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Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, LFCR, UMR5150,

64000 Pau, France. Email: yder masson@berkeley.edu
†
Inria, Centre de recherche Bordeaux Sud-Ouest, Magique 3D, 33405 Talence,

Aquitaine, France.
‡
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ABSTRACT

We present a two-dimensional distributional-finite-di↵erence algorithm for model-
ing the propagation of seismic waves in heterogeneous media in the time domain.
We revisit the classic staggered finite-di↵erence algorithm by substituting the
standard finite-di↵erence operators with the recently introduced distributional-
finite-di↵erence operators with methodological di↵erences we underline. We show
that the distributional-finite-di↵erence operators improve simulation accuracy
while maintaining the simple structure of the finite-di↵erence algorithm. Thanks
to its weak formalism, the newly proposed algorithm accurately and naturally ac-
counts for the free surface, which is a substantial improvement for finite-di↵erence
approaches. Moreover, we propose an e�cient factorization for the distributional-
finite-di↵erence operators. It limits the computational cost of the proposed al-
gorithm to twice that of the finite-di↵erence algorithm. Numerical examples
demonstrate that the extra computational burden is well compensated by the
superior accuracy of the distributional-finite-di↵erence operators.

INTRODUCTION

Numerical simulations of seismic wave propagation are quite challenging when con-
sidering the two speeds of propagation associated with compressive and shear particle
motions. In heterogeneous media, the conversions between these two types of waves
make it di�cult to model the seismic data using asymptotic methods, such as ray the-
ory, because the number of ray paths rapidly becomes considerable in heterogeneous
media. To overcome this di�culty, di↵erent volumetric approaches, such as the spec-
tral, pseudo-spectral, finite-di↵erence, and finite-element modeling techniques, have
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been proposed. A review of these popular modeling methods is carried out in Virieux
et al. (2011). Recently, Masson (2022) proposed a distributional finite-di↵erence
method, denoted by the DFD keyword thereafter. The DFD approach lies some-
where between the pseudo-spectral/finite-di↵erence methods and the finite/spectral-
element methods and combines some desirable features of the former methods in a
relatively simple manner. Similarly to the finite-di↵erence approach, DFD is e�cient
because it relies on compactly supported operations. The CPU time scales linearly
with the problem dimension, and heterogeneity can be incorporated by weighting the
finite-di↵erence coe�cients. Similarly to the finite/spectral-element methods, DFD
decomposes the space into multiple elements (with arbitrary sizes), and a volumetric
mesh may be employed to better describe the model whenever needed. In DFD, how-
ever, the numerical wavefield is discontinuous between neighboring elements; Both the
displacement and the stress can be explicitly defined at the surface of the elements.
It is not necessary to invert a global mass matrix to proceed with time integration.
Boundary conditions are accurately verified with an integration-by-parts procedure.
The algorithmic structure of DFD is similar to that of the finite-di↵erence method,
and the di↵erent field variables may be represented in di↵erent spaces or grids. Thus,
special care must be taken to eliminate spurious(non-physical) parasitic modes (see,
e.g., New et al., 1998), for example, the odd-even decoupling observed when using
centered finite-di↵erence operators. In Masson (2022) a MacCormack type of scheme
is proposed to address this issue (see e.g., Zhang and Chen, 2006). In this study, we
consider an alternative approach where the bases representing the wavefield are anal-
ogous to the staggered grid in which the variables are not defined at the same position
(as opposed to the collocated grid). Such staggered discretization has found success
in electromagnetism (Yee, 1966), in seismic source modeling (Madariaga, 1976) and in
seismic wave propagation (Virieux, 1986) following finite-di↵erence techniques. Our
objective in this work is an illustration of the 2D P-SV wave propagation, which has
been the well-established framework for highlighting the di↵erent characteristics of
various proposed numerical schemes. The extension to 3D geometry follows the same
strategy, which is based on the staggered distribution of unknowns to be computed
for honoring the partial di↵erential equations as done with the DFD approach.

The first-order elastodynamic system of equations has retained less attention for
continuous finite-element methods. The second-order wave equation has been con-
sidered more attractive because of the reduction of unknowns by removing stress
components, making the two approaches the often-used method in seismology (Ko-
matitsch et al., 2000a,b; Tromp et al., 2008). A comparison of such approaches is
given in Moczo et al. (2001). As far as we know, the staggered discretization using
continuous finite-element formalism has been investigated solely by Bécache et al.
(2001) with the so-called mixed-finite-element method which discretizes velocity and
stress with specific basis functions for stress.

The new method we propose preserves the intrinsic staggered property of the
block-anti-diagonal first-order system using staggered basis functions for discretiza-
tion. The specific choice of the shape functions makes the DFD approach very similar
to finite-di↵erence techniques: we shall use B-splines in this work and refer the reader
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to the presentation of Masson (2022) for other alternative functions. The boundary
conditions are treated with the usual integration-by-parts procedure. Finally, let us
underline that the strict staggered discrete design allows employing a parsimonious
formulation by removing the stress unknowns at the discrete level as done for finite-
di↵erence techniques (Luo and Schuster, 1990). This will not be considered in this
work devoted to a practical illustration of the method and not to its high-performance
features.

Before detailing the content of our manuscript, let us underline the principal as-
pects in which our approach di↵ers from the general method introduced in Masson
(2022). The first aspect is the choice of the basis functions employed for representing
the field variables. Masson (2022) represents the displacements in a first basis (with
the basis function skewed to the left) and the stresses in a second basis (with basis
functions skewed to the right). In this study, we represent the field variables in dif-
ferent bases and organize the basis functions according to the staggered grid. The
staggered approach permits the computation of the partial derivatives by applying
1D operators in a single spatial direction. The method in Masson (2022) requires
applying the 1D operators in the two spatial directions. The second aspect in which
the two approaches di↵er is the time scheme. Masson (2022) employs a centered
second-order time integration scheme with a displacement formulation. In this study,
we employ a first-order leap-frog scheme. Finally, the two studies account for material
heterogeneity in di↵erent manners. Masson (2022), includes material heterogeneity
using a mass lumping technique, where a diagonal mass matrix approximates the
exact mass matrix. In the present study, we construct a virtual grid from the ba-
sis functions, and we employ standard techniques developed in FDM to discretize
material heterogeneity at the grid points.

In the first section, we describe the similarity between previous finite-di↵erence
approaches by Virieux (1986) and Levander (1988) and the new distributional-finite-
di↵erence formulation of Masson (2022). This will highlight the very specific design of
the shape functions for describing each component of the elastodynamic equations in
the new formulation. In the second section, we review the numerical structure of the
so-called mass and sti↵ness matrices occurring in weak formulations, and we point out
the related finite-di↵erence numerical similarity. In the third section, we introduce
the source injection as it is done nowadays in finite-di↵erence approaches. We then
describe the averaging procedure for representing the variations of the material prop-
erties in the fourth section. The fifth section is dedicated to simple examples with a
quantitative comparison of this new DFD approach to standard FD approaches. We
start by analyzing the numerical error and computational e�ciency and then pro-
ceed with more illustrative examples before the conclusion of this novel systematic
application of the staggered property at the discretization level.
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ELASTODYNAMIC EQUATIONS

In this section, we revisit the classic finite-di↵erence (FD) algorithm for solving the 2D
elastodynamic set of equations in a Cartesian coordinate system, i.e., as introduced in
Virieux (1986) and later extended in Levander (1988). We propose substituting the
standard finite-di↵erence operators with the distributional-finite-di↵erence (DFD) op-
erators introduced in Masson (2022). This substitution preserves the global structure
of the former FD algorithm while taking advantage of the superior accuracy of the
DFD operators, in particular when accounting for free-surface boundary conditions.

Algorithmic overview

The general algorithm discussed in this section relies on the first-order elastodynamic
system of equations

⇢@tvx = @x�xx + @y�xy + fx (1a)

⇢@tvy = @x�xy + @y�yy + fy (1b)

@t�xx = (�+ 2µ)@xvx + �@yvy (1c)

@t�yy = �@xvx + (�+ 2µ)@yvy (1d)

@t�xy = µ(@xvy + @yvx) (1e)

where

vi is the velocity component in direction i,

�ij are the stresses,

⇢ is the density,

�, µ are the Lamé parameters,

@t is the partial derivative with respect to time,

@i is the partial derivative with respect to spatial direction i.

Let us underline the anti-symmetry of such a di↵erential system which is the back-
bone of the staggered strategy. In the FD method, the equation 1 is transformed into
a discrete linear system as follows. First, by discretizing the velocity, the stresses,
and the material properties on staggered grids, as illustrated in Figure 1a. Second,
by replacing the partial derivatives with finite-di↵erence operators. For time dis-
cretization, a leapfrog scheme is employed. In the proposed algorithm, we replace the
spatial partial derivatives with DFD operators, and we represent the field variables
using specific orthonormal basis functions. To outline the similarities between the
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FD and the DFD algorithms, we write the discrete version of the equation 1 using
the general form:

1

�t

h
Vx(t+�t)�Vx(t)

i
=

⇢�1
21 �

h
D2

x · Sxx + Sxy · (D1
y)
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i
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�t

2
) (2a)
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�t

h
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i
=

⇢�1
12 �

h
D1
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y)

T + fy
i
(t+

�t

2
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�t
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)

�
=
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�
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2
)

�
=
h
�11 � (D1
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(t) (2d)

1
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
Sxy(t+

�t

2
)� Sxy(t�

�t

2
)

�
=

µ22 �
h
D2

x ·Vy +Vx · (D2
y)

T
i
(t) (2e)

where

Vi(t) are 2D arrays containing the values or expansion coe�cients representing the
velocity vi(t), Vx(t) has dimensions (Nx � 1) ⇥ Ny and Vy(t) has dimensions
Nx ⇥ (Ny � 1),

