P-SV wave propagation in heterogeneous media: Velocity-stress distributional finite-difference method - Archive ouverte HAL
Article Dans Une Revue Geophysics Année : 2023

P-SV wave propagation in heterogeneous media: Velocity-stress distributional finite-difference method

Résumé

We present a two-dimensional distributional-finite-difference algorithm for modeling the propagation of seismic waves in heterogeneous media in the time domain. We revisit the classic staggered finite-difference algorithm by substituting the standard finite-difference operators with the recently introduced distributional-finite-difference operators with methodological differences we underline. We show that the distributional-finite-difference operators improve simulation accuracy while maintaining the simple structure of the finite-difference algorithm. Thanks to its weak formalism, the newly proposed algorithm accurately and naturally accounts for the free surface, which is a substantial improvement for finite-difference approaches. Moreover, we propose an efficient factorization for the distributional-finite-difference operators. It limits the computational cost of the proposed algorithm to twice that of the finite-difference algorithm. Numerical examples demonstrate that the extra computational burden is well compensated by the superior accuracy of the distributional-finite-difference operators.
Fichier principal
Vignette du fichier
Masson_Virieux_2023.pdf (3.29 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04024503 , version 1 (13-03-2023)

Identifiants

Citer

Yder J. Masson, Jean Virieux. P-SV wave propagation in heterogeneous media: Velocity-stress distributional finite-difference method. Geophysics, 2023, pp.1-92. ⟨10.1190/geo2022-0118.1⟩. ⟨hal-04024503⟩
430 Consultations
238 Téléchargements

Altmetric

Partager

More