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CONSTRUCTION AND ANALYSIS OF A HDG SOLUTION FOR
THE TOTAL-FLUX FORMULATION OF THE CONVECTED

HELMHOLTZ EQUATION

HÉLÈNE BARUCQ, NATHAN ROUXELIN, AND SÉBASTIEN TORDEUX

Abstract. We introduce a HDG method for the convected Helmholtz equa-
tion based on the total flux formulation, in which the vector unknown rep-
resents both diffusive and convective phenomena. This HDG method is con-
stricted with the same interpolation degree for all the unknowns and a phys-
ically informed value for the penalization parameter is computed. A de-
tailed analysis including local and global well-posedness, as well as a super-
convergence result is carried out. We then provide numerical experiments to
illustrate the theoretical results.

Introduction

Aeroacoustic waves are widely studied because they are at the core of many ap-
plications in everyday life. We can mention the aeronautics, the automobile with
for example all the studies aiming at the reduction of the noise whose nuisance is
not anymore to show. Less standard are the numerical simulations used to under-
stand the interior of non-probeable environments such as stars and among them,
the closest to our planet, namely the sun. Here again, aeroacoustic waves play a
key role as depicted in [GBD+17, Chr04] where they are used to describe solar os-
cillations which can be measured on the surface of the sun. We are thus interested
in developing an advanced computational environment to numerically probe the
interior of the Sun. This work is a first step in the development of an advanced
computational environment to probe numerically the interior of the sun. Behind
this idea is the need to solve inverse problems and in this perspective, we want to
use the code hawen ([Fau21]) which proposes an optimized environment to perform
Full Waveform Inversion with wave equations posed in harmonic regime. With
hawen, it has been shown that formulations based on discontinuous finite elements
are particularly well suited (see for example [FS20] for the case of acoustic seismic
waves) to the extent that a hybridized formulation is used. Indeed, it is absolutely
necessary to reduce the size of the linear system to be solved if one wants to con-
sider large scale applications such as the reconstruction of the interior of the sun. In
this paper, we consider the so-called Hybridizable Discontinuous Galerkin Methods
(HDG), which relies on a static condensation process of a DG formulation leading
to express the discrete problem in terms of the solution of a global problem set on
the mesh skeleton. The volume unknowns are next computed thanks to the solution
of small local problems defined element-wise and in parallel.
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HDG have been considered by numerous authors for various problems such as el-
liptic equations in [CGL09, CDG+09, CC12, CC14], acoustic wave propagation in
[GM11, GSV18, NPRC15], elastic wave propagation in [HPS17, BDMP21, CS13,
FCS15, BCDL15] and, Maxwell equations in [CQSS17, CQS18, CLOS20]. Very re-
cently, these methods have also been used to implement quantitative inverse prob-
lems in [FS20] where a specific formulation of the adjoint method is developed.
Theory for HDGs is rather similar to the one for mixed finite elements and the
actual connection was first established by Cockburn and his coworkers in [CGS10].
For a self-contained introduction to the theory of HDG, we refer to [DS19] while a
historical perspective on HDG can be found in [Coc14].
A comparison between HDG and Continuous Galerkin methods has been carried out
in [KSC12, YMKS16] for two-dimensional elliptic diffusion problems. The authors
have shown that it is possible to implement a high-order HDG method with the
same accuracy and cost as a continuous finite element method. This is a very
important result for some applications where it is preferable to use a discontinuous
finite element method to benefit for example from the hp-adaptivity ([Jac21]) or to
guarantee a higher resistance to numerical dispersion ([BBF+17]). As far as face-
based finite element methods are concerned, Hybrid High-Order (HHO) methods
can also be considered and it was shown in [CDPE16] that regarding the linear
elasticity, this method could be interpreted as an HDG method after rewriting
it in a mixed formulation. To our knowledge, this study has not been done for
Helmholtz problems. However, very recently, it has been shown in [BDE21] that
the HHO method can be very useful to solve the single continuation problem subject
to the Helmholtz equation.
In this paper, we construct a HDG method based on the total flux formulation of
the convected Helmholtz equation. This formulation is well-suited for HPC and
leads to accurate numerical results as it is super-convergent. This method can
also be constructed as the hybridized version of a upwind DG method, leading to
a physically informed choice of penalization parameters. The implementation of
the method does not depend on the choice of such in general arbitrary parameters
that might perturb the accuracy of the numerical solution if badly chosen. The
content of this work is organized as follows. Section 1 is dedicated to the con-
vected Helmholtz equation and the total flux formulation, which is the first-order
in space formulation used to construct the HDG method of this paper. Section
2 deals with the approximation setting including discrete spaces. In Section 3,
we derive a hybridized DG method for the convected Helmholtz equation. In Sec-
tion 4, we construct a physically-informed choice of penalization parameter based
on the equivalence between the HDG formulation of the previous section and an
upwind DG method. In Section 5: we study the well-posedness of the local prob-
lems of the HDG method. In Section 6: we study the convergence rate of the
method. In Section 7: we study the well-posedness of the global problem of the
HDG method. In Section 8: we present numerical experiments to illustrate our
theoretical results.

1. Model problem

As a model problem we consider the so-called convected Helmholtz equation
(1) ρ0

!
−ω2p − 2iωv0 · ∇p + v0 · ∇(v0 · ∇p)

"
− div

!
ρ0c2

0∇p
"

= s
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where ω is the angular frequency, ρ0 is the density of the fluid, v0 is the velocity
of the fluid, c0 is the adiabatic sound speed, and s is the acoustic source.
Equation (1) is the simplest aeroacoustic model and therefore has a limited validity.
This equation can be used for

• a uniform background flow, in this case the unknown p can be interpreted
as a pressure perturbation,

• a potential background flow, in this case the unknown p should be inter-
preted as an acoustic potential and the physical quantities can be retrieved
using the following identities

Pressure perturbation: p′ = −ρ0c0(−iω + v0 · ∇)p,

Velocity perturbation: v′ = −c0∇p,

see [Pie90, Sec. II.].
In this paper, we only consider finite computational domains, which we denote by
O and whose boundary is denoted by Γ. More precisely O is a bounded open subset
of Rn with n = 2 or 3. We will assume that the background flow is incompressible
which leads to the following local mass conservation equation
(2) div (ρ0v0) = 0.

Furthermore, we require some additional regularity for the velocity field ρ0v0 as-
suming that it is Lipschitz continuous, i.e. ρ0v0 ∈ W 1,∞(O). This will be useful
to derive convergence estimates for the method as it allows us to estimate the
difference between ρ0v0 and its average on a mesh element.
To get a mixed Discontinuous Galerkin approximation of the convected Helmholtz
equation, we rewrite (3) as a system involving only first-order in space derivatives.
We first combine the Laplace operator and the second-order convection term to
obtain an anisotropic Laplace operator, which can be naturally handled in a HDG
formulation. Using the mass conservation assumption (2), we have

ρ0v0 · ∇(v0 · ∇p) = div
!
ρ0v0v

T
0 ∇p

"
.

Introducing the anisotropy tensor K0 := ρ0
!
c2

0Id − v0v
T
0

"
, we obtain

(3) ρ0
!
−ω2p − 2iωv0 · ∇p

"
− div (K0∇p) = s.

To lighten the notations in the remaining of this paper, we introduce the following
vector field

b0 := ρ0v0,

that satisfies the following mass conservation equation
div (b0) = 0.

We notice that
2iωb0 · ∇p = div (2iωpb0) ,

and we can therefore rewrite (3) as
(4) −ρ0ω2p − div (K0∇p + 2iωpb0) = s.

If the background flow is subsonic, i.e.
(5) inf

O

!
c2

0 − |v0|2
"

> 0,

then we have the following lemma.



4 HÉLÈNE BARUCQ, NATHAN ROUXELIN, AND SÉBASTIEN TORDEUX

Lemma 1.1. The anisotropy tensor K0 is symmetric positive-definite and its spec-
trum is

Sp(K0) =
#

ρ0c2
0, ρ0(c2

0 − |v0|2)
$

Proof: We have K0v0 = ρ0
!
c2

0 − |v0|2
"
v0 and K0u = ρ0c2

0u for all u ∈ v⊥
0 .

We can conclude that −div (K0∇p) is an elliptic operator.
To obtain a well-posed problem, the equation (4) must be closed by adding some
boundary conditions on Γ. In this paper, we only consider Neumann boundary
conditions

(6) (K0∇p + 2iωpb0) · n = gN , on Γ,

where n is the outward-facing unitary normal vector to Γ. In this case, the bilinear
form associated with the convected Helmholtz equation has a coercive + compact
structure and is therefore of Fredholm type. This implies that the system (4)–(6)
has a unique solution, except for some frequencies ω for which a resonant phenom-
enon can occur. In this paper, we will always assume that ω is not a resonant
frequency.

To construct a HDG formulation, we need to rewrite (4) as a first-order in space
system. It is therefore natural to introduce the total flux

σ := −K0∇p − 2iωpb0.