Sij(t) are 2D arrays containing the values or expansion coe�cients representing the
stresses �ij(t), Sxx and Syy have dimensions Nx ⇥ Ny, and Sxy has dimensions
(Nx � 1)⇥ (Ny � 1),

fi(t) are 2D arrays containing the values or expansion coe�cients representing the
source or external force field, fx has dimensions (Nx � 1) ⇥ Ny and fy has
dimensions Nx ⇥ (Ny � 1),

�t is the time step,
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Dk
✓ are di↵erential matrices approximating the first-order derivative, the superscript
k denotes the basis or grid in which the computed derivative is represented and
the subscript ✓ denotes the spatial direction in which the derivative is taken,
D1

x has dimensions Nx ⇥ (Nx � 1), D2
x has dimensions (Nx � 1) ⇥ Nx, D1

y has
dimensions Ny ⇥ (Ny � 1) and D2

y has dimensions (Ny � 1)⇥Ny,

⇢�1
kl contain coe�cients associated with the inverse of the density, the subscript kl

denotes the basis or grid to which the property is associated, ⇢�1
21 has dimensions

(Nx � 1)⇥Ny and ⇢�1
12 has dimensions Nx ⇥ (Ny � 1),

�kl contain coe�cients associated with the Lamé parameter �, the subscript kl
denotes the basis or grid to which the property is associated, �11 has dimension
Nx ⇥Ny,

µkl contain coe�cients associated with the shear modulus, the subscript kl denotes
the basis or grid to which the property is associated, µ, µ22 has dimension
(Nx � 1)⇥ (Ny � 1),

Mkl contain coe�cients associated with the elastic modulus M = � + 2µ, the sub-
script kl denotes the basis or grid to which the property is associated, M11 has
dimension Nx ⇥Ny,

· denotes a standard matrix product,

� denotes the element-wise or the Hadamard product.

In the expression above, the indices (i,j) of the arrays correspond to (row, column)
and are associated with directions (x,y).

Let us now detail the structure of the operators Dk
✓ (k = 1, 2 ; ✓ = x, y) em-

ployed in the Virieux and Levander FD algorithms and, for the newly proposed DFD
algorithm. In the di↵erent numerical illustrations for the three approaches, the same
standard leapfrog time integration of the equation 2 is used.

The Virieux algorithm (2nd-order accuracy in space)

In the Virieux algorithm, the elastic field variables and the material properties are
discretized on staggered cubic lattices, as illustrated in Figure 1a. More precisely, in
equation 2, the 2D arrays

Vx(t)
def
=

⇥
Vx(t)

⇤
ij

= vx(x
2
i , y

1
j , t) (3a)

Vy(t)
def
=

⇥
Vy(t)

⇤
ij

= vy(x
1
i , y

2
j , t) (3b)

Sxx(t)
def
=

⇥
Sxx(t)

⇤
ij
= �xx(x

1
i , y

1
j , t) (3c)

Syy(t)
def
=

⇥
Syy(t)

⇤
ij
= �yy(x

1
i , y

1
j , t) (3d)

Sxy(t)
def
=

⇥
Sxy(t)

⇤
ij
= �xy(x

2
i , y

2
j , t) (3e)
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(a) (b)

Figure 1: (a) shows the position of the wavefield components on the finite-di↵erence
grid as introduced in Virieux (1986). (b) shows the 2D staggered sets of B-spline basis
functions employed for constructing the orthonormal bases representing the wavefield
variables. The B11

ij (x, y) in black are used to construct B̂11
ij (x, y) representing the

normal stresses. The B22
ij (x, y) in red are used to construct B̂22

ij (x, y) representing

the shear stress. B21
ij (x, y) in green are used to construct B̂21

ij (x, y) representing the

horizontal velocity. B12
ij (x, y) in blue are used to construct B̂12

ij (x, y) representing the
vertical velocity. The red and black curves on the sides of the domain represent the 1D
sets of staggered B-spline basis functions B1

xi
, B2

xi
, B1

yj , B
2
yj employed for constructing

the 2D basis functions Bkl
ij (x, y).
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contain the values of field variables evaluated at specific grid points

x1
i = i�x for i = 1, Nx (4a)

x2
i = (i+ 1/2)�x for i = 1, Nx � 1 (4b)

y1j = j�y for j = 1, Ny (4c)

y2j = (j + 1/2)�y for j = 1, Ny � 1. (4d)

Leaving aside the proper treatment of the boundary conditions, the finite-di↵erence
operators D1

✓ and D2
✓ (✓ = x, y) with dimensions (N✓, N✓ � 1) and (N✓ � 1, N✓), re-

spectively, are second-order accurate and have the following band-diagonal structure.

D2
✓ =

�������
D2

✓

�������
=

2

6664

�1 +1 0 0

0

0
0 0 �1 +1

3

7775
(5a)

D1
✓ = �(D2

✓)
T (5b)

The boundary conditions must be implemented independently, i.e., without modifying
equation 2. For example, by defining artificial boundaries within the computational
domain and assigning specific values enforcing the boundary conditions to the field
variables outside these boundaries. In this work, we implement the free surface using
the image method for Virieux and Levander algorithms (Levander, 1988; Graves,
1996). We refer the reader to Kristek et al. (2002) for alternative approaches. For
the DFD algorithm, the boundary conditions are naturally inserted into the discrete
operators.

The Levander algorithm (4th-order accuracy in space)

The Levander algorithm has the same geometrical structure as the Virieux algorithm,
except that the finite-di↵erence operators Dk

✓ (k = 1, 2 ; ✓ = x, y) are now fourth-
order accurate leading to following expressions

D2
✓ =

�������
D2

✓

�������
=

2

6666666664

�c1 +c1 �c2 0 0
+c2
0

0
�c2

0 0 +c2 �c1 +c1

3

7777777775

(6a)
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D1
✓ = (D2

✓)
T (6b)

where c1 = 9/8 and c2 = 1/24 (notice that the coe�cients are truncated to the sides).

The distributional-finite-di↵erence algorithm

In the distributional-finite-di↵erence algorithm, a similar strategy is taken, and field
variables at a given time are expanded in specific orthonormal bases as the following
linear combinations

vx(x, y, t) =
Nx�1X

i=1

NyX

j=1

vxij(t)B̂
21
ij (x, y)

=
Nx�1X

i=1

NyX

j=1

vxij(t)B̂
2
xi
(x)B̂1

yj(y) (7a)

vy(x, y, t) =
NxX

i=1

Ny�1X

j=1

vyij(t)B̂
12
ij (x, y)

=
NxX

i=1

Ny�1X

j=1

vyij(t)B̂
1
xi
(x)B̂2

yj(y) (7b)

�xx(x, y, t) =
NxX

i=1

NyX

j=1

sxxij(t)B̂
11
ij (x, y)

=
NxX

i=1

NyX

j=1

sxxij(t)B̂
1
xi
(x)B̂1

yj(y) (7c)

�yy(x, y, t) =
NxX

i=1

NyX

j=1

syyij(t)B̂
11
ij (x, y)

=
NxX

i=1

NyX

j=1

syyij(t)B̂
1
xi
(x)B̂1

yj(y) (7d)

�xy(x, y, t) =
Nx�1X

i=1

Ny�1X

j=1

sxyij(t)B̂
22
ij (x, y)

=
Nx�1X

i=1

Ny�1X

j=1

sxyij(t)B̂
2
xi
(x)B̂2

yj(y) (7e)

where the two-dimensional basis functions B̂kl
ij (x, y) = B̂k

xi
(x)B̂l

yj(y) are composed of

a tensorial product of one-dimensional functions B̂k
xi
(x) and B̂l

yj(y) representing the
field variables in directions x and y, respectively. The 2D orthonormal basis functions
B̂kl

ij (x, y) are linear combinations of the 2D B-spline basis functions Bkl
ij (x, y) pictured
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in Figure 1b that are shifted similarly to the finite-di↵erence grids. In this study, we
construct the 1D orthonormal basis functions B̂k

xi
(x) and B̂l

yj(y) from the staggered
sets of B-spline basis functions

B1
xi
(x) = �p

i (x) (i = 1, Nx)
B2

xi
(x) = �p�1

i (x) (i = 1, Nx � 1)
B1

yj(x) = �p
j (y) (j = 1, Ny)

B2
yj(y) = �p�1

j (y) (j = 1, Ny � 1)

(8)

where the B-spline basis functions �p
i (x) with polynomial order p and evenly spaced

knot vector are described in appendix A and pictured in Figure A-1.

Consequently, in equation 2, the 2D arrays contain the expansion coe�cients in
the expressions above at the discrete level

Vx(t)
def
=

⇥
Vx(t)

⇤
ij

= vxij(t) (9a)

Vy(t)
def
=

⇥
Vy(t)

⇤
ij

= vyij(t) (9b)

Sxx(t)
def
=

⇥
Sxx(t)

⇤
ij
= sxxij(t) (9c)

Syy(t)
def
=

⇥
Syy(t)

⇤
ij
= syyij(t) (9d)

Sxy(t)
def
=

⇥
Sxy(t)

⇤
ij
= sxyij(t). (9e)

In the next section, the DFD operators D1
✓ and D2

✓ (✓ = x, y) are constructed
using an approach analogous to taking the weak form of the wave equation.

NUMERICAL MASS AND STIFFNESS MATRICES, AND
DISCRETE DFD OPERATORS

We proceed with a 1D derivation because the 2D DFD operators can be constructed
from the 1D DFD operators using a tensor product (Masson, 2022). The DFD oper-
ators shall approximate in a shifted basis the derivative of a function represented in
a given basis.

Because the velocities and the stresses in Equation 7 are represented in di↵erent
bases, the objective is to obtain discrete operators that act on a function represented
in a first basis B1 and return its derivative in a second basis B2, and vice-versa.
Let us underline that such alternate strategy is implicitly attached to the staggered-
grid structure of centered-finite di↵erence operators (based on Lagrange polynomials):
in a discrete world, a function cannot be evaluated at the same place as its derivative.
This feature should be preserved when considering other bases. This is why the
four bases we consider in a 2D geometry are spatially shifted similarly to the finite-
di↵erence grids. Let us see now how we approximate in a shifted basis the derivative of
a function expanded in another basis. The way we proceed di↵ers from the so-called
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strong-symmetry strategy of Bécache et al. (2001) limited to meshes with squares
whose edges are parallel to the coordinate axis.

