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ABSTRACT

In this paper, we explore the topic of graph learning from the per-
spective of the Irregularity-Aware Graph Fourier Transform, with
the goal of learning the graph signal space inner product to bet-
ter model data. We propose a novel method to learn a graph
with smaller edge weight upper bounds compared to combinato-
rial Laplacian approaches. Experimentally, our approach yields
much sparser graphs compared to a combinatorial Laplacian ap-
proach, with a more interpretable model.

Index Terms — Graph signal processing, graph learning,
graph signal Hilbert space

1. INTRODUCTION

The field of graph signal processing proposes a toolbox to ana-
lyze, process and transform data supported by arbitrary discrete
structures [1, 2]. Examples include measurements collected
by sensor networks, activities in a human neuronal network,
or image processing [1]. However, for some applications, we
have access such data, but the graph structure is either missing,
noisy, or incomplete. In this case, it is important to learn a graph
that provides a model that can be leveraged by the graph signal
processing toolbox to process or analyze the data. To that end,
graph learning is typically formulated as an optimization prob-
lem, where the goal is to obtain an algebraic representation of
the graph that best captures the variability of the data. Popu-
lar objective functions are built on graph signal smoothness or
stationarity [3, 4].

Following [5], graph learning can be formulated as an in-
verse covariance estimation problem with graph Laplacian con-
straints. In this context, the most common type of Laplacian
is the Combinatorial Graph Laplacian (CGL). The CGL variation
∆(x) = x∗Lx = 1

2

∑
ij wij|xi − xj|

2 exhibits the desir-
able property of constant signals having zero variation, since
only variations along edges are used [1]. In addition, the Graph
Fourier Transform (GFT) decomposes a signal on an orthonormal
basis that minimizes this variation [6]. Learning a CGL leads then
to a consistent spectral interpretation given by the graph Power
Spectrum Density (gPSD) [7]. Ultimately, learning a CGL and hav-
ing access to such a gPSD allows for specific filter designs such as
Wiener filters [8] or ARMA filters [9]. To account for the difficulty
associated with singular CGL matrices in inverse covariance esti-

mation, the objective function is oftentimes modified [5, 10–13].
However, such an approach produces dense graphs, even if vari-
ables are weakly correlated (see Sec. 4 and [12]) because the mod-
ified objective function encourages well connected graphs [10].
This issue can be solved by incorporating non-convex sparse
regularization [12, 14] at the expense of a more complex graph
learning algorithm.

This strict CGL approach can be relaxed by allowing for the
estimated inverse covariance to be a CGL plus a diagonal ma-
trix [5]. The resulting matrices are the Generalized Graph Lapla-
cian (GGL) and the Diagonally Dominant Graph Laplacian (DDGL).
Many graph learning algorithms for GGL matrices have been
proposed [5, 15–17], which have been shown not to produce the
spurious connections that often arise in CGL approaches [18].
However, the graph variation loses its classical interpretations:
due to the additional term weighting each vertex magnitude
and summing over all vertices, constant signal exhibit non-zero
variations.

In this work we propose a new formulation that allows us
to learn CGLs without spurious connections while preserving in-
terpretability, in contrast with the relaxed Laplacians above for
the DDGL case. Our approach to the inverse covariance problem
uses our recently introduced generalization of the Graph Fourier
Transform (GFT) to arbitrary Hilbert spaces of graph signals: the
Irregularity Aware Graph Fourier Transform [6]. In this generaliza-
tion, the space of graph signals is equipped with an inner product
other than the standard dot product, thus adapting the notion
of orthogonality and norm of these graph signals to the applica-
tion. This additional parameter to the GFT shows great promise
in areas such as vertex sampling [19], image [20] or point cloud
processing [21], and filter design [22]. In the context of graph
learning, we propose to jointly learn a CGL and an inner product,
which corresponds to a diagonal matrix whose diagonal terms
reflect the relative importances of the vertices [6].

Our contributions are threefold: i) we formulate a joint CGL
and inner product learning problem and show that it can be re-
duced to learning a DDGL (Sec. 3.1), allowing for the CGL and the
vertex importance weights to be learned using any DDGL algo-
rithm [5, 17], ii) we propose an efficient and scalable coordinate
minimization algorithm similar to [10] for the CGL that updates
one edge weight or vertex importance per iteration (Sec. 3.2), and
iii) we prove that the proposed CGL and inner product solution
is sparse and obtain a sharp upper bound for the non zero edge



weights (Sec. 3.3).
Our experiments with sampled intrinsic stationary continu-

ous signals highlight the key benefits of our approach, including
spatial consistency and a substantial increase of sparsity com-
pared to learning a CGL (Sec. 4).