The resulting first-order formulation for (4) supplemented with the Neumann con-
dition (6) reads

W0σ + ∇p + 2iωpW0b0 = 0, in O,(7a)
−ρ0ω2p + div (σ) = s, in O,(7b)

σ · n = −gN , on Γ,(7c)

where W0 is the inverse of K0. Note that K0 is always invertible as

detK0 = ρ0c2
0

!
c2

0 − |v0|2
"

∕= 0,

and its inverse can be expressed as

W0 := K0
−1 = 1

ρ0c2
0

%
Id + v0v

T
0

c2
0 − |v0|2

&
.

thanks to the Sherman-Morrison formula [SM50].
Notice that even if we have chosen to work with second-order in frequency reading
(7a)–(7b)–(7c), the resulting method can easily be adapted to obtain a first-order
in frequency one. Indeed, the following system can be obtained

−iωW0σ + ∇p + 2iωpW0b0 = 0,

−iωp + div (σ) = s,

instead of (7a)–(7b).

2. Approximation settings

In this section, we introduce the notations and approximation spaces that will be
used to construct the HDG method considered in this paper.
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2.1. Approximation spaces. We consider a mesh Th of the domain O. For a
given element K ∈ Th we denote its diameter by hK and we set

h := max
K∈Th

hK .

For an element K ∈ Th, we denote by E(K) the set of its edges. We also consider
• The set of all edges of Th:

Eh :=
'

K∈Th

E(K).

• The set of boundary edges:
Eb

h := {e ∈ Eh | e ⊂ Γ} .

• The set of interior edges:
E i

h := {e ∈ Eh | ∃K+, K− ∈ Th, K− ∕= K+, e = ∂K+ ∩ ∂K−} .

Remark 2.1: We will assume that the mesh Th has the usual shape-regularity prop-
erty, see [EG04, Def. 1.107].
For K ∈ Th, we denote by Pk(K) the space of polynomial functions of total degree at
most k defined on K. We will also use the space of vectorial polynomials Pk(K) =
Pk(K)n. Even if those spaces can be defined for k > 0, in this paper we will usually
assume that k > 2 as HDG methods of lower order have limited interest from a
computational point of view. Indeed the key step in HDG methods is a static
condensation process which consists in eliminating the interior degrees of freedom.
The later do not exist for polynomial approximation of degree 1 or 2. Furthermore
it was noted in [KSC12] that HDG method have a cost similar to CG methods for
polynomial approximation of degree 5 or higher. However the static condensation
of lower-order HDG methods has one practical interest: it leads to a mixed DG
method which has the same cost as a primal DG method.
On each element K ∈ Th, we introduce the following approximation spaces for the
pressure and the flux

Vh(K) := Pk(K) for the flux σh,

Wh(K) := Pk(K) for the potential ph.

As the approximation spaces are discontinuous, we introduce the numerical fluxes
(σh and (ph which are designed to approximate the traces of σ and p on the boundary
of the elements. Those numerical fluxes also include some stabilization terms that
ensure the stability of the DG method. In the particular case of HDG methods, a
static condensation process is used to express σh, ph and (σh as a function of (ph.
This leads to a so-called global problem whose unknown is the numerical flux (ph.
To approximate (ph we introduce the following space for e ∈ E(K)

Mh(e) := Pk(e).
As those approximation spaces are discontinuous, we can construct the global ap-
proximation spaces from the local ones

Vh :=
#
σ ∈ L2(O)

)) σ|K ∈ Vh(K), ∀K ∈ Th

$
for the flux σh,

Wh :=
#

p ∈ L2(O)
)) p|K ∈ Wh(K), ∀K ∈ Th

$
for the potential ph,

Mh :=
#

µ ∈ L2(Eh)
)) µ|e ∈ Mh(e), ∀e ∈ Eh

$
for the trace (ph.



6 HÉLÈNE BARUCQ, NATHAN ROUXELIN, AND SÉBASTIEN TORDEUX

In Figure 1, we have depicted the differences in the degrees of freedom for the con-
tinuous (CG), discontinuous (DG) and hybridizable discontinuous (HDG) Galerkin
methods. The degrees of freedom of the HDG methods are the ones associated with
the numerical trace (ph. If a mixed DG method is used, there are three unknowns
for each degree of freedom, thus rendering those methods even more expensive.
It was demonstrated in [KSC12] that HDG methods have numerical cost similar
to the one of CG methods when they are properly implemented. Despite being
expensive from a computational point of view, DG methods have been known to
have some attratctive properties. In particular, they can naturally be implemented
for a arbitrary high-order with hp-adaptativity and in a parallel way. Using HDG
methods therefore allows to keep those advantages of the DG methods for a re-
duced numerical cost, as it is illustrated in Figure 2. As the numerical cost of the
method is directly linked to the number of degrees of freedom, we can clearly see
that the HDG method is less expensive than the DG method.

(a) CG (b) DG (c) HDG

Figure 1. Polynomial interpolation of degree 3
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Remark 2.2: It is also possible to choose a continuous space for (ph, this leads to the
so-called Locally Discontinuous but Globally Continuous method (LDGC), see eg.
[ALA13, FLd14]. However this choice does not seem to improve the convergence
rate of the method.

2.2. Hermitian products and norms. The complex conjugate of z is denoted
by z. For an element K ∈ Th, we denote the L2-inner product1 and its associated
norm by

(u, v)K :=
*

K

u · vdx and ‖u‖2
K := (u, u)K .

We then introduce the broken inner product

(u, v)Th
:=

+

K∈Th

(u, v)K ,

and we denote by ‖·‖Th
the associated norm. On the boundary of an element K,

we also introduce the local inner product

〈u, v〉∂K :=
+

e∈E(K)

*

e

u · vdσ,

and the associated norm is denoted by ‖·‖∂K . The broken inner product is then
defined as

〈u, v〉∂Th
:=

+

K∈Th

+

e∈E(K)

〈u|K , v|K〉e ,

and we denote by ‖·‖∂Th
the associated norm. Here we would like to point out

that, depending on the regularity of u and v, 〈·, ·〉∂K can denote either the inner
product of L2(∂K) or the duality bracket between H− 1

2 (∂K) and H
1
2 (∂K). It is

worth noting that the quantity 〈·, ·〉∂Th
is dual valued on the interior edges. We

will sometimes need to work on the interior edges only and we define the following
broken product

〈u, v〉∂Th\Γ :=
+

K∈Th

+

e∈E(K)∩Ei
h

〈u|K , v|K〉e .

Finally, we also introduce the following weighted norms

‖u‖2
ρ0,K := (ρ0u, u)K which satisfies ‖u‖ρ0,K ! ‖ρ0‖

1
2
L∞(K) ‖u‖K

‖q‖2
W0,K := (W0q, q)K which satisfies ‖q‖W0,K ! CW0,K ‖q‖K

where

CW0,K =
,

max
K

1
ρ0 (c2

0 − |v0|2)

- 1
2

is the largest eigenvalue of W0 in K, we recall that the spectrum of K0 (and
therefore of W0 := K0

−1) was given in Lemma 1.1.

1For vector fields, the Rn dot-product is used inside the integral as the conjugate is already
applied.
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2.3. Edges, jumps and averages. Discontinuity at the interface between ele-
ments distinguish DG formulations from the CG ones. For stability and implemen-
tation purposes, it is then required to define quantities related to the edges of the
elements.
For an interior face E i

h ∋ e = ∂K+ ∩ ∂K−, we denote by n+ (resp. n−) the unitary
outgoing normal vector of ∂K+ (resp. ∂K−). We will always assume that the flow
v0 goes from K− to K+, as depicted on Figure 3.

K−
n−

K+

n+

v0 e = ∂K+ ∩ ∂K−

Figure 3. Normal vectors on an interior face

If e is a boundary edge, then n denotes the unitary normal vector outwardly directed
to O.
We will often use the average operator defined on the interior and boundary faces
by

On E i
h ∋ e = ∂K+ ∩ ∂K−, {{ϕ}}e := 1

2
!
ϕ+ + ϕ−"

,

On Eb
h ∋ e = ∂K ∩ Γ, {{ϕ}}e := 1

2ϕ,

where ϕ can either be a scalar or vectorial quantity. We will also make frequent
use of the jump operator defined on the interior and boundary faces by

On E i
h ∋ e = ∂K+ ∩ ∂K−, [[q]]e := q+ · n+ + q− · n−,

On Eb
h ∋ e = ∂K ∩ Γ, [[q]]e := q · n,

for a vectorial quantity. Notice that with this definition, the jump operator only
controls the normal part of the vector. For a scalar quantity, the jump operator is
defined on the interior and boundary faces by

On E i
h ∋ e = ∂K+ ∩ ∂K−, [[p]]e := p+n+ + p−n−,

On Eb
h ∋ e = ∂K ∩ Γ, [[p]]e := pn,

for a scalar quantity. A sketch of those quantities is given in Figure 4.

K− K+

n−

n+

[[ϕ
]] {{ϕ}}

Figure 4. 1D-sketch of the jump and average on an interior node
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3. Construction of the hybridized formulation

In this section, we construct the hybridized formulation for the upwind DG method
of the previous section. This construction relies on the existence of an affine rela-
tionship between (σh and (ph which enables the parametrization of the volumetric
unknowns (σh, ph) only by (ph. Those volumetric unknown can then be eliminated
thanks to a static condensation process leading to a global problem for (ph only. This
global problem encodes the continuity requirements of the solution between two el-
ements as well as the boundary conditions of the problem. The original unknowns
can then be recovered by independently solving a local problem on each element of
the mesh.

