Joint Graph and Vertex Importance Learning - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2023

Joint Graph and Vertex Importance Learning

Résumé

In this paper, we explore the topic of graph learning from the perspective of the Irregularity-Aware Graph Fourier Transform, with the goal of learning the graph signal space inner product to better model data. We propose a novel method to learn a graph with smaller edge weight upper bounds compared to combinatorial Laplacian approaches. Experimentally, our approach yields much sparser graphs compared to a combinatorial Laplacian approach, with a more interpretable model.
Fichier principal
Vignette du fichier
eusipco2023.pdf (201.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04025968 , version 1 (13-03-2023)
hal-04025968 , version 2 (08-06-2023)

Licence

Identifiants

  • HAL Id : hal-04025968 , version 1

Citer

Benjamin Girault, Eduardo Pavez, Antonio Ortega. Joint Graph and Vertex Importance Learning. 2023. ⟨hal-04025968v1⟩
130 Consultations
124 Téléchargements

Partager

More