2. BACKGROUND

2.1. Graph Signal Processing

A graph G = (V, E , w) is defined by a set of vertices V , a set of
edges E ⊆ V × V and an edge weight function w : E → R+.
We denote byN (resp. M) the number of vertices (resp. edges). In
this paper we are interested in undirected graphs where for any
edge e = (i, j) ∈ E , its opposite (j, i) is also an edge in E with
identical weightw(i, j) = w(j, i).

Algebraic representations of such graphs include the classi-
cal adjacency or weight matrix A such that Aij = w(i, j) if ij ∈
E , 0 otherwise. The degree of a vertex is defined as the sumdi =∑

ij∈E w(i, j) of its incident edges, and these degrees are col-
lected into the diagonal degree matrix D = diag(d1, . . . , dN).
This allows to define the combinatorial Laplacian matrix L =
D − A of the graph.

Using the unweighted incidence matrix B = [b1 · · · bM]
such that for any edge e = (i, j) ∈ E , such that i < j, then
Bi,e = 1 and Bj,e = −1, and B is zero elsewhere, we have
L = BWBT , where W = diag(w1, . . . , wM) is the diagonal
matrix collecting edge weights.

A graph signal x : V → C is a function mapping vertices to
scalar values. We assumed an indexing of the vertices with inte-
gers {1, . . . ,N} (and of the edges with {1, . . . ,M}) to define the
algebraic representations above. A graph signal x is then repre-
sented by a column vector [x1, . . . , xN]T ∈ CN.

2.2. Irregularity Aware Graph Fourier Transform

The Irregularity Aware Graph Fourier Transform is a parametric
generalisation of the orthonormal Graph Fourier Transforms
(GFT) using two parameters [6]: the graph variation opera-
tor ∆ : CN → R+ mapping any graph signal x to its non-
negative variation ∆(x) ≥ 0, and an inner product ⟨., .⟩Q :
CN × CN → R with Hermitian positive definite matrix Q,
such that ⟨x,y⟩Q = y∗Qx. We denote it as the (∆,Q)-GFT.
With∆(x) = x∗Mx and M a Hermitian semi-definite positive
matrix, its graph Fourier modes {ul}l verify Mul = λlQul. The
graph Fourier basis {ul}l is then orthonormal with respect to the
Q-inner product. We collect all the eigenvalues in the diagonal
matrixΛ = diag(λ0, . . . , λN−1), and the graph Fourier modes
in U = [u0 . . . uN−1] (such that U∗QU = I). We obtain
the inverse and forward (∆,Q)-GFT of a graph signal x with
x = F−1x̂ = Ux̂ and x̂ = Fx = U∗Qx.

In this paper, we use the combinatorial Laplacian variation
∆(x) = x∗Lx (M = L), and further assume that the inner
product matrix is diagonal Q = diag(q1, . . . , qN). This ef-
fectively adds vertex importances to the model alongside edge

weights. Non-diagonal inner product matrices Q in the context
of graph learning will be studied in a future communication.

2.3. Graph Wide Sense Stationarity (gWSS)

Our goal is to obtain a stochastic model for the data at hand. To
that end, we use as class of models the framework of Graph Wide
Sense Stationarity (gWSS) we previously introduced and its spec-
tral characterization [7]: A stochastic graph signal is gWSS if and
only if its mean is a DC component and its spectral components
are uncorrelated. We denote by Σ the covariance matrix of the
graph signal,Γ its spectral covariance matrix, andγ its diagonal,
called the graph Power Spectrum Density (gPSD) [7]. In other
words, γl is the variance of the lth spectral component x̂l of the
signal x.