We start with two functions f(✓) and g(✓) that can be identified as the velocity
and the stress wavefields, for example. Both f(✓) and g(✓) are defined in a given
interval [✓1, ✓2] which corresponds to the computational domain. In what follows, the
parameter ✓ denotes the direction in which the derivative is taken, we have ✓ = x
or ✓ = y. Similarly, [✓1, ✓2] = [x1, x2] and [✓1, ✓2] = [y1, y2] are the bounds of the
computational domain in directions x and y, respectively. The functions f(✓) and
g(✓) are known. The functions f(✓) are represented in the basis B1

✓ and the functions
g(✓) are represented in the basis B2

✓ , we have:

f(✓) =
N✓X

j=1

f1jB
1
✓j(✓) (10a)

g(✓) =
N✓�1X

j=1

g2jB
2
✓j(✓) (10b)

where B1
✓j
(✓) and B2

✓j
(✓) are the basis functions. The expansions coe�cients f1j and

g2j are known and stored in vectors f1 and g2, respectively.

To obtain the derivatives of the functions f(✓) and g(✓), one could proceed as
usual and compute their exact derivatives f 0(✓) and g0(✓) using expressions

f 0(✓) =
N✓X

j=1

f1j(B
1
✓j)

0(✓) (11a)

g0(✓) =
N✓�1X

j=1

g2j(B
2
✓j)

0(✓) (11b)

where (B1
✓j
)0 and (B2

✓j
)0 are the derivatives of the basis functions B1

✓j
and B2

✓j
. The

problem here is that the derivatives f 0(✓) and g0(✓) are not represented in the desired
bases but as combinations the basis functions’ derivatives (B1

✓j
)0 and (B2

✓j
)0. What we

want is a representation of f 0(✓) in the other basis B2 and similarly a representation
of g0(✓) in the basis B1. In general, such representations are approximations because
the bases B1 and B2 define di↵erent spaces. Therefore, we need to find two optimal
approximations f̃ 0(✓) and g̃0(✓) of f 0(✓) and g0(✓) represented in the bases B2 and B1

i.e., we want to find the approximations

f̃ 0(✓) =
N✓�1X

j=1

f 02jB
2
✓j(✓) (12a)

g̃0(✓) =
N✓X

j=1

g0
1jB

1
✓j(✓) (12b)
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where the expansions coe�cients f 02j and g0
1j are unknown and stored in vector f 02 and

g0
1, respectively. We adopt a dual approach to obtain the expansion coe�cients f 02j

and g0
1j that shall give the best approximations of f 0(✓) and g0(✓). The representations

f 02 and g0
1 are derived jointly the equalities (a) and (b) in equations 10-15 and 18-20.

It shows the important symmetry between the operator D1 going from basis B2 to
basis B1 and its twin operator D2 going from basis B1 to basis B2.

To determine the representations f 02 and g0
1, we adopt a variational approach called

the least-squares-residuals method. We start with the desired result or target equal-
ities

f̃ 0(✓) = f 0(✓) (13a)

g̃0(✓) = g0(✓). (13b)

By multiplying the first equality with a test function �i, the second equality with a
test function  i, by integrating over the 1D domain [✓1, ✓2], and using integration by
parts, we obtain

Z ✓2

✓1

�if̃
0d✓ =

Z ✓2

✓1

�if
0d✓ = �

Z ✓2

✓1

�0
ifd✓ + [�if ]

✓2
✓1

(14a)

Z ✓2

✓1

 ig̃
0d✓ =

Z ✓2

✓1

 ig
0d✓ = �

Z ✓2

✓1

 0
igd✓ + [ ig]

✓2
✓1

(14b)

By substituting f 0, g0, f̃ 0 and g̃0 with their expressions in equations 11 and 12 and, by
choosing test functions as �i = B2

✓i
and  i = B1

✓i
, we obtain the linear systems

M✓2f
0
2 = K✓21 f1 = �

h
(K✓12)

T �B✓21

i
f1 (15a)

M✓1g
0
1 = K✓12 g2 = �

h
(K✓21)

T �B✓12

i
g2. (15b)

In the expressions above, the matrix

M✓k
def
= (M✓k)ij =

Z ✓2

✓1

Bk
✓i(✓)B

k
✓j(✓)d✓

⇢
✓ = x, y
k = 1, 2

(16)

is usually called the mass matrix, and the matrix

K✓kl
def
= (K✓kl)ij

=

Z ✓2

✓1

Bk
✓i(✓)(B

l
✓j)

0(✓)d✓

= �
Z ✓2

✓1

(Bk
✓i(✓))

0Bl
✓j(✓)d✓ +

h
Bk

✓i(✓)B
l
✓j(✓)

i✓2
✓1

def
= �(K✓lk)

T +B✓kl (17)

for ✓ = x, y and (k, l) = (1, 2), (2, 1) is usually called the sti↵ness matrix. The matrix
B✓kl accounts for the boundary conditions. With the bases considered in this study,
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the elements of B✓kl are all zero except the first one (B✓kl)11 = �1 and the last
one (B✓kl)mn = 1. The relations in equations 15 routinely appear in finite/spectral
element analysis. However, in the present case, let us notice that the sti↵ness matrices
are constructed using two di↵erent sets of basis functions (and, consequently, two
di↵erent sets of test functions). In other words, such a weak formulation alternates
minimization between two least-squares-residuals expressions.

In principle, one could stop here and solve the linear system in Equations 15 to
obtain the representations f 02 and g0

1. However, to ensure the numerical reciprocity and
the stability of the numerical scheme, we want to obtain adjoint pairs of operators.
This means that the operatorD1 = D going from basis B2 to basis B1 is the transpose
of its twin operator D2 = DT going from basis B1 to basis B2 (once the boundary
conditions have been applied). Such operators are obtained using adequate basis
transformations. We follow the approach introduced in Masson (2022). We take the
Cholesky factorizations of the mass matrices

M✓2 = L✓2L
T
✓2 (18a)

M✓1 = L✓1L
T
✓1 (18b)

and using the changes of variable

f̂ 02 = LT
✓2f

0
2 f̂1 = LT

✓1f1 (19a)

ĝ0
1 = LT

✓1g
0
1 ĝ2 = LT

✓2g2 (19b)

the two linear systems displayed in equations 15 become

f̂ 02 = D2
✓ f̂1 (20a)

ĝ0
1 = D1

✓ ĝ2 (20b)

where the vectors f̂1 and ĝ2 now contain the expansion coe�cients representing f(✓)
and g(✓) in some new orthonormal bases B̂1

✓ and B̂2
✓ , respectively. Similarly, the

vectors f̂ 02 and ĝ0
1 contain the expansion coe�cients representing the approximate

derivatives f̃ 0(✓) and g̃0(✓) in the orthonormal bases B̂2
✓ and B̂1

✓ , respectively. The
new basis functions are linear combinations of the original ones. We have

B̂k
✓i(✓) =

Nk
✓X

j=1

�
L�1

✓k

�
ij
Bk

✓j(✓)

⇢
✓ = x, y
k = 1, 2

(21)

and they are orthonormal in the sense that

M̂✓k
def
= (M̂✓k)ij =

Z ✓2

✓1

B̂k
✓i(✓)B̂

k
✓j(✓)d✓ = �ij

def
= I (22)

where �ij is the Kronecker Delta. Notice that the orthogonalization of the basis
functions naturally occurs during the derivation of the adjoint operators, and the
bases we start with do not need to be orthogonal. Notice that, in general, one could
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use any factorization of the form M = AAT for the mass matrices; the Cholesky
factorization has been selected for its simplicity and e�ciency. Finally, the adjoint
DFD operators in Equation 20 are

D1
✓ = L�1

✓1
K✓12(L

�1
✓2
)T = �(D2

✓)
T + L�1

✓1
B✓12(L

�1
✓2
)T (23a)

D2
✓ = L�1

✓2
K✓21(L

�1
✓1
)T = �(D1

✓)
T + L�1

✓2
B✓21(L

�1
✓1
)T , (23b)

where one can see the important symmetry between directions 1 and 2. When setting
the last right-hand-side terms of the equation 23 equal to zero, we observe that the
inverse of the transpose of the DFD operators also give the expansion coe�cients of
the approximate derivative f̃ 0(✓) and g̃0(✓) but subject to the boundary conditions
f(✓1) = 0 and f(✓2) = 0 and g(✓1) = 0 and g(✓2) = 0, respectively. Therefore,
the boundary condition at the surface computational domain Equation 2 can be
implemented as follow:

• To obtain a free surface, the last right-hand-side terms of the equation 23 must
be taken equal to zero in the operators in Equations 2a, 2b and 35, e.g. as done
in the finite/spectral element method

• To obtain a fixed surface, the last right-hand-side terms of the equation 23 must
be taken equal to zero in the operators in Equations 2c, 2d and 2e.

In these cases, because the DFD operators are adjoint, the wave equation remains
self-adjoint when substituting the partial derivative with the discrete operators. Such
a very important feature at the discretization level ensures the numerical reciprocity
and stability of the proposed algorithm.

Practical implementation of the discrete operators

As opposed to the FD operators in equations 5 and 6, the DFD operators are full
matrices. However, they depend on band diagonal matrices only, and their products
with a vector can be computed e�ciently with the following matrix structures:

����� D1
✓

����� =

����� L✓1

�����

�1 ����� K✓12

�����

���� LT
✓2

����
�1

(24a)

���� D2
✓

���� =
���� L✓2

����
�1 ���� K✓21

����

����� LT
✓1

�����

�1

(24b)

where

• L✓1 is an N✓⇥N✓ lower triangular matrix with bandwidth p+1 computed from
equations 16 and 18.
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• L✓2 is an (N✓�1)⇥(N✓�1) lower triangular matrix with bandwidth p computed
from equations 16 and 18.

