A linear bound for the Colin de Verdière parameter $\mu$ for graphs embedded on surfaces - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

A linear bound for the Colin de Verdière parameter $\mu$ for graphs embedded on surfaces

Résumé

The Colin de Verdière graph parameter $\mu(G)$ was introduced in 1990 by Y. Colin de Verdière. It is defined via spectral properties of a certain type of matrices, called Schrödinger operators, associated to a graph $G$. We provide a combinatorial and self-contained proof that for all graphs $G$ embedded on a surface $S$, the Colin de Verdière parameter $\mu(G)$ is upper bounded by $7 − 2\chi(S)$, where $\chi(S)$ is the Euler characteristic of $S$.
Fichier principal
Vignette du fichier
mu_eurocg_final.pdf (402.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04018060 , version 1 (07-03-2023)

Identifiants

  • HAL Id : hal-04018060 , version 1

Citer

Camille Lanuel, Francis Lazarus, Rudi Pendavingh. A linear bound for the Colin de Verdière parameter $\mu$ for graphs embedded on surfaces. EuroCG'23 (39th European Workshop on Computational Geometry), Mar 2023, Barcelona, Spain. ⟨hal-04018060⟩
122 Consultations
96 Téléchargements

Partager

More