2.4. Graph Learning through Coordinate Minimization

Assume that the graph signals are realizations of a zero-mean
Gaussian gWSS with gPSD γ(0) = 0 and γ(λ) = 1/λ when
λ > 0. Using the (L, I)-GFT, this translates into the covariance
matrixΣ = L†. Under this setting we obtain the maximum like-
lihood estimator proposed by [5] (see Sec. 1), which minimizes
the following cost function:

F(L) = − logdet (L + 1/NJ) + tr (LS) , (1)

where J is the all-one matrix (necessary, since a valid L is always
singular), and S = 1

K

∑
k x(k)x(k)∗

is the empirical covariance
matrix. The coordinate minimization approach of [10] mini-
mizes F iteratively for all edge weights. The optimal update
(fixing all other weights) δe to edge weightwe is:

δe = max(−we, 1/he − 1/re), (2)

with the edge cost he = be
TSbe, and the effective resistance

re = be
T (L + 1/NJ)−1be for an edge e. This graph learn-

ing algorithm updates iteratively all edge weights using (2), and
stops when the update to F after all the edge weight updates is
below a stopping threshold. The optimal graph weights are up-
per bounded bywe ≤ 1/he [10].

3. PROPOSED GRAPH LEARNING APPROACH

3.1. Data Model

We assume that the data we have is i.i.d. multivariate Gaussian.
Our goal is to model the data with a graph given by its combinato-
rial graph Laplacian L and the graph signal inner product matrix
Q = diag(q). To that end, we learn this graph such that the
data is gWSS on the graph, with gPSD γ(λ) = (1 + λ)−1 when
using the (L,Q)-GFT. Such a gPSD allows for a continuous gPSD
around frequency 0 compared to the classicalγ(λ) = 1/λ.

Theorem 1. The covariance matrix of a stochastic graph signal
with gPSDγ(λ) = (1+ λ)−1 using the (L,Q)-GFT is:

Σ = [Q + L]
−1 . (3)



Proof. We first observe that the spectral covariance matrix veri-
fies Γ = [I + Λ]−1. Using the (L,Q)-GFT, we obtain Σ =
E[xx∗] = F−1ΓFQ−1 = [I + Q−1L]−1Q−1 = [Q + L]−1.
Given that Q is Hermitian positive definite and L is Hermitian
positive semi-definite, then Q + L is definite, hence invertible
andΣ is well-defined.

Using maximum likelihood, combining the Gaussian as-
sumption and Thm. 1 leads to the following convex [5] cost func-
tion to minimize:

F(L,Q) = − logdet(Q + L) + tr((Q + L)S), (4)

with S the empirical covariance matrix of the data. Interestingly,
the matrix Q + L in (4) also corresponds to the Diagonally Domi-
nant Graph Laplacian proposed in [5], but with strict dominance of
the diagonal. However, our spectral interpretation to this model
using the (L,Q)-GFT is different.

Note also that the cost function (4) is actually a generaliza-
tion of [23] for any positive definite matrix Q instead of only
scaled versions of the identity matrix 1

σ2 I. The additional ℓ1
penalty term of [23] and the difference between Q and 1

σ2 I will
be studied in a future communication.

3.2. Proposed Coordinate Minimization Approach

We propose to solve the following graph learning problem:

min
w≥0,q>0

F
(

B diag(w)BT ,diag(q)
)

. (5)

Note that the non-negativity of w and positivity of q are enough
to ensure that L is Hermitian semi-definite positive and Q is
Hermitian definite positive, such that the (L,Q)-GFT is well-
defined. However, for our implementation, we need to introduce
a hyperparameter qmin and change the positivity constraint to
∀i, qi ≥ qmin. This is justified below, in the update formula for
qi.

Coordinate minimization iterates through all edges and ver-
tices and updates these weights according to Thm. 2.

Theorem 2 (Coordinate Minimization Update). (5) is solved by, at
iteration t, updating eitherwe orqi using:

δ(t)e = max(9w(t)
e , 1

he
9 1

r
(t)
e

)

δ
(t)
i = max(qmin 9 q

(t)
i , 1

pi
9 1

u
(t)

i

)

with edge cost he = be
TSbe, effective resistance r(t)e =

be
T (Q(t) + L(t))−1be, vertex cost pi = Sii, vertex effective

importanceu(t)
i =

[
(Q(t) + L(t))−1

]
ii

, andqmin > 0.

Proof. Notice first how the trace term in (4) can be decomposed
as a sum tr(LS)+ tr(QS). Any update towe (resp. qi) will only
modify the first (resp. second) trace in this sum.

The derivation for edge weight update δe is identical to [10]
by changing 1

N
J to Q in the effective resistance re definition.

