Joint Graph and Vertex Importance Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Joint Graph and Vertex Importance Learning

Résumé

In this paper, we explore the topic of graph learning from the perspective of the Irregularity-Aware Graph Fourier Transform, with the goal of learning the graph signal space inner product to better model data. We propose a novel method to learn a graph with smaller edge weight upper bounds compared to combinatorial Laplacian approaches. Experimentally, our approach yields much sparser graphs compared to a combinatorial Laplacian approach, with a more interpretable model.
Fichier principal
Vignette du fichier
eusipco2023 (1).pdf (552.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-04025968 , version 1 (13-03-2023)
hal-04025968 , version 2 (08-06-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Benjamin Girault, Eduardo Pavez, Antonio Ortega. Joint Graph and Vertex Importance Learning. 2023 31st European Signal Processing Conference (EUSIPCO), Sep 2023, Helsinki, Finland. pp.1858-1862, ⟨10.23919/EUSIPCO58844.2023.10290030⟩. ⟨hal-04025968v2⟩

Relations

130 Consultations
124 Téléchargements

Altmetric

Partager

More