• K✓12 is computed from the equation , it is an N✓ ⇥ (N✓ � 1) band diagonal
matrix with p � 1 and p non zero diagonals above and below its upper left
corner, respectively. Its total bandwidth is 2p� 1.

• K✓21 is computed from the equation , it is an (N✓ � 1) ⇥ N✓ band diagonal
matrix with p and p � 1 non zero diagonals above and below its upper left
corner, respectively. Its total bandwidth is 2p� 1.

As an example, the evaluation of the product y = D1
✓ x takes the following steps

• Solve LT
✓2a = x using a backward substitution algorithm

• Compute b = K✓12a

• Solve L✓1y = b using a forward substitution algorithm.

The total computational cost of these operations is roughly equivalent to that of
applying a finite-di↵erence matrix with bandwidth 4p + 1. As a consequence, for
a given approximation/polynomial order, the computational cost of the algorithm
in the equation 2 is about four times larger with the DFD operators than with the
FD operators. In the next section, we propose a more e�cient factorization that
further reduces the computational cost of the DFD operators to twice that of the FD
operators. We shall see that the superior accuracy of the DFD operators compensates
for the additional computational burden. For a given problem dimension, to achieve
a given accuracy, DFD is faster than FD.

A more e�cient factorization of the DFD operators

We now show that the DFD operators can be factorized more e�ciently, thanks
to the particular choice of basis functions in equations 8. We take advantage of
the fact that the derivative of a function represented in the B-spline basis B1 =
�p with polynomial order p, N✓1 = N✓ basis functions and knot vector k1 = k =
[k1, . . . , kN+p+1] can be straightforwardly computed and represented in the B-spline
basis B2 = �p�1 with polynomial order p � 1, N✓2 = N✓ � 1 basis functions and
knot vector k2 = [k2, . . . , kN+p]. By applying the variable changes g0 = (LT

✓2)
�1f̂

0
2

and g = (LT
✓1)

�1f̂1 in the equation A-8, from Equation 20 we identify an alternative
expression for D2

✓, we have

f̂ 02 = LT
✓2Q(LT

✓1)
�1 f̂1 = D2

✓ f̂1, (25)
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and an expression for the operator D1
✓ is obtained using the equation 23a. The DFD

operators now take the form

����� D1
✓

����� =

����� L✓1

�����

�1
2

4
����� QT

✓

�����

���� L✓2

����+ A

q1

q2

3

5 (26a)

���� D2
✓

���� =
���� LT

✓2

����

���� Q✓

����

����� LT
✓1

�����

�1

(26b)

where

• Q✓ is the (N✓ � 1)⇥N✓ banded matrix with bandwidth 2 in the equation A-9.

• The vectors q1 and q2 are the first and last rows of the matrix A = B✓12(L
�1
✓2
)T

or the first and last columns of the matrix L�1
✓2
.

The bandwidth of the matrix Q✓ is constant and independent of the polynomial order
p of the basis functions. Thus, the factorization above is more e�cient than that in
the equation 24. To apply the operators D1

✓ and D2
✓, one proceeds as follows:

- The product y = D1
✓ x is computed with the following steps:

• Compute a = L✓2x

• Compute b = QT
✓ a

• Update the first and last element of b using

b1 ( b1 + qT
1 · x

bN ( bN + qT
2 · x

• Solve L✓1y = b using a forward substitution algorithm.

- The product y = D2
✓ x is computed with the following steps:

• Solve LT
✓1a = x using a backward substitution algorithm

• Compute b = Q✓ a

• Compute y = LT
✓2b .

- The product y = (D1
✓)

T x is computed with the following steps:

• Solve LT
✓1a = x using a backward substitution algorithm

• Compute b = Q✓a
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• Compute y = LT
✓2b

• Update the result vector y using:

y ( y + a1q1 + aNq2

.

- The product y = (D2
✓)

T x is computed with the following steps:

• Compute a = L✓2x

• Compute b = QT
✓ a

• Solve L✓1y = b using a forward substitution algorithm.

The total computational cost for applying D1
✓, (D

1
✓)

T and D2
✓, (D

2
✓)

T is about
equivalent to that of applying finite-di↵erence matrices with bandwidth 2p + 5 and
2p+3, respectively. Thus, when p is large, the algorithm in equations 2 is only twice
as expensive with the DFD operators than with the FD operators. The expressions
in Equations 24 and 26 are equivalent. The form in Equation 26 that is faster and
specific to the B-spline basses is employed in all the numerical examples. However,
the proposed algorithm could be implemented using other basis functions. In this
case, Equation 24 should be used.

AVERAGING OF THE MATERIAL PARAMETERS

For handling heterogeneous models, Masson (2022) has proposed the inclusion of
e↵ective properties in Equation 2 by lumping a weighted version of the identity mass
matrix in Equation 22. In this study, we adopt a di↵erent approach so that the same
procedure can be used to represent heterogeneity in the DFD and the FD algorithms.
The idea is to define a virtual staggered grid for DFD where each basis function is
associated with a unique grid point. This permits to construct the arrays ⇢�1, �, µ
and M in Equation 2 by evaluating the material properties at the grid points.

We define the virtual DFD grid coordinates from the 1D basis in the equation 8
through the following expressions:

xk
i =

R
Lx

B̂k
xi
x dx

R
Lx

B̂k
xi
dx

ylj =

R
Ly

B̂l
yj y dy

R
Ly

B̂l
yj dy

. (27)

The coordinates (xk
i , y

l
j) define the virtual DFD grids similarly to the FD grid coor-

dinate in the equation 4. They can be employed to assign the values to the material
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parameters arrays, for example, using:

⇢�1
kl

def
=

⇥
⇢�1
kl

⇤
i,j

= ⇢(xk
i , y

l
j) (28a)

�kl
def
=

⇥
�kl

⇤
i,j

= �(xk
i , y

l
j) (28b)

µkl
def
=

⇥
µkl

⇤
i,j

= µ(xk
i , y

l
j) (28c)

Mkl
def
=

⇥
Mkl

⇤
i,j

= �(xk
i , y

l
j) + 2µ(xk

i , y
l
j). (28d)

In the situation where the medium has heterogeneity at scales smaller than the
grid spacing, one can take one further step and average the material properties within
the grid cells to obtain e↵ective material parameters. Here, we follow the simple
approach by Moczo et al. (2014). The average material properties are computed
using the volumetric averages

⇢�1
kl

def
=

⇥
⇢�1
kl

⇤
i,j

=
1

Si,j

Z bi

ai

Z bj

aj

⇢ dx dy (29a)

Kkl
def
=

⇥
Kkl

⇤
i,j

=
1

Si,j

"Z bi

ai

Z bj

aj

1

K
dx dy

#�1

(29b)

where (K, K) = (�,�), (M,�+ 2µ), (µ, µ), the grid cells boundaries are

ai =
xk
i + xk

i�1

2
bi =

xk
i + xk

i+1

2
(30a)

aj =
ylj + ylj�1

2
bj =

ylj + ylj+1

2
(30b)

and the cell surfaces and

Si,j = (bi � ai)(bj � aj). (31)

In the numerical examples, Equation 29 is used to compute the material parameters
in both the FD and the DFD algorithms. We shall show that this simple strategy
leads to quite accurate simulations.

POINT SOURCE REPRESENTATION

In the numerical examples, we represent the seismic source using the moment tensor
point source

f(x, t) = �r · [ M �(x� xs)] s(t) (32)

where s(t) is the source time function, M (t) is the moment tensor, � is the delta
function and x is the source position vector. A point force vector source f may also
be accounted for using

f(x, t) = f �(x� xs) s(t) (33)
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Practically, we account for the delta function using the 2D array

�kl
s

def
=

�
�kl
s

�
ij
=

ZZ
�kl
ij (x)�(x� xs) dx dy = �kl

ij (xs) (34)

where �kl
ij (xs) are the values of the basis function representing the wavefield at the

source position. In the DFD algorithm we use �kl
ij (xs) = B̂kl

ij (xs) and in the FD
algorithm we construct �kl

ij (xs) following the approach from Hicks (2002). In the
numerical examples, the 2D source arrays in the equation 2 are computed by applying
the di↵erential operators. We have:

f tx =
h
Mxx

⇣
D2

x · �11
s

⌘
+Mxy

⇣
�22
s · (D1

y)
T
⌘i

· s(t) (35a)

f ty =
h
Myx

⇣
D1

x · �22
s

⌘
+Myy

⇣
�11
s · (D2

y)
T
⌘i

· s(t). (35b)

In the case of a point force vector source, one should use

f tx = fx · �21
s · s(t) (36a)

f ty = fy · �12
s · s(t). (36b)

In the examples, the source time function employed is the Ricker wavelet

s(t) =
�
1� 2⇡2f 2

0 t
2
�
e�⇡2f2

0 t
2

(37)

where f0 is the peak frequency.

EXAMPLES

Numerical accuracy and computational e�ciency

In this section, we assess the accuracy of the DFD operators in Equation 23 by
modeling the natural modes of a string with fixed ends. Such a setup allows for
simple analytical removal of the time dispersion error. In general, the time dispersion
error can be removed using pre- and post-processing of the numerical solution (see,
e.g., Wang and Xu, 2015; Koene et al., 2018). This is of interest in DFD modeling
because the error associated with spatial discretization is much smaller than that
associated with time discretization. In the future, it would be interesting to develop
an optimal time integration scheme where the spatial and temporal errors cancel out
(see, e.g., Geller and Takeuchi, 1998). We present the estimated numerical error and
the CPU time needed to complete modes simulations, and we discuss the spatial
operators’ convergence rate for FD and DFD.