For the update δi to vertex importanceqi, we solve:

∆F = − log
(
1+ δi

[
(Q + L)−1

]
ii

)
+ δiSii,

where the first term is derived from the log-determinant varia-
tion and the second from the trace variation. Let pi = Sii, and
ui =

[
(L + Q)−1

]
ii

. Using the Lagrangian of the problem
minimizing the variation of F requires weak inequalities for the
constraints. Therefore, we relaxqi > 0 intoqi ≥ qmin for some
qmin > 0. The KKT conditions lead to:

−ui

1+ δiui
+pi−λi = 0, λi ≥ 0, q

(t+1) ′

i ≥ 0, λiq
(t+1) ′

i = 0,

with q
(t+1) ′

i = q
(t+1)
i − qmin. These conditions are satisfied

in the proposed update.

ui and re depend on L and Q and need to be updated after
each update. We use the Sherman-Morrison formula to write the
update toΦ(t) = (Q + L)

−1 [10]:

∆Φ(t) =


δ
(t)
e (Φ(t)be)(Φ(t)be)

T

1+δ
(t)
e beTΦ(t)be

ifwe is updated
δ
(t)

i
[Φ(t)].i[Φ

(t)]T.i

1+δ
(t)

i
[Φ(t)]ii

ifqi is updated.

Using∆Φ(t) = Φ(t+1)−Φ(t), the updates to rf (f ∈ E), and
toqj (j ∈ V) can then be easily obtained through:

∆r
(t)
f = bf

T∆Φ(t)bf ∆u
(t)
j = [∆Φ(t)]jj

which is efficient to implement when Φ(t) = (Q + L)
−1 is

kept in memory and updated after each iteration.
Connectedness Compared to [10], edge weight updates

can disconnect the graph since the matrix Q + L is always non-
singular, whereas L + 1

N
J would become singular. As a conse-

quence, edge weight updates are not restricted, thus allowing to
fully adapt to the data.

Stopping Criterion Coordinate minimization is stopped
whenever the maximum number of epochs (N+M updates) is
reached, or improvement of the cost function F is below a prede-
fined threshold after an epoch.

3.3. Optimal Graph Weight Properties

Similarly to the Generalized Graph Laplacian case of [11], we can
upper bound edge weights, but only between vertices whose im-
portances are larger thanqmin.

Theorem 3. Let ρij = Sij/
√

SiiSjj be the sample correlation
coefficient between vertices i and j. For any non zero graph
weight wij > 0 with qi > qmin and qj > qmin, the optimal
solution of problem (5) verifies:

wij ≤ 1

|Sij|

ρ2ij

1− ρ2ij
(6)

Proof. Similar to [11, Appendix A], but using the additional con-
straintsqmin − [Θ]ii ≤ 0.

In addition, any negative correlation between two vertices
leads to no edge between them, thus allowing us to remove
those edges before performing coordinate minimization:



Theorem 4. The optimal graph satisfies:

E = {(i, j) ∈ V2 : wij > 0} ⊂ {(i, j) : Sij > 0}. (7)

Proof. Using the fact that Θ is a generalized Laplacian (M-
matrix) and the KKT conditions for the strict inequality.

4. EXPERIMENTS

To experimentally validate our method, we use a synthetic
stochastic signal whose statistics are defined by an underlying
Euclidean space. Our goal is to show that our approach can reli-
ably extract meaningful properties of the Euclidean space from
the learnt graph, without relying on where the observations are
made in Euclidean space.

More precisely, we consider intrinsic stationary 2D signals
[24]. In this experiment, we use an isotropic exponential vari-
ogram with no nugget (i.e. no measurement noise), a sill (vari-
ance) of 10 for all data points, and varying values of the range
r:

2γ(d) = 10
(
1− exp(−d/r)

)
,

whered is the Euclidean distance between any two points. To ob-
serve the behavior of our proposed method, we choose 5 values
of range (see Fig. 1). Smaller ranges correspond to signals being
correlated only for a short distance (almost white noise), while
larger ranges being highly correlated throughout the space (al-
most constant signal). A range of 0.1 corresponds to the interest-
ing middle case where there is substantial correlation between
somewhat close locations, but almost no correlation between lo-
cations far away.