3.1. Local problem. We write a DG variational formulation of (7a)–(7b) on an
element K ∈ Th leading to the local problem : seek (σh, ph) ∈ Vh(K)×Wh(K) such
that

(W0σh, rh)K − (ph, div (rh))K + 2iω (phW0b0, rh)K = − 〈(ph, rh · n〉∂K ,(8a)
−ω2 (ρ0ph, wh)K − (σh, ∇wh)K + 〈(σh · n, wh〉∂K = (s, wh)K ,(8b)

for all (rh, wh) ∈ Vh(K) × Wh(K). In (8a)–(8b), the flux for p, denoted by (ph, is
called the numerical trace and is now considered as an unknown of the problem.
The next section will be devoted to the choice of flux for σ.

3.2. Transmission condition. Due to the discontinuous nature of the approxi-
mation spaces, we need to link all the local problems together. To this end, we
introduce the numerical flux for σh

(9) (σh · n := σh · n + iωτ(ph − (ph),
which satisfies the following transmission condition
(10) 〈(σh · n, µh〉∂Th

= 〈gN , µh〉Γ

for all µh ∈ Mh, and using the value of τ derived in Proposition 4.3 of Section
4. We recall that functions in Mh are piecewise polynomials that are only discon-
tinuous at the geometric nodes. Notice that (10) enforces the normal continuity of
(σh on the interior faces as well as the Neumann boundary conditions on Γ.
We recall that on an interior edge E i

h ∋ e = ∂K+ ∩ ∂K−, the jump operator is
defined as

[[σh]] := σ+
h · n+ + σ−

h · n−.

On the interior edges, we therefore have

0 = 〈(σh · n, µh〉∂Th\Γ :=
+

K∈Th

+

e∈E(K)∩Ei
h

〈(σh · n, µh〉e ,

=
+

e∈Ei
h

e=∂K+∩∂K−

.
(σh

+ · n+ + (σh
− · n−, µh

/

e
,

=
+

e∈Ei
h

〈[[(σh]], µh〉e = 0.(11)

All of the terms involved in the definition of (σh, given in (9), are polynomial
quantities of degree up to k. Hence, we can conclude that both (σh and [[(σh]] are
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also polynomials of degree up to k. On the interior edges, (11) states that [[(σh]] is
orthogonal to all of the polynomials of degree up to k, which leads to [[(σh]] ≡ 0.

Remark 3.1: The transmission condition (10) can be understood as weak require-
ment of Hdiv(O)-conformity for σh and of H1(O)-conformity for ph. The continuity
requirement for ph is easily understood as the penalization term τ(ph − (ph) ensures
that ph and (ph stay close to each another, as they are two approximations of the
same physical quantity on ∂K, i.e. ph|∂K ≃ (ph|∂K . For σh, we use the following
characterization of Hdiv(O)-conformity: it is shown in [PE12, Lemma 1.2.4] that
σh ∈ Hdiv(O) means

∀K ∈ Th, σK
h ∈ Hdiv(K) and ∀e ∈ E i

h, [[σh]]e ≡ 0.

The former is a consequence of the polynomial nature of the approximation spaces,
and we will now focus on the latter. Owing to the transmission condition, we have

∀e ∈ E i
h, 0 = [[(σh]] = [[σh]] + iω[[τ(ph − (ph)]].

As ph and (ph are two approximations of the same unknown p, the quantity ph − (ph

is expected to be small. We can therefore conclude that [[σh]] is small and that

[[σh]] −→
hK →0

0.

For applications where a precise approximation of the flux is required, it is possible
to post-process σh to obtain a new approximate 0σh with strong Hdiv-conformity,
see [CGS10, Sec. 5.1].
Remark 3.2: The equation (8b) can be rewritten as

−ω2 (ρ0ph, wh)K + (div (σh) , wh)K + iω 〈τ(ph − (ph), wh〉∂K = (s, wh)K .

The boundary term weakly enforces the Dirichlet boundary condition

ph = (ph, on ∂K,

and the local problem (8a)–(8b) should therefore be interpreted as a Dirichlet solver
on K. We will prove in Theorem 5.1 that this defines a discrete local solver when
ωhK is small enough.

3.3. Condensed formulation. HDG methods are usually stated in a compact
form that can be obtained by summing the local problems (8a)–(8b) over the mesh
elements and by adding the transmission condition (10). This formulation then
reads : seek (σh, ph, (ph) ∈ Vh × Wh × Mh such that

(W0σh, rh)Th
− (ph, div (rh))Th

+ 2iω (phW0b0, rh)Th
= − 〈(ph, rh · n〉∂Th

,(12a)
−ω2 (ρ0ph, wh)Th

− (σh, ∇wh)Th
+ 〈(σh · n, wh〉∂Th

= (s, wh)Th
,(12b)

〈σh · n + iωτ(ph − (ph), µh〉∂Th
− 〈gN , µh〉Γ = 0,(12c)

for all (rh, wh, µh) ∈ Vh × Wh × Mh.

Remark 3.3: At this point, to completely define the HDG method, it only remains
to choose the penalization parameter τ , this will be done in Proposition 4.3 of
Section 4.
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The compact formulation (12a)–(12b)–(12c) is useful to perform the analyis of the
method, however it cannot directly be used to obtain an efficient implementation.
Indeed, with this formulation it is not clear how the local unknowns can be elimi-
nated to obtain a problem for (ph only. To emphasize how this can be done, we will
now write a condensed variational formulation for (ph only which is equivalent to
the formulation (12a)–(12b)–(12c).
We introduce the so-called local solvers

PK : ((ph, s) 1−→ pK
h ,

ΣK : ((ph, s) 1−→ σK
h ,

1ΣK : ((ph, s) 1−→ (σh
K := ΣK((ph, s) · nK + iωτ(PK((ph, s) − (ph),

where (σK
h , pK

h ) is the solution of (8a)–(8b) and (σh
K is defined by (9). Those local

solvers are actually well-defined, this will be proven in Theorem 5.1. We can
therefore rewrite the transmission condition (12c) as a variational problem on the
skeleton of the mesh:

(13) Seek (ph ∈ Mh such that ah((ph, µh) = ℓh(µh), for all µh ∈ Mh,

where

ah((ph, µh) :=
2
ΣK((ph, s) · n + iωτ(PK((ph, s) − (ph), µh

3
∂Th

,

ℓh(µh) := 〈gN , µh〉Γ .

Equation (13) is the so-called global problem and is the main equation of the HDG
method.
As the local solvers satisfy the local problems (8a)–(8b), it is possible to show that
the bilinear form of the global problem satisfies

ah((ph, µh) =
!
W0ΣK((ph), ΣK(µh)

"
Th

− ω2 !
ρ0PK((ph), PK(µh)

"
Th

+ 2iω
!
W0b0 · ΣK((ph), ΣK(µh)

"
Th

+ iω
2
τ(PK((ph) − (ph), PK(µh) − µh

3
∂Th

,

by following [CGL09, Sec. 2.3]. With this characterization, we can see that the
global problem has the structure of a convected Helmholtz equation. In particular
testing with µh = (ph leads to a discrete global Garding-like inequality.
From a computational point of view, we proceed as described in Algorithm 1.

Algorithm 1: Solving HDG-σh

1 for K ∈ Th do
/* Assembling step */

2 Construct the local solvers PK , ΣK , 1ΣK

3 Add local contribution to the global problem (13)
4 Solve (13) for (ph // Main linear system to solve
5 for K ∈ Th do

/* Reconstruction step */
6 Reconstruct the local unknowns pK

h = Pk((ph, s) and σK
h = Σ((ph, s)

This algorithm is the blueprint of the practical implementation of the HDG method
which is discussed in [Rou21].
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4. Choice of penalization parameter

The construction of the HDG method (12a)–(12b)–(12c) is not quite complete as
the stabilization parameter τ has not been fixed yet. In this section, we present a
way to chose τ that exploits the hyperbolic nature of the transient counterpart to
(7a)–(7b). To this end, the HDG method (12a)–(12b)–(12c) is rewritten as a mixed
DG method whose numerical fluxes are computed by solving a Riemann problem
on the interface between two elements. Following the terminology of the Finite
Volume and Discontinuous Galerkin communities, see e.g. [LeV02, Sec. 4.8] and
[HW08, Sec. 2.4], we call those numerical fluxes (and the associated values for τ)
upwind.