The theoretical displacement corresponding to the nth vibrational mode of a string
with fixed ends has the form

un(x, t) = sin(
n⇡

L
x) cos(

n⇡c

L
t) (38)
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where L is the length of the string, c is the wave speed, and un(x, t) is the solution
of the 1D wave equation

@2u

@t2
= c2

@2u

@x2
(39)

subject to boundary conditions

u(x = 0, t) = 0 (40a)

u(x = L, t) = 0 (40b)

and initial values

u(x, t = 0) = un(x, t) (41a)

u̇(x, t = 0) = u̇n(x, t) = 0. (41b)

Equation 38 represents a standing wave with frequency fn = nc
2L and wavelength

� = 2L
n . The displacement corresponding to the first 3 normal modes of vibrations

(n = 1, 2, 3.) at time t = 0 is pictured in Figure 2c.

To model the vibrational modes numerically, we employ the one-dimensional ver-
sion of the algorithm in Equation 2. We have:

1

�t

h
V(t+�t)�V(t)

i
= (ce↵)

2
h
D2 · S(t+ �t

2
)
i

(42a)

1

�t


S(t+

�t

2
)� S(t� �t

2
)

�
= D1 ·V(t) (42b)

where the vectors V and S represent the velocity and the stress along the string and
ce↵ is an e↵ective wave speed employed to remove the time dispersion (see e.g., Wang
and Xu, 2015; Koene et al., 2018). We have

ce↵ =
c

✓
✓ =

sin
�
!�t
2

�

1
2!�t

! = 2⇡fn =
⇡nc

L
. (43)

For a given mode of vibration n, the e↵ective velocity ce↵ ensures that the frequency
of the mode modeled numerically is the same as that of the theoretical solution in
Equation 38.

For the FD simulations, the operators D1 and D2 are constructed from the finite
di↵erence coe�cients. The cases p =2 and 4 correspond to the matrices in Equations 5
and 6. For DFD, the operators are computed from Equation 23.

To impose the initial values according to Equation 41, we initialize the values
of the vectors V and S at times t = 0 and t = ��t

2 , respectively. For FD, we set
V(t = 0) = 0 and the values of the stress in vector S(t = ��t

2 ) are obtained by
evaluating the spatial derivative of theoretical solution in Equation 38 at the grid
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points. For DFD, we set V(t = 0) = 0 and the coe�cients in the vector S(t = ��t
2 )

representing the stress in basis B̂1 are estimated using a least square fit of the spatial
derivative of the theoretical solution in Equation 38.

To enforce the boundary conditions according to Equation 40, we proceed as fol-
lows. For FD, the values in vector V(t) associated with grid points xi outside the
domain ⌦ = [0, L] are assigned by taking the first-order finite-di↵erence derivative of
the analytical solution, we have u̇n(xi, tj) ⇡ u̇FD

n (xi, tj) = [un(xi, tj +
�1
2 )�un(xi, tj �

�1
2 )]/�t (for consistency with the numerical time scheme). The values in vector S(t+
�t
2 ) associated with grid points outside the domain ⌦ = [0, L] are taken as the spatial
derivative of the analytical solution in Equation 38. For DFD, the boundary condi-
tions are imposed by evaluating the boundary term on the right-hand-side of Equa-
tion 23b from the analytical solution in Equation 38, i.e. using

⇥
L�1

✓2
B✓21(L

�1
✓1
)T
⇤
S(t+

�t
2 ) = L�1

✓2
s(t+ �t

2 ) where s(t) = [� @
@xun(0, t), 0, . . . , 0,

@
@xun(L, t)].

Imposing exact initial value and boundary conditions together with the time-
dispersion removal ensures that the numerical error present in the simulations is only
related to the intrinsic accuracy of the operators D1 and D2.

To compare the numerical solution to the analytical solution in Equation 38,
we integrate the velocity field to obtain the displacement. In agreement with the
discrete-time integration, we employ the first-order Euler scheme

u[i, 1] = un(xi, t1 = ��t

2
) (44a)

u[i, j] = u[i, j � 1] +�tv[i, j] (44b)

where u[i, j] contains the displacement evaluated at the grid points (xi, tj) where
ti = (j � 3

2)�t (j = 1, . . . , Nt) and xi = (i � 1)�x (i = 1, . . . , Nx). The initial
displacement u[i, 1] is computed from the analytical solution in Equation 38. The
vector v is obtained by evaluating the velocity V(t) at the grid points (xi, tj). We
estimate the total numerical error in each simulation using the norm

✏ =
||u� uanalytical||

Nx ⇥Nt
(45)

where the solution uanalytical contain the values of the theoretical displacement in
Equations 38 evaluated at the grid points (xi, tj).

In Figure 2, we present results obtained when modeling the first 50 modes of
vibrations using the FD and DFD operators with the order of accuracy p =2, 4,
6, and 8. We ran 400 simulations, one simulation per method (FD/DFD), order of
accuracy (p = 2, 4, 6, 8) and mode (n = 1, . . . , 50). In all simulations, the length of the
string is L = 1 m and the wave speed ce↵ is derived from the theoretical value c = 1
m/s. The duration of the simulations is 1 s (i.e. half the period of the fundamental
mode n = 1), the number of time steps is Nt = 500 and the time step is �t = 2⇥10�3

s. For the FD simulations we used Nx = 50 grid points inside the domain ⌦ = [0, L].
For the DFD simulations we used Nx = 50 basis functions to represent the wavefield
in the domain ⌦ = [0, L].
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In Figure 2a, we represent the error ✏ in Equation 45 as a function of the number
of points per wavelength (Np = Nx/�). For the FD simulations (in red), when a
su�cient number of points per wavelength is employed (Np � 5), the numerical
error decreases accordingly to the theoretical convergence rate of the finite-di↵erence
approximation (dashed lines). For the DFD simulations (in blue), the numerical error
decreases much faster than for FD when a few points per wavelength are employed
(say Np  10). When the number of points per wavelength is large (Np � 10),
the convergence rate of DFD is similar to that of FD. However, the error measured
for DFD is several orders of magnitude smaller than that measured for FD. This
highlights the superior accuracy of DFD, which requires fewer points per wavelength
to reach the same accuracy as FD.

Because the computational cost for applying the operators D1 and D2 in DFD
is about twice that of FD, we verify that this extra computational cost does not
annihilate the gain in accuracy observed for DFD. For a problem with a given physical
size, the computational cost of a simulation is proportional to the number of points
per wavelength for both FD and DFD. Therefore, we define the e↵ective CPU time by
multiplying the number of points per wavelength by the CPU time measured for the
simulation (i.e. measured using Fortran’s intrinsic function cpu time). In Figure 2b
we represent the same data as in Figure 2a, but the numerical error is plotted as
a function of the e↵ective CPU time. We observe that the convergence rates as a
function of the CPU time are similar for FD and DFD (when Np � 10). Because the
CPU cost associated with DFD is larger than that of FD, the superior accuracy of
DFD is less prominent. However, the numerical error associated with DFD is still
about one order of magnitude smaller than that of FD. Therefore, we emphasize that
a significant gain in e�ciency is expected with DFD, particularly for large simulations
in 3D.

Azimuthal dispersion in a homogeneous medium

To investigate the relative accuracy of the numerical algorithms considered, we ran
two sets of four simulations where a P-wave and S-wave propagate in a homogeneous
medium, as illustrated in Figure 3. Both sets of simulations consist of one simulation
using the Virieux algorithm, one simulation using the Levander algorithm, and two
simulations using the DFD algorithm with polynomial orders p = 2 and p = 4 in the
equation 8. In all simulations, the computational domain has dimension 6920 m ⇥
6920 m. The material properties are homogeneous, the P-wave velocity is vp = 3000
m/s, the S-wave velocity is vs = 1730 m/s and the density is⇢ = 2500 kg/m3. The
seismic source is placed at the center of the computational domain, the source time
function is the Ricker wavelet in the equation 37 with peak frequency f0 = 10 Hz
and an estimated maximum frequency fmax ⇡ 2.5f0 = 25 Hz. The moment tensor is
taken as ����

Mxx Mxy

Myx Myy

���� =
����

4 1
�1 4

���� , (46)
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Figure 2: (a) The numerical error ✏ in Equation 45 is plotted as a function of the
number of points per wavelength for the first 50 modes. The dashed lines represent
the theoretical convergence rate. (b) shows the same data set as (a), but the numerical
error is plotted as a function of the e↵ective CPU time (i.e. the product between the
number of points per wavelength and the CPU time measured for the simulation).
The dashed lines show the least-square fit of the data for Np � 10. (c) shows the
initial displacement value in the simulations for the first three modes.
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Figure 3: Comparison of the displacement wavefields obtained when modeling P and
S wave propagation in a homogeneous medium using di↵erent algorithms. The mag-
nitude of the displacement vector is raised to power 1/3 to enhance small amplitudes.
A red cross marks the source location, and the receivers are represented using blue
pluses. (a) shows the wavefield obtained using the Virieux algorithm, (b) shows the
wavefield obtained using the DFD algorithm with p = 2, (c) shows the wavefield
obtained using the Levander algorithm, and (d) shows the wavefield obtained using
the DFD algorithm with p = 4.
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Figure 4: Comparison of the seismograms obtained when modeling wave propagation
in a homogeneous medium using di↵erent algorithms. The recordings correspond to
the lowermost receiver at the same height as the source in Figure 3. The left panels
show the horizontal displacement, and the right panels show the vertical displacement.
The first wave-packet is associated with the P-wave, and the second wave-packet
is associated with the S-wave. The dashed red lines correspond to the computed
seismograms, and the solid black lines correspond to the analytical solution. (a) shows
the seismograms computed using the Virieux algorithm, (b) shows the seismograms
computed using the DFD algorithm with p = 2, (c) shows the seismograms computed
using the Levander algorithm, and (d) shows the seismograms computed using the
DFD algorithm with p = 4.

so that the P-wave and the S-wave have about the same amplitude at the receivers.
To quantify the numerical dispersion as a function of the propagating direction, the
displacement wavefield is recorded at 15 receivers placed at the same distance d ⇡
2129 m from the source. The angle between the source-receiver direction and the
horizontal direction ranges from 0 to ⇡/2.