We then uniformly sample the 2D space ([0, 1] × [0, 1] Eu-
clidean plane) at N = 50 locations. To study the consistency
of the learnt graph, we generate K = 50 sets of random node
locations. For a given spatial sampling and range r, we obtain
the exact covariance matrix S of the data with Sii = 10 and
Sij = 10 exp(−dij/r),∀i ̸= j. Using Thm. 3, we obtain the
following edge weight upper bound (whenqi > qmin < qj):

wij ≤ 0.1
(
edij/r − e−dij/r

)−1

. (8)

Thm. 4 does not allow to remove any edge before performing co-
ordinate minimization since Sij > 0 for any two vertices i and
j. The corresponding upper bound for [10] is wij ≤ 0.05(1 −
exp(−dij/r))

−1. These bounds are shown on Fig. 2.
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Fig. 1: Variograms being considered for our experiments.

For each of these K samplings, and each of the 5 ranges, we
learn i) a combinatorial Laplacian from the data covariance ma-
trix S using [10], and ii) an inner product matrix and a combi-
natorial Laplacian using our proposed approach. In both cases,
we use the same graph initialization (graph weights between ver-
tices obtained from a Gaussian kernel of the distance between
vertices, withσ chosen as one third of the average distance) and
let the algorithm run until the cost function is not changed by
more than 10−10. Averages for key metrics are shown in Tab. 1.

We first study how vertex importance q changes with range
r. We are interested in two key quantities: how many of the
vertices get the minimum importance qmin? and what is the
average importance of the remaining vertices? We define the
first quantity as u(q) = |{qi : qi = qmin}|/N (u for "unim-
portant"). Tab. 1 shows that all vertices are important for smaller
ranges, and fewer and fewer vertices are important as range in-
creases. Intuitively, for lower ranges, correlation between neigh-
bors fades very quickly, as shown on Fig. 1, therefore, neighbors
are not enough to explain the value of a vertex and all vertices
are important to model the signal. However, for larger ranges,
the value on a given vertex can be accurately inferred from its
neighbors values, due to high correlations: only a small fraction
of vertices are important to accurately model the whole signal.

For the vertices that are important (qi > qmin), we also
observe [25] that importance is higher for smaller ranges, while
decreasing with range. The average importance q̄ = ⟨{qi :
qi > qmin}⟩ in Tab. 1 shows the relation between importance
and range. This follows from the cost function (4) for which,
compared to the cost (1) of [10], Q captures the information
of S not captured by L. For larger ranges, L is a good model
using [10], and vertex importances remain low as they are not
needed, while for smaller ranges, vertex importances are larger
because L is not enough for a good model.

These observations are especially important in the context of
sampling on graphs [19], where the goal is to sample so as to min-
imize the Q-norm of the error. With our proposed approach, the
resulting importances target specific vertices whose values are
important to keep to reconstruct accurately the graph signal.

We expect from the edge weight bounds in Fig. 2 that the
graphs learnt with [10] should be denser when the signal has
lower correlation, which corresponds here to lower ranges. We

0 0.1 0.2 0.3 0.4 0.5 0.6
10−6

10−3

100

vertex distanced

r = 0.01 (proposed) r = 0.01 ( [10])
r = 0.02 (proposed) r = 0.02 ( [10])
r = 0.1 (proposed) r = 0.1 ( [10])
r = 0.2 (proposed) r = 0.2 ( [10])
r = 1 (proposed) r = 1 ( [10])

Fig. 2: Edge weight upper bounds for both [10] and our proposed
approach, and for varying ranges of the variogram.



Table 1: Average key properties of the learnt graph between [10]
and our proposed approach. Bold values are better.

Method r u(q) q̄ ϵ(w) Time

[10]

0.01 0% 299.2s
0.02 3.3e-3% 292.9s

0.1 10.6% 295.9s
0.2 71.0% 177.4s

1 90.5% 40.8s

Proposed

0.01 0% 9.7e-2 51.8% 58.7s
0.02 0% 9.1e-2 66.5% 76.1s

0.1 0.3% 3.2e-2 85.1% 71.2s
0.2 11% 1.5e-2 88.6% 59.8s

1 75% 1.3e-2 90.7% 53.2s

define sparsity as the proportion of edges having 0 weight lead-
ing to: ϵ(w) = ∥w∥0/N(N−1)

