then, these two vertices have the same multiset representation, which is not possible. Consequently, we deduce that G ⊠ K n does not have multiset resolving sets when n ≥ 3 and so, dim ms (G ⊠ K n ) = ∞ in this case.

Assume next that n = 2. By the same reasons as above, at least one vertex from each copy of K 2 must be in S. Thus dim ms (G ⊠ K 2 ) ≥ |V (G)|. Now, assume G is multiset distance irregular, and consider a set X of vertices containing one whole copy of G. Since the multisets representations of any two vertices x, y ∈ V (G) satisfy that m(x|V (G)) ̸ = m(y|V (G)), we deduce that X is a multiset resolving set, and so dim ms (G ⊠ K n ) ≤ |V (G)|, which gives the equality dim ms (G ⊠ K n ) = |V (G)| < ∞.

Assume now that dim ms (G ⊠ K n ) < ∞. Clearly, n = 2, for otherwise we get a contradiction. Also, we readily see that every multiset resolving set has nonempty intersection with every copy of K 2 in G ⊠ K 2 and that dim ms (G ⊠ K 2 ) ≥ |V (G)|. Let X ′ be a multiset basis of G ⊠ K 2 . If X ′ contains both vertices of one copy of K 2 , then these two vertices have the same multiset representation as they are twins. Thus, X ′ contains exactly one vertex from each copy of K 2 . If G is not multiset distance irregular, then there are two vertices x, y ∈ V (G) such that m(x|V (G)) = m(y|V (G)). Now, the vertices in the copies of K 2 corresponding to x and y that are not in X ′ have the same multiset representation, a contradiction. Therefore, G is multiset distance irregular, and the proof is completed. 

Concluding remarks

This work firstly shows that two metric parameters represent the same in graph theory, that is, multiset dimension and ID-colorings are the same. We have also considered some computational and combinatorial problems on this parameter. As a consequence of the study a number of possible future research lines have been detected. We next remark a few that could be of interest from our humble opinion.

We have proved that finding the multiset dimension of graphs is in general NP-hard. However, not much is known on special classes of graphs. Does finding such parameters remain NP-hard even when restricted to trees, chordal graphs or planar graphs?

The multiset dimension of the king grid has been bounded above by 4. Is it true that dim ms (P n ⊠ P n ) = 4 for any n ≥ 7? In addition, this result gives a first step into considering the multiset dimension of the strong product graphs in general. Moreover, the study of such parameter in some other related graph products is worthwhile as well.

We have related the multiset dimension of graphs with multiset distance irregular graphs. Does such graphs play a significant role in some investigations on the multiset dimension of general graphs or at least in some product related structures?

The notion of identification spectrum of an ID-graph G was introduced in [START_REF] Chartrand | Distance vertex identification in graphs[END_REF], which can be understood as the set of positive integers r for which there is a multiset resolving set of cardinality r. In this sense, since we have proved that dim ms (P n ⊠ P n ) ≤ 4 (equivalently P n ⊠ P n is an ID-graph) for any n ≥ 7, we wonder which is the identification spectrum of P n ⊠ P n . Characterize all the graphs G for which dim(G) = dim ms (G).

Theorem 1 .

 1 Let G be a graph of diameter d. Then S ⊂ V (G) is an ID-coloring for G if and only if S is a multiset resolving set for G.Proof. The result follows directly from the following fact. Let S ⊂ V (G) and let x ∈ V (G). Consider the multiset representation m G (x|S) = {{d G (x, w 1 ), . . . , d G (x, w t )}}. From m G (x|S) we construct the vector ⃗ d(x|S) = (a 1 , a 2 , . . . , a d ) as follows. Each a i equals the number of elements in m G (x|S) with value i for any i ∈ {1, . . . , d}. On the contrary, if we have the vector ⃗ d(x|S) = (a 1 , a 2 , . . . , a d ), then the multiset representation m G (x|S) can be obtained in the following way. First, if d i=1 a i = |S| -1, then x ∈ S and we need to add the value zero (0) to m G (x|S). Otherwise, if d i=1 a i = |S|, then x / ∈ S, and the value zero (0) does not belong to m G (x|S). Now, in both cases, for every a i ∈ ⃗ d(x|S) such that a i ̸ = 0, we add to m G (x|S) a i elements equal to i.
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 22 (a) The variable gadget for x i . (b) The clause gadget for C j .

Figure 1 :

 1 Figure 1: The variables and clause gadgets used in the reduction.

  y}}, where when a 1 i ∈ S * , we have y = 1 for b 1 i and y = 3 for b 2 i , and when b 1 i ∈ S * , we have y = 0 for b i 1 and y = 2 for b 2 i .

Figure 2 :

 2 Figure 2: The graph P 6 ⊠ P 6 with the sets D 2 (2, 2) and D 2 (3, 3), respectively illustrated in black. The vertices (2, 2) and (3, 3) appear in red color.

Figure 3 :

 3 Figure 3: The graphs P 5 ⊠ P 5 and P 6 ⊠ P 6 with the sets S and S ′ , respectively illustrated in black. The four digits below each vertex are the distances in the multiset representation sorted in ascending order.

8 Figure 4 :

 84 Figure 4: Vertices within the dashed line are the vertices in I, and the vertices outside the dashed line are the vertices in F . The black vertices are the elements of the set S n .

Corollary 8 .

 8 For any multiset distance irregular graph G, dim ms (G ⊠ K 2 ) = |V (G)|.
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