In the first set of simulations, we employ a small number of points per wavelength
to enhance the numerical dispersion of the di↵erent numerical schemes. At the maxi-
mum frequency fmax ⇡ 2.5f0, there are 5.2 and 3.0 grid points per wavelength for the
P-wave and the S-wave, respectively. Notice that this is well below the recommended
values, which should be around 10 and 5 points per wavelength for the Virieux and the
Levander algorithms with the setup considered. It makes the numerical error larger
for an easier visual comparison, but the FD algorithms should not be used this way in
practical applications. For the FD simulations the grid spacings are �x = �y ⇡ 23
m. In the DFD simulations, the number of basis functions representing the wavefield
is the same as the number of grid points in the FD simulations to achieve an equiv-
alent spatial sampling. We choose the time step �t = 7.7⇥ 10�4 s, small enough to
minimize the error due to time discretization.

The snapshots obtained for the first set of simulations are pictured in Figure 3.
When comparing the two snapshots obtained for the FD simulations in Figure 3ac, we
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Figure 5: Comparison of the error measured when modeling P and S wave propa-
gation in a homogeneous medium using di↵erent algorithms. The error is measured
with respect to the angle between the line passing by the source and the receivers
and the horizontal direction. It is taken as the maximum of the absolute value of
the di↵erence between the computed seismograms uNumerical(t) and the analytical
solution uAnalytical(t). These results correspond to the simulations illustrated in
Figure 3. The left panel shows the results obtained for the simulations employing
3 points per S-wavelength, and the right panel shows the results obtained for the
simulations using 5 points per S-wavelength.
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see that the Levander algorithm produces less numerical dispersion than the Virieux
algorithm. Thus, the Levander algorithm benefits from the higher order of approx-
imation employed for spatial discretization. For the DFD simulation in Figure 3bd,
numerical dispersion decreases drastically. In particular, the DFD simulation with
p = 2 in Figure 3b shows almost no dispersion compared to results obtained for
Virieux and Levander schemes.

In Figure 4, we present the seismograms recorded at the first receiver, which is
located at the height of the source and has the most prominent numerical dispersion
(together with that exactly above the source). We compare numerical seismograms
to analytical solutions obtained using the software gar6more (Diaz and Ezziani, 2010)
based on the Cagniard-De Hoop method (De Hoop, 1970). We observe that all algo-
rithms well model the P-wave except the Virieux algorithm, which shows significant
numerical dispersion. Only the DFD algorithm with p = 4 accurately matches the
analytical solution for the S-wave. The DFD algorithm with p = 2 matches the
analytical solution reasonably well but produces a bit of numerical dispersion. The
seismograms computed with the Virieux and Levander algorithms are highly a↵ected
by numerical dispersion.

As a more systematic error with respect to azimuthal variations, we measure the
maximum di↵erence between computed seismograms and analytical solutions for each
receiver represented by crosses in the upper quarter of the Figure 3 at all times. We
summarize the results in Figure 5. For all algorithms, we observe that the error
is minimum when the waves propagate in the directions 45 degrees away from the
horizontal and the vertical directions (where the error is the highest). The Virieux
algorithm produces the most significant error regardless of the propagation angle,
followed by the Levander, the DFD with p = 2, and the DFD with p = 4. Interestingly
the error decreases significantly faster with the DFD algorithm (i.e., when going from
p = 2 to p = 4) than with the FD algorithm (i.e., when going from the Virieux to the
Levander algorithm). We attribute this observation to the higher convergence rate of
B-spline bases.

In the second set of simulations, we increase the number of points per wavelength
to reduce the numerical dispersion. At the maximum frequency fmax ⇡ 2.5f0, there
are 8.7 and 5.0 grid points per wavelength for the P-wave and the S-wave, respectively.
For the FD simulations the grid spacings are�x = �y ⇡ 13.8 m. As for the first set of
simulations, the DFD simulations have the same dimension as the FD simulation, and
the time step �t = 4.6⇥10�4 s is small enough to limit the dispersion associated with
time discretization. The error measured for the second set of simulations is plotted in
the right panel in Figure 5. We notice a significant reduction in the numerical error
when using five or more points per wavelength. The error reduction is small for the
Virieux algorithm because of the low correlation between the computed seismograms
and analytical solutions. The DFD algorithm with p = 4 has the highest accuracy,
followed by the DFD with p = 2, the Levander, and the Virieux algorithms. It is
interesting to notice that, when using 3 points per minimum wavelength for the DFD
algorithm with p = 2 (i.e., in the left panel), we obtain an error that is about the
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same as that obtained when using 5 points per minimum wavelength for the Levander
algorithm (i.e., in the right panel). Thus, the DFD operators significantly reduce the
number of points per wavelength needed to limit the numerical dispersion. In 3D, this
represents an important gain in computational e�ciency and an interesting reduction
in memory usage.

Surface wave propagation in a homogeneous medium

Virieux

(a)

DFD (p=2)

(b)

Levander

(c)

DFD (p=4)

P-wave

S-wave

Head
wave

Rayleigh wave

(d)

Figure 6: Comparison of the displacement wavefields obtained when modeling surface-
wave propagation in a homogeneous medium using di↵erent algorithms. The visible
seismic phases are labeled in (d). The magnitude of the displacement vector is raised
to power 1/3 to enhance small amplitudes. A red cross marks the source location, and
the receivers are represented using blue pluses. (a) shows the wavefield obtained using
the Virieux algorithm, (b) shows the wavefield obtained using the DFD algorithm with
p = 2, (c) shows the wavefield obtained using the Levander algorithm, and (d) shows
the wavefield obtained using the DFD algorithm with p = 4.

In FD modeling, the proper treatment of surface wave propagation is notoriously
challenging and has been studied extensively, and the following citations (Robertsson,
1996; Mittet, 2002; Kristek et al., 2002; Cao et al., 2018) could be used for collecting
the high number of papers on this topic. In this respect, the DFD algorithm is
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Figure 7: Comparison of the seismograms obtained when modeling surface-wave prop-
agation in a homogeneous medium using di↵erent algorithms. The recordings corre-
spond to the mid-point receiver in the receiver line in Figure 6. The left panels show
the horizontal displacement, and the right panels show the vertical displacement. The
first wave-packet is associated with P-wave, and the second wave-packet is associated
with the Rayleigh wave. The dashed red lines correspond to the computed seismo-
grams, and the solid black lines correspond to the analytical solution. (a) shows the
seismograms computed using the Virieux algorithm, (b) shows the seismograms com-
puted using the DFD algorithm with p = 2, (c) shows the seismograms computed
using the Levander algorithm, and (d) shows the seismograms computed using the
DFD algorithm with p = 4.
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Figure 8: Comparison of the error measured when modeling surface-wave propagation
in a homogeneous medium using di↵erent algorithms. The error is measured as a
function of the distance to the source. It is taken as the maximum of the absolute value
of the di↵erence between the computed seismograms uNumerical(t) and the analytical
solution uAnalytical(t). These results correspond to the simulations illustrated in
Figure 6. The left panel shows the results obtained for the simulations employing
3 points per S-wavelength, and the right panel shows the results obtained for the
simulations using 5 points per S-wavelength.
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desirable because the free surface is accounted for naturally and accurately by the
DFD operators. To illustrate this advantage, following the approach in the previous
section, we ran two series of simulations using the four algorithms considered, as
illustrated in Figure 6.

In all simulations, the computational domain has dimensions 6920 m by 1460 m.
The material properties are homogeneous, the P-wave velocity is vp = 3000 m/s, the
S-wave velocity is vs = 1730 m/s and the density is ⇢ = 2500 kg/m3. The seismic
source is placed at the center of the free surface at a depth of 25 m. We simulate an
explosive source using the moment tensor

����
Mxx Mxy

Myx Myy

���� =
����
1 0
0 1

���� . (47)

The source time function is the Ricker wavelet in the equation 37 with peak frequency
f0 = 10 Hz and an estimated maximum frequency fmax ⇡ 2.5f0 = 25 Hz. The
principal waves propagating through the medium are annotated in Figure 6d. Our
analysis focuses on the Rayleigh wave propagating at the surface of the velocity model.
The displacement wavefield is recorded at nine receivers placed at a depth of 25 m
and distances to the source varying from 384 m to 1922 m. We compare the numerical
seismograms to analytical solutions obtained using the software gar6more (Diaz and
Ezziani, 2010).

In the first set of simulations, we employ 5.2 and 3.0 grid points per wavelength
for the P-wave and the S-wave, respectively. Remember that this is much smaller
than the recommended values, which are 10 and 5 points per wavelength for the
Virieux and the Levander algorithms. For the FD simulations the grid spacings are
�x = �y ⇡ 23 m. The grid dimensions in the DFD simulations are the same
as in the FD simulations. The propagation distance between the source and the
furthest receiver is about 25 times the S-wave characteristic wavelength for which
numerical dispersion should be noticeable. The time step is �t = 7.7⇥ 10�4 s, which
is su�ciently small to neglect the e↵ects of numerical dispersion associated with the
time discretization in our comparisons.

As in the previous examples, the two simulations based on the FD algorithms
exhibit significantly more numerical dispersion than those based on the DFD algo-
rithms, and the Levander scheme appears more accurate than the Virieux scheme.
The Rayleigh wave spreads significantly as it propagates with the FD algorithms but
not with the DFD algorithms.