2
. This metric confirms that

graphs are sparser with our proposed approach (see Tab. 1).
Our supplementary materials also show that edge weights

are generally much smaller for the smaller ranges of 0.01 and
0.02 [25], by almost 4 orders of magnitude. We also remark
that many of those edge weights violate the upper bound in
Thm. 3, and are thus interpreted as numerical errors in the reso-
lution. Trimming edges based on this could actually lead to even
sparser graphs without sacrificing precision. We will study this
in a future communication.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we proposed a graph learning approach based on
a different graph signal spectral model, and based on learning
jointly vertex importances and edge weights. As shown exper-
imentally with continuous intrinsically stationary signals, such
an approach allows for dramatically sparser graphs in the low
correlation regime, more interpretable weights, and vertex im-
portances highlighting which vertices are enough to model the
signal. Adding the freedom of choosing vertex importances, this
effectively lessens overfitting through a richer, more accurate,
graph signal model space. Future work will include proposing
edge screening similar to [10], regularization, evaluation with
more adverse synthetic data or real data, theoretical guarantees,
and alternative gPSD assumptions.
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7. EXTENDED PROOFS

Proof of Thm. 3. This proof follows the approach of [11, Appendix
A], but using an additional constraint enforcing positive qi. Let
Θ = Q+L be the precision matrix we are estimating, such that
Θii = qi + di and Θij = −wij. After relaxing the constraint
qi > 0, Problem (5) is then equivalent to:

min
Θij≤0,i ̸=j
qmin1−Θ1<0

− logdet(Θ) + tr(ΘS),

where we use the property that [Θ1]i = qi. Its Lagrangian uses
the symmetric Lagrange multipliers λij for the constraints on
Θij and µi for the constraint on the row sums of Θ, leading to
the following KKT conditions:

−Θ−1 + S +Λ+ M = 0 Θ ≽ 0

λijΘij = 0,∀i ̸= j µi (qmin − [Θ1]i) = 0, ∀i
Θij ≤ 0, ∀i ̸= j qmin − [Θ1]i ≤ 0,∀i
λij ≥ 0,∀i ̸= j µi ≥ 0,∀i

where the Lagrange multiplier matrices verify Λii = 0, Λij =
Λji = λij, Mii = −µi, and Mij = −µi − µj. Considering
the subset of vertices S = {i, j}, and using the same technique
as [11], the first condition (gradient is 0) leads to:

ΘS,S ≥ (SS,S +ΛS,S + MS,S)
−1 . (9)

Inverting the 2 × 2 matrix on the r.h.s, and considering an edge
ij such that its optimal weightwij > 0 leads to:

Θij ≥ −(Sij + λij − µi − µj)

(Sii − µi)(Sjj − µj) − (Sij + λij − µi − µj)2

≥ −

[
(Sii − µi)(Sjj − µj)

Sij − µi − µj
− (Sij − µi − µj)

]−1

≥ −

[
SiiSjj

Sij
− Sij

]−1

where the second inequality is obtained using λij = 0 since
wij > 0, and the last using µi = 0 = µj since qi > qmin
andqj > qmin.

Proof of Thm. 4. To prove the result, we prove that for non-zero
edge weight wij > 0 of the optimal graph we have µi + µj <
Sij. The result will then follow by observing that µi ≥ 0 and
µj ≥ 0. Let i, j such thatwij > 0. From the first equation in the
KKT conditions we have that:

0 ≤ (Θ−1)ij = Sij + λij − µi − µj. (10)

The inequality comes because Θ is a generalized Laplacian (M-
matrix). Since λij = 0, then Sij − µi − µj ≥ 0. For the strict
inequality, we further assume that µi + µj = Sij and show a
contradiction. Using (9), we obtain:

Θij ≥ −λij

(Sii − µi)(Sjj − µj) − λ2ij
.

Since λij = 0, then 0 > 9wij = Θij ≥ 0, contradiction.

8. CONVERGENCE

Problem (5) is a convex optimization problem [5], and a number
of standard convex optimization algorithms are guaranteed to
converge to its minimum. Unfortunately, coordinate minimiza-
tion with the cyclic variable selection rule is not guaranteed to
converge [S1]. Problems for which non convergence appears are
however degenerate cases that rarely appear in practice, and
switching to a random variable selection rule when this happens
can solve this issue [S1].

In a future communication, we will further study the impact
of edge and vertex selection rules (the variables of the problem),
with respect to both theoretical guarantees and computational
efficiency.
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