Construction and analysis of a HDG solution for the total-flux-formulation of the convected Helmholtz equation - Archive ouverte HAL
Article Dans Une Revue Mathematics of Computation Année : 2023

Construction and analysis of a HDG solution for the total-flux-formulation of the convected Helmholtz equation

Résumé

We introduce a HDG method for the convected Helmholtz equation based on the total flux formulation, in which the vector unknown represents both diffusive and convective phenomena. This HDG method is constricted with the same interpolation degree for all the unknowns and a physically informed value for the penalization parameter is computed. A detailed analysis including local and global well-posedness, as well as a superconvergence result is carried out. We then provide numerical experiments to illustrate the theoretical results.
Fichier principal
Vignette du fichier
preprint_hdg_tot.pdf (976.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04006555 , version 1 (28-02-2023)

Identifiants

Citer

Hélène Barucq, Nathan Rouxelin, Sébastien Tordeux. Construction and analysis of a HDG solution for the total-flux-formulation of the convected Helmholtz equation. Mathematics of Computation, 2023, 92 (343), pp.2097-2131. ⟨10.1090/mcom/3850⟩. ⟨hal-04006555⟩
145 Consultations
144 Téléchargements

Altmetric

Partager

More