In Figure 7, we present the seismograms recorded by the receiver located at the
center of the receiver line. All algorithms match the analytical solution for the first
wave packet associated with the P-wave. Only the DFD algorithm with p = 4 ac-
curately matches the analytical solution for the second wave packet associated with
the Rayleigh wave. For the DFD algorithm with p = 2, the fit is still relatively good,
but the surface-wave amplitude is slightly damped. For the FD algorithms, the seis-
mograms are significantly a↵ected by the numerical dispersion, which appears as a
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ringing starting with and extending long after the arrival of the surface wave. This
ringing is especially pronounced for the Virieux algorithm.

In Figure 8, we present variations in the error as a function of the distance to
the source. As expected, the error increases with distance regardless of the algorithm
employed. The growth of the error with distance appears less pronounced with the
DFD algorithms than with the FD algorithm. At long distances, the error measured
for the DFD algorithm with p = 2 is significantly smaller than the error observed for
both FD schemes. The error measured for the DFD algorithm with p = 4 is more
than one order of magnitude smaller than for the other three algorithms. Notice
however that the accuracy of the FD simulation could be improved using a better
algorithm for representing the free surface (see, e.g., Kristek et al., 2002).

In the right panel of Figure 8, we present the error measured in the second set of
simulations, where we increase the number of grid points per minimum wavelength to
minimize the numerical dispersion. At the maximum frequency fmax ⇡ 2.5f0, there
are 8.7 and 5.0 grid points per wavelength for the P-wave and the S-wave, respectively.
For the FD simulations the grid spacings are �x = �y ⇡ 13.8 m. As for the first set
of simulations, the DFD simulations have the same dimension as the FD simulation.
The time step �t = 4.6⇥ 10�4 s is small enough to ignore the dispersion associated
with time discretization. When increasing the minimum of points per wavelength,
we observe that the error reduction is relatively small in the FD case and a lot more
important in the DFD case. This example shows that the higher convergence rate
of the DFD operators based on B-spline bases is preserved at the boundaries of the
computational domain.

Wave propagation near a discontinuity

One attractive feature of FD modeling is that heterogeneity in the material properties
can be simply and e�ciently accounted for. This is not necessarily straightforward in
other numerical methods, such as the finite element method or the spectral element
method. In this section, we investigate the accuracy of the averaging procedure
adapted from Moczo et al. (2014) which permits us to account for heterogeneity in
the DFD modeling in the same way as in the FD modelling. For a quantitative
analysis with analytical solutions, we consider wave propagation in a two-layered
medium with an oblique interface, as illustrated in Figure 9.

For our comparison, we ran two simulations, one using the Levander algorithm
and one using the DFD algorithm with p = 4 to minimize the numerical dispersion.
In both simulations, the computational domain has dimension 6920 m ⇥ 6920 m. The
material properties are homogeneous in the two layers. In the upper layer, the P-wave
velocity is vp = 3000 m/s, the S-wave velocity is vs = 1730 m/s and the density is
⇢ = 2500 kg/m3. In the lower layer, the P-wave velocity is vp = 1500 m/s, the S-wave
velocity is vs = 865 m/s and the density is ⇢ = 2500 kg/m3. The seismic source is
placed at the center of the computational domain. The source time function is the
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Figure 9: Comparison of the displacement wavefields obtained when modeling wave
propagation near an oblique discontinuity. The magnitude of the displacement vector
is raised to power 1/3 to enhance small amplitudes. The principal waves are labeled
in (b). A red cross marks the source location, and the receivers are represented using
blue pluses. (a) shows the wavefield obtained using the Levander algorithm, (b) shows
the wavefield obtained using the DFD algorithm with p = 4.
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Figure 10: Comparison of the seismograms obtained when modeling surface-wave
propagation near a discontinuity. In (a), the recordings correspond to the mid-point
receiver in the upper receiver line in Figure 9). In (b), the recordings correspond to
the mid-point receiver in the lower receiver line in Figure 9).

Ricker wavelet in the equation 37 with peak frequency f0 = 10 Hz and an estimated
maximum frequency fmax ⇡ 2.5f0 = 25 Hz. The moment tensor is taken as
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Mxx Mxy

Myx Myy

���� =
����
1 0
0 1

���� , (48)

to mimic an explosive source. In the upper layer, there are 17.2 and 10 grid points per
wavelength for the P-wave and the S-wave, respectively. In the lower layer, there are
8.7 and 5 grid points per wavelength for the P-wave and the S-wave, respectively. For
the FD simulation the grid spacings are �x = �y ⇡ 6.9 m. In the DFD simulation,
the grid dimensions are the same as in the FD simulations. The time step is �t =
2.3⇥10�4 s. The displacement wavefield is recorded along two lines of receivers apart
from the interface. The angle between the interface and the horizontal direction is
⇡/8. The principal waves generated at the interface are annotated in Figure 9b.

When looking at the snapshots in Figure 9, we observe that the two wavefields
match very well, and there is no visible numerical dispersion.

In Figure 10, we present the seismograms recorded at the two receivers located
at the center of the receiver lines. We compare the numerical seismograms to the
analytical solutions obtained using the software gar6more (Diaz and Ezziani, 2010).
The upper receiver records the direct P-wave, the reflected P-wave, and the reflected
PS-wave. The bottom receiver records the transmitted P-wave and the transmitted
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Figure 11: Comparison of the error measured when modeling wave propagation near
a discontinuity. The error is taken as the maximum of the absolute value of the di↵er-
ence between the computed seismograms uNumerical(t) and the analytical solutions
uAnalytical(t). These results correspond to the simulations illustrated in Figure 9.
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PS-wave. All seismograms show an excellent match with the analytical solution. The
only noticeable di↵erence is in the amplitude of the reflected PS wave, which is slightly
higher for the Levander algorithm.

In Figure 11, we quantify the numerical error observed in the two simulations
along the two receiver lines. Most of the error is attributed to a small-time shift
between the computed seismograms and the analytical solution. Because a su�cient
number of points per minimum wavelength is employed, this time shift is mostly
due to the imperfect representation of the interface by the averaged properties in
Equation 29 (see, e.g., Symes et al., 2009; Symes and Vdovina, 2009). Notice that
the virtual grid points used for the DFD simulation in Equation 27 are di↵erent from
those in Equation 4. Thus the smoothed interface is represented di↵erently in the
DFD and the FD simulations. Despite these slightly di↵erent representations, the
observed error is almost the same in both simulations for the upper receivers. For the
lower receivers, the error in the DFD simulation is much smaller than that of the FD
simulation. Thus, the proposed approach for computing the e↵ective properties in
the DFD algorithm appears to be as accurate as what is done in FD modeling while
considering significant jumps in material properties along the interface.

Let us consider another example of wave propagation in a model that is hetero-
geneous almost everywhere.

Wave propagation in a smooth random medium

In our last example, we consider wave propagation in a smoothly varying heteroge-
neous medium pictured in Figure 12c. We create the velocity distribution from a
random map obtained by filtering a realization of the white noise with dimension
1000 points by 1000 points. A 2-point running average is applied in both directions
(with periodic boundary conditions). It is passed 5000 times in the x direction and
1000 times in the y direction to obtain the random map. Thus, the correlation length
is five times larger in the x direction than in the y direction for such a model.

We compare two simulations because no analytical solution is available. The first
simulation is our reference simulation. It is an FD simulation using the Levander
algorithm and a very fine grid to ensure accuracy. The second simulation is a DFD
simulation with (p=4) and employs a coarse grid to verify the accuracy of the DFD
algorithm.

In the two simulations, the computational domain has dimensions 6920 m by 6920
m. The P-wave velocity is varying between vp = 1500 m/s and vp = 3000 m/s. The
S-wave velocity is varying between vs = 865 m/s and vs = 1730 m/s. The density
⇢ = 2500 kg/m3 is constant as well as the ratio vp/vs. The seismic source is placed
at the center of the domain. The moment tensor is the same as in the equation 46
and generates a P-wave and an S-wave having about the same amplitude at the
receivers. The source time function is the Ricker wavelet in the equation 37 with
peak frequency f0 = 10 Hz and an estimated maximum frequency fmax ⇡ 2.5f0 = 25
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Figure 12: Comparison of the displacement wavefields obtained when modeling wave
propagation in a smooth random medium. The velocity distribution is shown in
(c). (a) shows the wavefield obtained using the Levander algorithm. (b) shows the
wavefield obtained using the DFD algorithm with p= 4. A red cross marks the
source location, and the 50 receivers are represented using blue pluses. (d) shows the
seismograms recorded at the receiver marked with a blue star. It is the receiver where
the measured di↵erence (L2-Norm) between the seismograms in simulations (a) and
(b) is maximum.
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Hz. The wavefield is recorded at 50 receivers placed at the same distance d = 1977
m to the source.

In the FD simulation, the grid spacings are �x = �y ⇡ 4.6 m. The time step
is �t = 1.54 ⇥ 10�4 s. At the maximum frequency fmax = 2.5f0, there is at least
15 grid points per S-wavelength (where vs = 865 m/s). In the DFD simulation the
grid spacings are �x = �y ⇡ 13.8 m. The time step is �t = 4.6 ⇥ 10�4 s. At the
maximum frequency fmax = 2.5f0, 5 grid points per S-wavelength.

When comparing the wavefields in Figure 12a and 12b, we observe a perfect match.
Due to multipathing and focusing e↵ects, the waves propagating in the x direction
are very distorted. The waves propagating in the y direction are less a↵ected and
more coherent. This is a consequence of the anisotropic distribution of velocities.

In Figure 12d, we present seismograms recorded at the receiver for which the
di↵erence between the FD and the DFD simulations is the largest. We observe a re-
markable agreement between the two sets of seismograms despite the smaller number
of points per minimum wavelength employed in the DFD simulation. This confirms
that our averaging strategy to assign the weights associated with the material prop-
erty is accurate and adequate. Practically, with the introduction of the virtual DFD
grid points, one can seamlessly substitute the FD operators with the DFD operators
in the equation 2 and proceed as in FD modeling when accounting for the material
properties.

With these two illustrations of numerical simulations in di↵erent heterogeneous
models; we show that such a simple DFD approach with the averaging procedure
may be considered for practical applications where material heterogeneity must be
accounted for. Notice that our method makes it also possible to easily implement
more accurate approaches (see, e.g., Capdeville et al., 2010; Kristek et al., 2017;
Fichtner and Hanasoge, 2017).

CONCLUSION

We propose an essential update of the classical staggered-grid finite-di↵erence algo-
rithms, the backbone of many geophysical applications. The principal improvement
is the substitution of the classic FD operators with the recently introduced DFD op-
erators. This substitution preserves the geometrical structure of the algorithm at the
discretization level. We show that the DFD operators reduce numerical dispersion and
improve accuracy through numerical examples with quantitative comparisons when
analytical solutions are available. Such an approach with a rather simple numerical
algorithm will permit the development of wave-propagation-modeling software with
enhanced e�ciency and reduced memory usage.

The modified algorithm naturally accounts for the free surface boundary condition
because the DFD operators are obtained through variational calculus. Therefore, we
achieve an accuracy similar to that of the finite/spectral element method, for example,
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when modeling surface wave propagation.

We propose a simple approach to account for heterogeneity in the velocity model,
where the physical properties are directly assigned to virtual grid points associated
with the basis functions. Such averaging approach at the grid level makes possible
the use of standard FD procedures to discretize the material parameters. We verified
the accuracy of the proposed approach.

On their own, the improvements above are important achievements. However, the
structure of an FD algorithm combined with a variational treatment of the boundary
conditions opens other perspectives. It should make it possible to take advantage
of and recycle many algorithms developed in FD modeling, for example, the PML
conditions that are di�cult to adapt to variational methods.

In this work, we considered the DFD algorithm in its simplest form. Nonetheless,
it is possible to account for anisotropic media and curvilinear coordinates and per-
form multi-domain modeling. Further, a unique FD scheme can be used to simulate
wave propagation in solid and fluid domains and at solid/fluid interfaces where the
numerical grid is allowed to be non-conformal. This is the object of a forthcoming
publication
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APPENDIX A

STAGGERED B-SPLINE BASES

The B-spline basis �p with basis functions �p
i (x) (i = 1, N) and polynomial order p

is constructed from the knot vector k with N + p+ 1 elements

ki =

8
<

:

x1 for i = 1, p+ 1
x1 +

i�p�1
N�p (x2 � x1) for i = p+ 2, N

x2 for i = N + 1, N + p+ 1
(A-1)

The knot vector k starts and ends with p+ 1 repeated knots and has equally spaced
internal knots. From the knot vector, we can define the zero-order B-spline basis �0

with basis functions

�0
i (x) =

⇢
1 if ki < x < ki+1

0 otherwise
. (A-2)
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Figure A-1: Illustration of some staggered pairs of bases B1 = �p/B2 = �p�1(top
panels) and their associated orthonormal bases B̂1/B̂2 (bottom panels), for p = 1, 2
(Left panels) and p = 3, 4 (right panels).
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The basis functions of the B-spline basis �p with polynomial order p can be con-
structed recursively using the Cox–de Boor formula

�p
i (x) =

x� ki
ki+p � ki

�p�1
i (x) +

ki+p+1 � x

ki+p+1 � ki+1
�p�1
i+1 (x). (A-3)

In our application, we employ pairs B1/B2 of B-spline bases with staggered basis
functions. The basis B1 = �p has N1 = N basis function with polynomial order
p1 = p and the basis B2 = �p�1 has N2 = N � 1 basis functions with polynomial
order p2 = p � 1. From the equation A-1, we see that the knot vector k2 associated
with B2 is the same as the knot vector k1 associated with B1 without its first and
last elements. The pairs of staggered bases B1/B2 obtained for p = 2, N = 11 and
p = 4, N = 11 are illustrated in the top panels of Figure A-1.

The derivatives of the basis functions �p
i can be expressed as a function of the

basis functions with reduced polynomial order �p�1
i , we have

d�p
i (x)

dx
=

p

ki+p � ki
�p�1
i (x)� p

ki+p+1 � ki+1
�p�1
i+1 (x). (A-4)

It follows that the derivative g0(x) of a function g(x) represented in basis B1 = �p

with knot vector k1 = k = [k1, . . . , kN+p+1] as the linear combination

g(x) =
NX

i=1

gi�
p
i (x) (A-5)

with expansion coe�cients gi is given by

g0(x) =
N�1X

i=1

g0i�
p�1
i (x) (A-6)

where
g0i =

p

ki+p+1 � ki+1
(gi+1 � gi). (A-7)

are the expansion coe�cients of g0(x) in basis B2 = �p�1 with knot vector k2 =
[k2, . . . , kN+p]. In matrix form, we have

g0 = Qg (A-8)

where the vectors g and g0 contain the expansion coe�cients gi (i = 1, N) and g0i
(i = 1, N � 1), respectively. The matrix Q is a finite-di↵erence like matrix with
bandwidth 2 and dimension (N � 1, N), we have

Q =

2

6666666664

�↵1 +↵1 0 0

0

0

0 0 �↵N�1 +↵N�1

3

7777777775

(A-9)
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where

↵i =
p

ki+p+1 � ki+1
. (A-10)
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Bécache, E., P. Joly, and C. Tsogka, 2001, A new family of mixed finite elements
for the linear elastodynamic problem: SIAM Journal on Numerical Analysis, 39,
2109–2132.

Cao, J., J.-B. Chen, and M.-X. Dai, 2018, An adaptive free-surface expression
for three-dimensional finite-di↵erence frequency-domain modelling of elastic wave:
Geophysical Prospecting, 66, 707–725.

Capdeville, Y., L. Guillot, and J.-J. Marigo, 2010, 2-d non-periodic homogenization
to upscale elastic media for p-sv waves: Geophysical Journal International, 182,
903–922.

De Hoop, A., 1970, The surface line source problem in elastodynamics: De Ingenieur,
82.

Diaz, J., and A. Ezziani, 2010, Analytical solution for waves propagation in hetero-
geneous acoustic/porous media. part i: the 2d case: Communications in Computa-
tional Physics, 7, 171–194.

Fichtner, A., and S. M. Hanasoge, 2017, Discrete wave equation upscaling: Geophys-
ical Journal International, 209, 353–357.

Geller, R. J., and N. Takeuchi, 1998, Optimally accurate second-order time-domain
finite di↵erence scheme for the elastic equation of motion: one-dimensional cases:
Geophysical Journal International, 135, 48–62.

Graves, R. W., 1996, Simulating seismic wave propagation in 3d elastic media using
staggered-grid finite di↵erences: Bulletin of the seismological society of America,
86, 1091–1106.

Hicks, G. J., 2002, Arbitrary source and receiver positioning in finite-di↵erence
schemes using kaiser windowed sinc functions: Geophysics, 67, 156–165.

Koene, E. F., J. O. Robertsson, F. Broggini, and F. Andersson, 2018, Eliminating
time dispersion from seismic wave modeling: Geophysical Journal International,
213, 169–180.

Komatitsch, D., C. Barnes, and J. Tromp, 2000a, Simulation of anisotropic wave
propagation based upon a spectral element method: Geophysics, 65, 1251–1260.

——–, 2000b, Wave propagation near a fluid-solid interface: a spectral element ap-
proach: Geophysics, 65, 623–631.

Kristek, J., P. Moczo, and R. J. Archuleta, 2002, E�cient methods to simulate planar
free surface in the 3d 4th-order staggered-grid finite-di↵erence schemes: Studia
Geophysica et Geodaetica, 46, 355–381.

Kristek, J., P. Moczo, E. Chaljub, and M. Kristekova, 2017, An orthorhombic repre-
sentation of a heterogeneous medium for the finite-di↵erence modelling of seismic
wave propagation: Geophysical Journal International, 208, 1250–1264.

Levander, A. R., 1988, Fourth-order finite-di↵erence P-SV seismograms: Geophysics,
53, 1425–1436.

Luo, Y., and G. T. Schuster, 1990, Parsimonious staggered grid finite-di↵erencing of
the wave equation: Geophysical Research Letters, 17, 155–158.

Madariaga, R., 1976, Dynamics of an expanding circular fault: Bulletin of the Seis-
mological Society of America, 66, 639–666.



Masson & Virieux 44 DFD modeling

Masson, Y., 2022, Distributional finite-di↵erence modelling of seismic waves: Geo-
physical Journal International, 233, 264–296.

Mittet, R., 2002, Free-surface boundary conditions for elastic staggered-grid modeling
schemes: Geophysics, 67, 1616–1623.

Moczo, P., J. Kristek, and E. Bystrický, 2001, E�ciency and optimization of the
3-d finite-di↵erence modeling of seismic ground motion: Journal of Computational
Acoustics, 9, 593–609.

Moczo, P., J. Kristek, and M. Gális, 2014, The finite-di↵erence modelling of earth-
quake motions: Waves and ruptures: Cambridge University Press.

New, K. C., K. Watt, C. W. Misner, and J. M. Centrella, 1998, Stable 3-level leapfrog
integration in numerical relativity: Physical Review D, 58, 064022.

Robertsson, J. O. A., 1996, A numerical free-surface condition for elastic/viscoelastic
finite-di↵erence modeling in the presence of topography: Geophysics, 61, 1921–
1934.

Symes, W., I. S. Terentyev, and T. Vdovina, 2009, Getting it right without knowing
the answer: Quality control in a large seismic modeling project: Presented at the
2009 SEG Annual Meeting, OnePetro.

Symes, W. W., and T. Vdovina, 2009, Interface error analysis for numerical wave
propagation: Computational Geosciences, 13, 363–371.

Tromp, J., D. Komatitsch, and Q. Liu, 2008, Spectral-Element and Adjoint Methods
in Seismology: Communications in Computational Physics, 3, 1–32.

Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity-stress
finite-di↵erence method: Geophysics, 51, 889–901.
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