4.1. Mixed DG formulations. In this section, we consider a mixed DG formu-
lation for the convected Helmholtz equation. We begin with the discrete weak
formulation of (7a)–(7b) on an element K ∈ Th

*

K

W0σ
K
h · rhdx −

*

K

phdiv (rh) dx + 2iω

*

K

phW0b0 · rhdx = −
*

∂K

(phrh · ndσ,

−ω2
*

K

ρ0phwhdx −
*

K

σh · ∇whdx +
*

∂K

wh (σh · ndσ =
*

K

swhdx,

where ph ∈ Wh(K) := Pk(K), σh ∈ Vh(K) := Pk(K) and (ph and (σh are the
numerical fluxes that connect the elements together. Summing over the elements
K ∈ Th yields

(W0σh, rh)Th
− (ph, div (rh))Th

+ 2iω (phW0b0, rh)Th
+ 〈(ph, rh · n〉∂Th

= 0(14a)
− ω2 (ρ0ph, wh)Th

− (σh, ∇wh)Th
+ 〈(σh · n, w〉∂Th

= (s, rh)Th
.(14b)

All the mixed DG methods can be generated from (14a)–(14b) by choosing he
numerical fluxes (ph and (σh. The choice of these numerical fluxes is important as
they have an important impact on the quality of the numerical results.
To illustrate this, let us consider usual DG numerical fluxes, which can be expressed
as

(15) (ph = {{ph}} + α · [[ph]] + β[[σh]] and (σh = {{σh}} + γ[[σh]] + δ[[ph]],
where α,γ are complex vectors and β, δ are complex numbers which determine the
nature of the resulting DG method. For example, taking α = β = γ = 0 leads to the
DG method with central fluxes and taking β = 0 leads to the Local Discontinuous
Galerin (LDG) method introduced in [CS98]. Both of those examples are detailed
in [HW08, Sec. 7.2.2].
For DG methods, the numerical fluxes are usually defined on the interface between
two elements. On the other hand, for HDG methods the numerical flux 1σ can be
expressed only as a function of the local solution (σK

h , pK
h ) and of the numerical

trace (ph:

(16) (σh
K,e · nK,e = σK

h · n + iωτ(pK
h − (ph),

With this elementary flux defined on edge e of element K, it is possible to introduce
a local problem. The normal continuity of the numerical fluxes is then ensured by
adding an explicit continuity requirement in the numerical method

[[(σh]] = 0 ⇐⇒ (σh
K+,e · nK+,e = −(σh

K−,e · nK−,e,
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where e = ∂K+ ∩ ∂K−. In. Section 3, no value was chosen for the parameter τ of
(16). We will now present a way to choose this value with physical meaning. The
following proposition links the expressions of the elementary HDG fluxes (16) and
of the DG fluxes (ph and (σh of (15).

Proposition 4.1. The HDG method (12a)–(12b)–(12c) of Section 3 with the
elementary fluxes of (16) is equivalent to a mixed DG method (14a)–(14b) with
fluxes (15), where

(ph = {{ph}} + τ+n+ + τ−n−

2(τ+ + τ−) · [[ph]] + 1
iω(τ+ + τ−) [[σh]],(17a)

(σh = {{σh}} + iω
τ+τ−

τ+ + τ− [[ph]] − τ+n+ + τ−n−

2(τ+ + τ−) [[σh]],(17b)

or equivalently

α = τ+n+ + τ−n−

2(τ+τ−) , β = 1
iω(τ+ + τ−) , γ = iω

τ+τ−

τ+ + τ− , δ = −τ+n+ + τ−n−

2(τ+ + τ−) ,

for all interior edges E i
h ∋ e = ∂K+ ∩ ∂K− and where τ± = τ |∂K± .

Proof: The proof of Proposition 4.1 is a straightforward adaptation of the proof
of [PE12, Lemma 4.42] as the only differences are the iω factors.
We would like to point out that the particular form of (ph makes the HDG method
actually hybridizable. Indeed for the LDG and central fluxes methods, as described
in [HW08, Sec. 7.2.2], testing with [rh, 0] shows that the quantity σh is completely
defined in terms of ph as σh = −K0∇ph + L(ph) where L is a lifting operator. It
is therefore possible to eliminate σh locally, which makes the hybridization process
impossible. On the other hand, in the HDG method, the elementary flux depends
on (ph and we obtain a transmission condition that enforces the normal continuity of
(σh on the interface between two elements. This condition is global as it contains the
coupling between unknowns on different elements and allows the local elimination
of the original unknowns (σh, ph) to obtain a global problem for (ph only.

4.2. Computing of the upwind DG fluxes. The choice of the numerical fluxes
has a major influence on the properties of the resulting DG method. In this subsec-
tion, we compute physically informed numerical fluxes that are used to construct an
upwind DG method for the convected Helmholtz equation. To compute those up-
wind fluxes, we need to define the value of the solution on the interface between two
elements, and we therefore need to solve the associated Riemann problem. After
computing those fluxes, we show that the resulting upwind DG method is actually
hybridizable and that we can therefore construct an upwind HDG method for the
convected Helmholtz equation.

Proposition 4.2. The upwind DG fluxes are given by

(ph = {{p}} − v0

2c0
· [[p]] + 1

2iωρ0c0
[[σ]](18a)

1σ = {{σ}} + v0

2c0
[[σ]] + iωρ0

c2
0 − (v0 · n−)2

2c0
[[p]].(18b)

To prove this proposition, we solve a Riemann problem and compare its solution
with Proposition 4.1 to obtain a value for τ± with physical meaning. The first
step to be able to solve the Riemann problem is to rewrite the original equation as
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a time-domain hyperbolic system. The remaining of this section is devoted to the
proof of Proposition 4.2.

4.2.1. Hyperbolic system. We start from time-domain counterpart to (4)

ρ0
∂2p

∂t2 − div
,
K0∇p − 2ρ0

∂p

∂t
v0

-
= 0.

For simplicity’s sake, we continue to note the unknowns in the same way, whereas
in all rigor we should adopt a notation specific to the time domain. We therefore
introduce the total flux

∂ 4σ
∂t

= −K0∇p + 2ρ0
∂p

∂t
v0,

leading to the following first-order formulation

∂p

∂t
= − 1

ρ0
div (4σ) ,(19a)

∂ 4σ
∂t

= −K0∇p − 2div (4σ)v0.(19b)

We have introduced the unknown 4σ to obtain a first-order hyperbolic system, and
have the following relationship between σ and 4σ

σ = iω4σ,

making it possible to go back to a second-order in frequency formulation.
The system (19a)–(19b) can be written as

(20) ∂

∂t

%
p
4σ

&
= Ax

∂

∂x

%
p
4σ

&
+ Ay

∂

∂y

%
p
4σ

&
,

where

Ax :=

5

6
0 − 1

ρ0
0

−M0,xx −2v0,x 0
−M0,yx −2v0,y 0

7

8 and Ay :=

5

6
0 0 − 1

ρ0

−M0,xy 0 −2v0,x

−M0,yy 0 −2v0,y

7

8 .

4.2.2. Riemann solver. We consider a vertical interface located at x = 0 and we
assume that the background flow is uniform. As σ ∈ Hdiv(O), the communication
between the two subdomains only occurs in the direction which is normal to the
interface, i.e. in the x-direction. The system (20) therefore reduces to the following
1D problem

(21a) ∂U
∂t

= A
∂U
∂x

,

where

U :=
%

p
0σx

&
, and A :=

%
0 − 1

ρ0

−M0,xx −2v0,x

&
.

The solution of this 1D problem will be used to infer the expression for the numerical
flux on any interface between two elements.
We will solve the problem (21a) with the following initial condition
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U(x, 0) = U+, if x > 0,(21b)
U(x, 0) = U−, if x < 0.(21c)

With this choice of initial condition, we obtain a well-posed problem which is in-
variant with respect to y. Our goal is to compute U at x = 0. As the system is
hyperbolic, A can be diagonalized and the system reduces to two advection equa-
tions that can be solved using the method of characteristics. The solution at x = 0
can then be expressed as the superposition of the right-going mode coming from the
left and of the left-going mode coming from the right. To compute the eigenvalues
of A, we solve

))))
−λ − 1

ρ0

−M0,xx −2v0,x − λ

)))) = 0 ⇐⇒ λ2 + 2v0,xλ − M0,xx

ρ0
= 0.

Recalling that

M0,xx = ρ0c2
0 − ρ0v2

0,x,

we obtain the two following eigenvalues

λ1 = − (c0 + v0,x) ,

λ2 = c0 − v0,x,

and the associated eigenvectors are

w1 :=
%

1
ρ0(c0 + v0,x)

&
and w2 :=

%
1

ρ0(v0,x − c0).

&

The solution to (21a)–(21b)–(21c) is expressed as follows

U(x, t) = U1(x, t)w1 + U2(x, t)w2

The eigenvector coefficients are Ui(x, t) = Ui(x − λit, 0) since they each solve a
scalar transport equation

∂U
∂t

(x, t) + A
∂U
∂x

(x, t) = 0 ⇐⇒ ∂Ui

∂t
(x, t) + λi

∂Ui

∂x
(x, t) = 0, ∀i,

As λ1 < 0, w1 is a left-propagating mode, and as λ2 > 0, w2 is a right-propagating
mode.
We denote by Û := [p̂, 4̂σx]T the value of U at x = 0 and t > 0. It can be expressed
as the superposition of the right-propagating mode associated to λ2 coming from
the left and of the left-propagating mode associated to λ1 coming from the right,
so we have

Û(t) = U1(−λ1t, 0)w1 + U2(−λ2t, 0)w2

Taking into account the initial condition of the Riemann problem, we get

U1(x, 0) =
,

1
2 − v0,x

2c0

-
p(x, 0) + 1

2ρ0c0
4σx(x, 0), for x > 0,

U2(x, 0) =
,

1
2 + v0,x

2c0

-
p(x, 0) − 1

2ρ0c0
4σx(x, 0), for x < 0,
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and Û can the be expressed as

1p = 1
2

!
p+ + p−"

− v0,x

2c0

!
p+ − p−"

+ 1
2ρ0c0

!
4σ+

x − 4σ−
x

"
,

(4σx = 1
2

!
4σ+

x + 4σ−
x

"
+ v0,x

2c0

!
4σ+

x − 4σ−
x

"
+ ρ0

c2
0 − v2

0,x

2c0

!
p+ − p−"

,

where p±(t) = p(0±, t).
Finally, we can infer the form of the DG flux for a generic interface

1p = {{p}} − 1
2c0

v0 · [[p]] + 1
2ρ0c0

[[4σ]],(23a)

14σ = {{4σ}} + v0

2c0
[[4σ]] + ρ0

c2
0 − (v0 · n−)2

2c0
[[p]].(23b)

Rewriting (23a)–(23b) in terms of σ instead of 4σ leads to

(ph = {{p}} − 1
2c0

v0 · [[p]] + 1
2iωρ0c0

[[σ]]

1σ = {{σ}} + v0

2c0
[[σ]] + iωρ0

c2
0 − (v0 · n−)2

2c0
[[p]].

The above result provides us with a proof of Proposition 4.2.
Remark 4.1: The numerical fluxes presented in Proposition 4.2 are called upwind
as they are associated with the solution of a Riemann problem between two ele-
ments. In the subsequent proof, we limit ourselves to the case of an interface in a
homogeneous medium. Different upwind fluxes could be obtained by using a similar
construction in a discontinuous medium.

4.3. HDG flux and penalization parameter. We can now obtain a relationship
between the upwind fluxes and the HDG penalization parameter τ . We recall that,
according to Proposition 4.1, the HDG fluxes are defined by

(ph = {{ph}} + τ+n+ + τ−n−

2(τ+ + τ−) · [[ph]] + 1
iω(τ+ + τ−) [[σh]],

(σh = {{σh}} + iω
τ+τ−

τ+ + τ− [[ph]] − τ+n+ + τ−n−

2(τ+ + τ−) [[σh]].

Proposition 4.3. On an interior face E i
h ∋ e = ∂K+ ∩ ∂K− the penalization

parameter associated with the upwind DG fluxes is given by
(25) τ± = ρ0(c0 + v0 · n±),
where τ± = τ |∂K± .

Proof: Comparing (18a)–(18b) with (17a)–(17b) , we see that

τ+ + τ− = 2ρ0c0 and τ+τ−

τ+ + τ− = ρ0
c2

0 − (v0 · n−)2

2c0
.

The last system leads to the following second-order equation
(τ+)2 − 2ρ0c0τ+ + ρ2

0
!
c2

0 − (v0 · n−)2"
= 0,

and to the two following families for τ±

τ+
1 = ρ0(c0 + v0 · n−), τ−

1 = ρ0(c0 − v0 · n−),
τ+

2 = ρ0(c0 − v0 · n−), τ−
2 = ρ0(c0 + v0 · n−).
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To discriminate between τ±
1 and τ±

2 we once again go back to (17a)–(17b) and we
see that the solution must satisfy

−v0 · n−

2c0
=

,
τ+n+ + τ−n−

2(τ+ + τ−)

-
· n− = − τ+ − τ−

2(τ+ + τ−) .

We can therefore conclude that the upwind fluxes are obtained by using the τ±
2

solution. We can make this choice independent of the orientation convention by
noticing that n+ = −n−, leading to

τ±
2 = ρ0(c0 + v0 · n±).

This is a natural choice as the terms involving τ will be computed on each element.
It is therefore convenient to have an expression in terms of the local outgoing normal
vector to the boundary rather than an expression depending on the orientation of
the edges, which is a global piece of information.
Remark 4.2: To keep polynomial fluxes on the interfaces, the background quantities
will be approximated by their value at the center of the interface.
Remark 4.3: In the context of DG and HDG methods, τ is usually chosen to be of
the «order of unity» to ensure optimal convergence rate. In the error analysis of
the method, we allow the dependency to the background coefficient to be hidden
in the constants, so the choice (25) is actually possible.

5. Local solvability

We will now show the local solvability for the proposed total flux formulation based
HDG method (12a)–(12b)–(12c). Proving the well-posedness of the local problems
is always very important when working with HDG methods. For strongly coercive
problems, for which HDG methods were initially designed, this property usually
comes directly from the continuous problem. However for harmonic wave equa-
tions, which are only weakly coercive, things are more complicated: indeed solving
the local problem amounts to solving a wave problem with Dirichlet boundary con-
ditions. We therefore need to ensure that the local problem does not introduce
resonance into the method, which is the case when the elements are small enough.
In this section, we will prove that the static condensation process is well-defined
when the mesh is fine enough.
In this section, we will make frequent use of the notation a ≲ b, which is an
abbreviation for

a ≲ b ⇐⇒ ∃C > 0, C independent of h, such that a ! Cb.

We would like to point out that we will not establish frequency-explicit error esti-
mates, and that we therefore allow ω to be hidden inside ≲. For more details on
frequency-explicit analysis of numerical method for harmonic wave propagation, we
refer the reader to [CFN19]. We will also frequently use the following absorption
result which holds when the mesh size h is small enough.

Lemma 5.1. Let a, b, h be positive real numbers and c be a real number.
(i) If a ≲ ah + b and if h is small enough then a ≲ b,

(ii) If a2 ≲ ab + c then a2 ≲ b2 + c.

First, we need to prove two preliminary results.
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Lemma 5.2. For ph ∈ Pk(K) with k > 0, the following inverse inequality holds

‖∇ph · n‖∂K ≲ h
− 1

2
K ‖∇ph‖K .

Proof:
First, we notice that if ph is constant, the desired inequality reduces to 0 ! 0. We
therefore only consider non-constant ph. For uh ∈ Pk(K), we have

‖uh · n‖∂K ! ‖n‖∞ ‖uh‖∂K ≲ ‖uh‖∂K ,

then using the discrete trace inequality [PE12, Lem. 1.46]

‖uh‖∂K ≲ h−1/2 ‖uh‖K ,

and choosing uh = ∇ph, we obtain the desired estimate.

Lemma 5.3. If p ∈ H1(K) and b0 ∈ L∞(K) ∩ C(O), where C(O) is the space of
vector functions continuous in the domain O, then the following identity holds

Re (pb0, ∇p)K = 1
2 〈(b0 · n)p, p〉∂K .

Proof: As div (b0) = 0., we use an integration by parts to obtain a relationship
between (pb0, ∇p)K and its complex conjugate :

2Re (pb0, ∇p)K = (pb0, ∇p)K + (pb0, ∇p)K

= − (div (pb0) , p)K + 〈(b0 · n)p, p〉∂K + (∇p, pb0)K

= − (b0 · ∇p, p)K + 〈(b0 · n)p, p〉∂K + (b0 · ∇p, p)K

= 〈(b0 · n)p, p〉∂K ,

Theorem 5.1 (Local solvability). If τ ∈ R is chosen such that

∃τ0 > 0, ∀e ∈ E(K), 0 < τ0 ! τ − b0 · n,

then there exists a constant α+ > 0 such that the local problem is well-posed if
ωhK < α+.

Proof: As (8a)–(8b) is a square finite-dimensional problem, we only need to prove
uniqueness of the solution. We therefore assume that (ph = 0 and s = 0, and we
need to show that the system

(W0σh, rh)K − (ph, div (rh))K + 2iω (phW0b0, rh)K = 0, ∀rh ∈ Vh(K)(27a)
− ω2 (ρ0ph, wh)K + (div (σh) , wh)K + iω 〈τph, wh〉∂K = 0, ∀wh ∈ Wh(K),(27b)

has only one solution (σh, ph) = (0, 0).
Step 1: Energy-like identity.
We test (27a) with rh = σh and conjugate the resulting equation, we then test
(27b) with wh = ph and add the two resulting equations leading to

(28) ‖σh‖2
W0,K − ω2 ‖ph‖2

ρ0,K − 2iω (W0σh, phb0)K + iω 〈τph, ph〉∂K = 0,

as W0 is real and symmetric. Taking rh = ph {b0}, where {b0} is the average of
b0 on K, in (27a), we have

(W0σh, ph {b0})K − (ph, {b0} · ∇ph)K + 2iω (phW0b0, ph {b0})K = 0,
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leading to
(W0σh, phb0)K = (ph, b0 · ∇ph)K − 2iω (phW0b0, phb0)K + ε,(29)

where
ε := (W0σh, phδb0)K − (ph, δb0 · ∇ph)K + 2iω (phW0b0, phδb0)K ,

with δb0 = b0 − {b0}. In Step 2, it will be proven that |ε| is small. Then inserting
(29) in (28), we obtain

‖σh‖2
W0,K −ω2(‖ph‖2

ρ0,K + 4 ‖phb0‖2
W0,K)(30)

− 2iω (ph, b0 · ∇ph)K − 2iωε + iω 〈τph, ph〉∂K = 0
Step 2: Estimating |ε|. To estimate |ε| we use the regularity of b0. Indeed as b0 is
Lipschitz continuous, we have b0 ∈ W 1,∞(O), then using the Poincaré-Wirtinger
inequality we obtain

‖δb0‖L∞(K) = ‖b0 − {b0}‖L∞(K) ! ChK ‖∇b0‖L∞(O) ≲ hK ,

where {u} is the average value of u over K. This leads to

|ε| ≲ hK ‖σh‖K ‖ph‖K + hK ‖ph‖K ‖∇ph‖K + hK ‖ph‖2
K .

Young’s inequality yields
|ε| ≲ h2

K ‖σh‖2
K + ‖ph‖2

K + h2
K ‖∇ph‖2

K .(31)
Taking the imaginary part of (30) leads to

−2ωRe (phb0, ∇ph)K + ω 〈τph, ph〉∂K = 2ωReε.

Lemma 5.3 implies that
〈(τ − b0 · n)ph, ph〉∂K = 2Reε.

As 0 < τ0 ! τ − b0 · n where τ0 does not depend on hK , we have
(32) ‖ph‖2

∂K ≲ |ε| ≲ h2
K ‖σh‖2

K + ‖ph‖2
K + h2

K ‖∇ph‖2
K .

According to [EG04, Lemma B.63 & Example B.64] we have

‖ph‖K ! C2
K ‖∇ph‖2

K +
9 CK

meas(∂K)

:2
‖ph‖2

∂K ,

with CK the Poincaré constant2 of K . Using standard scaling inequalities, we have

CK ≲ hK and CK

meas(∂K) ≲ h
1
2
K ,

when the mesh is regular, see [EG04, Def. 1.107]. Using (32), this leads to

‖ph‖2
K ≲ h2

K ‖∇ph‖2
K + hK ‖ph‖2

∂K ≲ h2
K ‖∇ph‖2

K + h3
K ‖σh‖2

K + hK ‖ph‖2
K .

Using the absorption argument of Lemma 5.1 for hK small enough, we obtain
‖ph‖2

K ≲ h2
K ‖∇ph‖2

K + h3
K ‖σh‖2

K .(33)
It follows from (31) that

|ε| ≲ h2
K

9
‖σh‖2

K + ‖∇ph‖2
K

:
.(34)

Step 3: Estimating ‖σh‖K

2The constant used by the authors of [EG04] is the inverse of the usual Poincaré constant.
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Taking the real part of the Garding’s identity (30), we have

‖σh‖2
K ≲ ‖ph‖2

K + ‖ph‖K ‖∇ph‖K + |ε| ≲
9

1 + 1
hK

:
‖ph‖2

K + hK ‖∇ph‖2
K + |ε|.

It follows from (33) and (34) that

‖σh‖2
K ≲ hK ‖∇ph‖2

K + h2
K ‖σh‖2

K .

Lemma 5.1, leads to
(35) ‖σh‖2

K ≲ hK ‖∇ph‖2
K .

Inserting the last inequality in (32) and (33), we therefore have

(36) ‖σh‖K ≲ h
1
2
K ‖∇ph‖K , ‖ph‖K ≲ hK ‖∇ph‖K and ‖ph‖2

∂K ≲ hK ‖∇ph‖K .

Step 4: Conclusion. Taking rh = ∇ph in (27a) and integrating by parts, we have

‖∇ph‖2
K = − (W0σh, ∇ph)K − 2iω (phW0b0, ∇ph)K + 〈ph, ∇ph · n〉∂K

≲ ‖σh‖K ‖∇ph‖K + ‖ph‖K ‖∇ph‖K + ‖ph‖∂K ‖∇ph‖∂K

Lemma 5.2 allows to write
‖∇ph‖2

K ≲ ‖σh‖K ‖∇ph‖K + ‖ph‖K ‖∇ph‖K + h
−1/2
K ‖ph‖∂K ‖∇ph‖K

The inequalities (36) allows to write

‖∇ph‖2
K ≲h

1
2
K ‖∇ph‖2

K .

Lemma 5.1 leads to ∇ph = 0. It follows from (36) that ph = 0 and σh = 0.

6. Error analysis

The error analysis of the HDG method for the standard Helmholtz equation has
been carried out in [DS19, Sec. 3.5.1 & 3.5.2]. The convective terms introduces
new difficulties that we address in this section. We give a complete proof in the
case of Fourier boundary condition, i.e. ΓD = ∅.
This error analysis relies on the tailored HDG projection that fits the structure of
the numerical trace. The HDG projection (Π, Π)

(Π, Π) : Hdiv(O) × H1(O) −→ Vh × Wh := Pk(Th) × Pk(Th)
are defined locally on each element K ∈ Th by the following equations

(Πσ, rh)K = (σ, rh)K , ∀rh ∈ Pk−1(K),(37a)
(Πp, wh)K = (p, wh)K , ∀wh ∈ Pk−1(K),(37b)

〈Πσ · n + iωτΠp, µh〉∂K = 〈σ · n + iωτp, µh〉∂K , ∀µh ∈ Rk(∂K),(37c)

where Rk(∂K) is the space of piecewise polynomials of degree at most k on ∂K

Rk(∂K) :=
;

e∈E(K)

Pk(e).

The HDG projection also satisfies the following weak commutativity property
(38) (div (Πσ) , wh)K + iω 〈τΠp, wh〉∂K = (div (σ) , wh)K + iω 〈τp, wh〉∂K ,

for all wh ∈ Pk(K) on each element K ∈ Th, see [DS19, Eq (3.6)]. Notice that
denoting the image of (σ, p) under (Π, Π) by (Πσ, Πp) is a slight abuse of notation
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as both components depend on σ and p. For quantities defined on the skeleton of
the mesh, we use the L2(∂Th)-orthogonal projection PM onto Mh which satisfies
(39) 〈PM p, µh〉∂K = 〈p, µh〉∂K , ∀µh ∈ Rk(∂K),
on each element K ∈ Th. On an element K ∈ Th, we also define the average value
{·} by

({u} , wh)K = (u, wh)K , ∀wh ∈ P0(K).
Furthermore, the error analysis is carried out in the L2-norm and relies on a Aubin-
Nitsche technique. We therefore introduce the following auxiliary problem

W0ξ − ∇θ = 0, in O,(40a)
−ω2ρ0θ − 2iωb0 · ∇θ − div (ξ) = εp

h, in O,(40b)
ξ · n = 0, on ∂O.(40c)

To prove convergence estimates, we assume that this problem is well-posed and
satisfies the elliptic regularity assumption
(41) ‖θ‖2,O + ‖ξ‖1,O ! Creg ‖εp

h‖O .

Remark 6.1: As the problem (40a)–(40b)–(40c) can be equivalently written as
−ω2ρ0θ − 2iωb0 · ∇θ − div (K0∇θ) = εp

h,

it has the same coercive + compact structure as the original problem (3) if the
background flow is subsonic (see (5)). This problem is therefore of Fredholm type,
and well-posedness is equivalent to uniqueness of the solution. The well-posedness
hypothesis thus means that we will consider frequencies ω that are not resonant.
We now state the solvability assumptions under which Theorem 6.1 can be proven.

Assumption 1 (Local solvability). The local problems are well-posed, i.e. when (ph

is known the local solvers (8a)–(8b) uniquely define (σK
h , pK

h ) for all K ∈ Th.

Assumption 2 (Global solvability). The global problem (13) uniquely defines the
numerical trace (ph.

The combination of those two assumptions ensures that the HDG method is well-
posed. We also add two regularity assumptions.

Assumption 3 (Direct regularity). The optimal approximation estimates of Lemma
6.1 are obtained if the exact solution is regular enough, i.e. if p|K ∈ Hk+1(K) and
σ|K ∈ Hk+1(K) for all K ∈ Th.

Assumption 4 (Aubin-Nitsche regularity). The elliptic regularity assumption (41)
for the solution (ξ, θ) of the auxiliary problem (40a)–(40b)–(40c) holds.

Remark 6.2: Notice that the direct regularity assumption addresses the local regu-
larity of the exact solution, whereas the Aubin-Nitsche regularity assumptions deals
with the global regularity of the solution.
It is worth noting that there is a natural set of of sufficient conditions under which
Assumption 1, Assumption 2, Assumption 3 and Assumption 4 hold:

(1) the flow is subsonic, i.e.
inf
O

(ρ0c0 − |b0|) > 0,
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(2) ω is not a resonant frequency of the continuous problem,
(3) h is sufficiently small,
(4) the domain O is either a regular bounded open set, or a convex polyhedron,
(5) W0 and b0 are Lipschitz continuous.

Conditions (1) and (2) ensure that the continuous problem is well-posed. Condition
(3) ensures that Assumption 1 holds through Theorem 5.1. Conditions (1), (2),
(3) and (4) imply that Assumption 2 holds as it will be detailed in Theorem 7.1.
Conditions (4) and (5) ensure that Assumption 4 holds as εp

h ∈ Wh(Th) ⊂ L2(O),
on this topic see [Gri11, Th. 2.2.2.3 & 4.3.1.4] for the regularity of the domain or
[BC13, Sec. 7] for the regularity of the coefficients. Finally the amount of regularity
in Assumption 3 is only limited by the regularity of the source term s.

The approximation properties of the HDG projection have intensively been studied
in [DS19, Prop. 3.6] and [CGS10, Theorem 2.1]. They are recalled in Lemma 6.1.

Lemma 6.1. Let k # 0 be the polynomial approximation degree3, if p ∈ Hℓ+1(K)
and σ ∈ Hℓ+1(K), then the following inequalities hold

‖Πp − p‖K ≲ hm+1
K (|p|m+1,K + |div (σ) |m,K) ,(42a)

‖Πσ − σ‖K ≲ hm+1
K (|σ|m+1,K + |p|m+1,K) ,(42b)

for any m in [0, min(k, ℓ)].

In order to prove the convergence of the method, it remains to prove the following
lemma.

Lemma 6.2. For k # 1, h sufficiently small and under Assumption 1, Assump-
tion 2, Assumption 3 and Assumption 4, the following estimates hold

‖εp
h‖Th

:= ‖ph − Πp‖Th
= O(hk+2) ; ‖εσh ‖Th

:= ‖σh − Πσ‖Th
= O(hk+1).

We can now state the main result of this section.

Theorem 6.1 (Convergence of the method). For k # 1, h sufficiently small, and
under Assumption 1, Assumption 2, Assumption 3 and Assumption 4, we
have

‖p − ph‖Th
= O(hk+1) ; ‖σ − σh‖Th

= O(hk+1).

Proof:
We split the errors as

(43)

<
=

>

p − ph = δp
h + εp

h with δp
h = p − Πp, εp

h = Πp − ph,

σ − σh = δσh + εσh with δσh = σ − Πσ, εσh = Πσ − σh,

A direct consequence of the Lemma 6.1 is

(44) ‖δσh ‖Th
+ ‖δp

h‖Th
= O(hk+1),

when σ and p are smooth enough. The triangular inequality and Lemma 6.2
therefore imply the result and completes the proof of Theorem 6.1.

3Even if the case k = 0 has no practical interest in the context of HDG method, the approxi-
mation inequalities still hold in this case.
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To obtain a complete proof of convergence, it only remains to prove Lemma 6.2.
Proof of Lemma 6.2: The proof of Lemma 6.2 decomposes itself as follows

(i) we derive an energy-like estimate of the form

(45a) ‖εσh ‖Th
+ ‖εp

h − 1εp
h‖

∂Th
≲ ‖εp

h‖Th
+ ‖δp

h‖Th
+ ‖δσh ‖Th

,

where 1εp
h := PM p − (ph and PM is the L2(∂Th)-orthogonal onto Mh defined

in (39).
(ii) The Aubin-Nitsche method allows us to get the estimate

‖εp
h‖Th

≲ h
9

‖εσh ‖Th
+ ‖δp

h‖Th
+ ‖δσh ‖Th

:
.(45b)

(iii) Those two estimates are combined through a bootstrapping process to obtain

(45c) ‖εp
h‖Th

= O(hk+2) and ‖εσh ‖Th
= O(hk+1)

(i) Energy-like estimate. Noticing that the solution (σ, p) to the exact prob-
lem satisfies the HDG equations (12a)–(12b)–(12c) for a discrete test-function, we
can subtract the HDG equations for the numerical solution (σh, ph) to the HDG
equations for (σ, p) to obtain

(W0(σ − σh), rh)Th
− (p − ph, div (rh))Th

+ 2iω ((p − ph)W0b0, rh)Th
=

− 〈p − (ph, rh · n〉∂Th
,

−ω2 (ρ0(p − ph), wh)Th
− ((σ − σh), ∇wh)Th

+ 〈(σ − (σh) · n, wh〉∂Th
= 0,

〈(σ − σh) · n − iωτ(ph − (ph), µh〉∂Th
= 0.

An integration by parts in the second equation yields

−ω2 (ρ0(p − ph), wh)Th
+ (div (σ − σh) , wh)Th

+ 〈(σh − (σh) · n, wh〉∂Th
= 0,

and using the definition (9) of (σh, we finally obtain

−ω2 (ρ0(p − ph), wh)Th
+ (div (σ − σh) , wh)Th

− iω 〈τ(ph − (ph), wh〉∂Th
= 0.

We then resort to the error decomposition (43)

(W0ε
σ
h , rh)Th

+ (W0δ
σ
h , rh)Th

− (εp
h, div (rh))Th

− (δp
h, div (rh))Th

+ 2iω (εp
hW0b0, rh)Th

+ 2iω (δp
hW0b0, rh)Th

= − 〈p − (ph, rh · n〉∂Th
,

− ω2 (ρ0εp
h, wh)Th

− ω2 (ρ0δp
h, wh)Th

+ (div (εσh ) , wh)Th

+ (div (δσh ) , wh)Th
− iω 〈τ(ph − (ph), wh〉∂Th

= 0,

〈εσh · n + δσh · n − iωτ(ph − (ph), µh〉∂Th
= 0.

The property of the HDG projection (37a)–(37b)–(37c)–(38) leads to

− (δp
h, div (rh))Th

= 0, (div (δσh ) , wh)Th
= −iω 〈τδp

h, wh〉
∂K

,

〈δσh · n + iωτδp
h, µh〉

∂Th
= 0.
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We denote by 1εp
h = PM p − (ph and remark that the three previous identities yield

− (δp
h, div (rh))Th

+ 〈p − (ph, rh · n〉∂Th
= 〈PM p − (ph, rh · n〉∂Th

,

= 〈1εp
h, rh · n〉

∂Th
,

(div (δσh ) , wh)Th
− iω 〈τ(ph − (ph), wh〉∂Th

= −iω 〈τ(δp
h + ph − (ph), wh〉

∂Th

= −iω 〈τ(1εp
h − εp

h), wh〉
∂Th

,

〈δσh · n − iωτ(ph − (ph), µh〉∂Th
= −iω 〈τ(δp

h + ph − (ph), µh〉
∂Th

= −iω 〈τ(1εp
h − εp

h), µh〉
∂Th

,

where we used the definition (39) of PM to obtain

〈τδp
h, wh〉

∂Th
= 〈τ(p − Πp), wh〉∂Th

= 〈τ(PM p − Πp), wh〉∂Th
,

and therefore

〈τ(δp
h + ph − (ph), wh〉

∂Th
= 〈τ(PM p − (ph + ph − Πp), wh〉∂Th

,

= 〈τ(1εp
h − εp

h), wh〉
∂Th

.

This leads to

(47a) (W0ε
σ
h , rh)Th

− (εp
h, div (rh))Th

+ 2iω (εp
hW0b0, rh)Th

+ 〈1εp
h, rh · n〉

∂Th

= − (W0δ
σ
h , rh)Th

− 2iω (δp
hW0b0, rh)Th

,

(47b)
−ω2 (ρ0εp

h, wh)Th
+(div (εσh ) , wh)Th

+iω 〈τ(εp
h − 1εp

h), wh〉
∂Th

= ω2 (ρ0δp
h, wh)Th

,

− 〈εσh · n + iωτ(εp
h − 1εp

h), µh〉
∂Th

= 0.(47c)

Testing (47a)–(47b)–(47c) with (εσh , εp
h, 1εp

h), conjugating (47a) and summing the
resulting equations leads to

‖εσh ‖2
W0,Th

+ iω
???τ1/2(εp

h − 1εp
h)

???
2

∂Th

= ω2 ‖εp
h‖2

ρ0,Th
+ 2iω (εσh , εp

hW0b0)Th

− (εσh ,W0δ
σ
h )Th

+ 2iω (εσh , δp
hW0b0)Th

+ ω2 (ρ0δp
h, εp

h)Th
.

Notice that the signs of terms multiplied by iω in (47a) changed because of the
conjugation, e.g.

−2iω (δp
hW0b0, εσh )Th

= +2iω (εσh , δp
hW0b0)Th

.

Due to the Cauchy-Schwarz inequality, the Young’s inequality, the Lemma 5.1-(ii)
and the equivalence of norms, we obtain estimate (45a)

‖εσh ‖2
Th

+ ‖εp
h − 1εp

h‖2
∂Th

≲ ‖εp
h‖2

Th
+ ‖δp

h‖2
Th

+ ‖δσh ‖2
Th

.

(ii) Aubin-Nitsche estimate. The solution (ξ, θ) ∈ Hdiv(O) × H1(O) to the
auxiliary problem (40a)–(40b)–(40c) satisfies

(W0ξ, εσh )Th
+ (θ, div (εσh ))Th

− 〈θ, εσh · n〉∂Th
= 0,

−ω2 (ρ0θ, εp
h)Th

− 2iω (b0 · ∇θ, εp
h)Th

− (div (ξ) , εp
h)Th

= (εp
h, εp

h)Th
,

〈ξ · n, 1εp
h〉

∂Th
= 0,(48a)
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Remark 6.3: Notice that the functional framework for (48a) is quite complicated
as ξ · n usually cannot be evaluated on the interior edges. However, using the
definition of the jump between two elements, we have

〈ξ · n, 1εp
h〉

∂Th
:=

+

e∈Ei
h

*

e

[[ξ]]1εp
hdσ −

*

ΓD

(ξ · n)1εp
hdσ.

As the right-hand side is well-defined, we can use it to give meaning to the left-hand
side.
Introducing the projections (Π, Π) satisying (37a)–(38)–(37c), we remark that

(θ, div (εσh ))Th
= (Πθ, div (εσh ))Th

(div (ξ) , εp
h)

K
= (div (Πξ) , εp

h)
K

+ iω 〈τ(Πθ − θ), εp
h〉

∂K

〈ξ · n, 1εp
h〉

∂Th
= 〈Πξ · n, 1εp

h〉
∂Th

+ iω 〈τ(Πθ − θ), 1εp
h〉

∂Th
.

Since W0ξ = ∇θ, it follows
(50a) (Πθ, div (εσh ))Th

− 〈θ, εσh · n〉∂Th
= − (W0ξ, εσh )Th

,

(50b) − (div (Πξ) , εp
h)Th

− iω 〈τ(Πθ − θ), εp
h〉

∂Th

= ‖εp
h‖2

Th
+ 2iω (b0 · W0ξ, εp

h)Th
+ ω2 (ρ0θ, εp

h)Th
,

(50c) 〈Πξ · n, 1εp
h〉

∂Th
+ iω 〈τ(Πθ − θ), 1εp

h〉
∂Th

= 0.

By conjugating the error equations (47a)–(47b)–(47c) and testing them with
(Πξ, Πθ, PM θ) we obtain

(51a) − (div (Πξ) , εp
h)Th

+ 〈Πξ · n, 1εp
h〉

∂Th

= − (Πξ,W0(εσh + δσh ))Th
+ 2iω (W0Πξ, (εp

h + δp
h)b0)Th

,

(51b) (Πθ, div (εσh ))Th
− iω 〈Πθ, τ(εp

h − 1εp
h)〉

∂Th
= ω2 (Πθ, ρ0(εp

h + δp
h))Th

,

(51c) − 〈θ, εσh · n〉∂Th
+ iω 〈θ, τ(εp

h − 1εp
h)〉

∂Th
= 0,

in (51c) we used (39) to replace PM θ by θ. Notice that some of the signs changed
due to the conjugation, for example in (47b)

iω 〈τ(εp
h − 1εp

h), Πθ〉
∂Th

= −iω 〈Πθ, τ(εp
h − 1εp

h)〉
∂Th

.

We notice that the sum of the left-hand sides of (50a)–(50b)–(50c) and (51a)–(51b)–
(51c) are equal. We deduce that the right-hand sides are also equal

− (W0ξ, εσh )Th
+ ‖εp

h‖2
Th

+ 2iω (b0 · W0ξ, εp
h)Th

+ ω2 (ρ0θ, εp
h)Th

= − (Πξ,W0(εσh + δσh ))Th
+2iω (W0Πξ, (εp

h + δp
h)b0)Th

+ω2 (Πθ, ρ0(εp
h + δp

h))Th
.

After reorganizing the terms, we obtain

‖εp
h‖2

Th
= − (W0(Πξ − ξ), εσh + δσh )Th

− (W0ξ, δσh )Th

+ ω2 (ρ0(Πθ − θ), εp
h + δp

h)Th
+ ω2 (ρ0θ, δp

h)Th

+ 2iω (b0 · W0(Πξ − ξ), εp
h + δp

h)Th
+ 2iω (b0 · W0ξ, δp

h)Th
,
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since ∇θ = W0ξ, see (40a). Introducing the mean value and following the proof of
[DS19, Prop. 3.8], we have

‖εp
h‖2

Th
= − (W0(Πξ − ξ), εσh + δσh )Th

− (W0ξ − {W0ξ}, δσh )Th

+ ω2 (ρ0(Πθ − θ), εp
h + δp

h)Th
+ ω2 (ρ0θ − {ρ0θ}, δp

h)Th

+ 2iω (b0 · W0(Πξ − ξ), εp
h + δp

h)Th
+ 2iω (b0 · W0ξ − {b0 · W0ξ}, δp

h)Th
,

since

({W0ξ}, δσh )Th
= 0, ({ρ0θ}, δp

h)Th
= 0, ({b0 · W0ξ}, δp

h)Th
= 0.

Using the Cauchy-Schwarz inequality, we have

‖εp
h‖2

Th
≲ ‖Πξ − ξ‖Th

9
‖εσh ‖Th

+ ‖δσh ‖Th

:
+ ‖W0ξ − {W0ξ}‖Th

‖δσh ‖Th

+ ‖Πθ − θ‖Th

9
‖εp

h‖Th
+ ‖δp

h‖Th

:
+ ‖ρ0θ − {ρ0θ}‖Th

‖δp
h‖Th

+ ‖Πξ − ξ‖Th

9
‖εp

h‖Th
+ ‖δp

h‖Th

:
+ ‖b0 · W0ξ − {b0 · W0ξ}‖Th

‖δp
h‖Th

Applying Lemma 6.1 with m = 04 to (ξ, θ), since ‖u − {u}‖K ≲ hK ‖u‖1,K , and
taking the elliptic regularity (41) into account, we obtain

<
@@@@@=

@@@@@>

‖Πξ − ξ‖Th
+ ‖Πθ − θ‖Th

≲ h(‖ξ‖1,Th
+ ‖θ‖1,Th

) ≲ h ‖εp
h‖Th

.

‖W0ξ − {W0ξ}‖Th
≲ h ‖W0ξ‖1,Th

≲ h ‖ξ‖1,Th
≲ h ‖εp

h‖Th

‖ρ0θ − {ρ0θ}‖Th
≲ h ‖ρ0θ‖1,Th

≲ h ‖θ‖1,Th
≲ h ‖εp

h‖Th

‖b0 · W0ξ − {b0 · W0ξ}‖Th
≲ h ‖b0 · W0ξ‖1,Th

≲ h ‖ξ‖1,Th
≲ h ‖εp

h‖Th
.

It follows that

‖εp
h‖2

Th
≲ h ‖εp

h‖Th

9
‖εσh ‖Th

+ ‖δσh ‖Th
+ ‖εp

h‖Th
+ ‖δp

h‖Th

:
.

Finally the absorption argument of Lemma 5.1 yields to (45b)

(iii) Bootstrapping process. Using the energy-like estimate (45a) and (44), we
have

‖εσh ‖Th
≲ ω ‖εp

h‖Th
+ O(hk+1),

Using the dual estimate (45b) and Lemma 5.1, we deduce (45c)

‖εσh ‖Th
= O(hk+1) and ‖εp

h‖Th
= O(hk+2).

This completes the proof of Lemma 6.2.

4Here, using the highest interpolation inequality of (Π, Π) is not required, and using only the
coarsest bound is sufficient to obtain the super-convergence result.
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Remark 6.4: The result of Lemma 6.2 is stronger than what is actually needed to
prove Theorem 6.1 as ‖εp

h‖Th
= O(hk+1) would be sufficient. Actually, we prove

that the proposed HDG method achieves super-convergence, ie taking ph ∈ Pk leads
to the following error estimate

‖Πp − ph‖Th
= O(hk+2).

Super-convergence is an attractive property for a numerical scheme, indeed by us-
ing a post-processing scheme it is possible to use the solution (σh, ph) to construct
a new approximation 0ph which converges with order O(hk+2), see [Ste91], [CGS10,
Sec. 5] for more details.

7. Global solvability

The analysis that we have carried out in the previous subsection works for any
solution (σh, ph, (ph) of the discrete system (12a)–(12b)–(12c) provided that such
solution exists. We already discussed the well-posedness of the local problems in
Theorem 5.1, but we have not yet proved that the global problem (13) for (ph was
well-posed.
To do that, we can either directly show the well-posedness of the global problem
(13), or we can use the error estimates of Theorem 6.1 and follow [DS19, End of
page 64].
We recall that the convected Helmholtz equation is a problem of Fredholm type.
It is therefore uniquely solvable except on a set of resonant frequencies. For those
frequencies, there exist non-zero solutions to the homogenous equation and unique
solvability cannot be guaranteed.
We can now state and prove the main result of this section.

Theorem 7.1 (Global solvability). Under the assumptions of Theorem 5.1 and
Theorem 6.1 and if ω is not a resonant frequency of the convected Helmholtz
equation (1) then the global problem is well-posed, ie (ph is uniquely defined by (13).

Proof: First we recall that (12a)–(12b)–(12c), or equivalently (13), is a square
system of linear equations, we therefore only need to show the uniqueness of the
solution of the homogenous system (when gN = gD = s = 0).
Assuming that ω is not a resonant frequency of (1), the exact solution is p = 0 and
σ = 0, and therefore

‖p‖s,O = 0 and ‖σ‖t,O = 0
and

εp
h = −ph ; εσh = −σh ; 1εp

h = −(ph.

The estimates from the previous section are
‖εp

h‖Th
≲ ‖δp

h‖Th
+ ‖δσh ‖Th

, ‖εσh ‖Th
≲ ‖δp

h‖Th
+ ‖δσh ‖Th

.

Going back to (42a)–(42b) we have δp
h = 0 and δσh = 0. This leads to ph ≡ 0 and

σh ≡ 0 since
‖ph‖Th

= ‖εp
h‖Th

≲ 0, ‖σh‖Th
= ‖εσh ‖Th

≲ 0, .

For all K ∈ Th, we can now write that (ph ≡ 0. taking into account (8a)
〈(ph, rh · n〉∂K = 0, ∀rh ∈ Vh(K),
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8. Numerical experiments

In this subsection, we will present some numerical experiments to illustrate our
theoretical results. Details regarding the implementation of the method in the open-
source software hawen [Fau21] and performance assessments on realistic problems
will be the subject of a forthcoming paper. As most of the estimates obtained in
our analysis involve projection errors of the form

(52) ‖ph − Πp‖Th
or ‖σh − Πσ‖Th

,

we will therefore provide numerical error involving those projection terms, instead
of the usual errors

(53) ‖ph − p‖Th
or ‖σh − σ‖Th

.

In particular, the errors involving the projections (52) will allow us to see the super-
convergence proven in Theorem 6.1, whereas the errors measured by (53) are not
of the same order of convergence. Those projections will be computed by locally
solving the system (37a)–(37b)–(37c) on each element of the mesh. The integrals
in the right-hand side are evaluated using a 91-point Gauss-Lobatto quadrature
rule and the resulting linear system is solved using lapack. For the purpose of
comparing numerical simulations on different meshes, we introduce the relative L2-
errors

Eq =
‖qh − