Hamiltonian representation of isomonodromic deformations of twisted rational connections: The Painlevé$1$ hierarchy - Archive ouverte HAL
Article Dans Une Revue Commun.Math.Phys. Année : 2025

Hamiltonian representation of isomonodromic deformations of twisted rational connections: The Painlevé$1$ hierarchy

Résumé

In this paper, we build the Hamiltonian system and the corresponding Lax pairs associated to a twisted connection in $\mathfrak{gl}_2(\mathbb{C})$ admitting an irregular and ramified pole at infinity of arbitrary degree, hence corresponding to the Painlevé$1$ hierarchy. We provide explicit formulas for these Lax pairs and Hamiltonians in terms of the irregular times and standard $2g$ Darboux coordinates associated to the twisted connection. Furthermore, we obtain a map that reduces the space of irregular times to only $g$ non-trivial isomonodromic deformations. In addition, we perform a symplectic change of Darboux coordinates to obtain a set of symmetric Darboux coordinates in which Hamiltonians and Lax pairs are polynomial. Finally, we apply our general theory to the first cases of the hierarchy: the Airy case $(g=0)$, the Painlevé$1$ case $(g=1)$ and the next two elements of the Painlevé$1$ hierarchy.
Fichier principal
Vignette du fichier
2302.13905.pdf (1.02 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04019889 , version 1 (27-04-2023)

Identifiants

Citer

Mohamad Alameddine, Olivier Marchal. Hamiltonian representation of isomonodromic deformations of twisted rational connections: The Painlevé$1$ hierarchy. Commun.Math.Phys., 2025, 406 (1), pp.12. ⟨10.1007/s00220-024-05187-0⟩. ⟨hal-04019889⟩
53 Consultations
30 Téléchargements

Altmetric

Partager

More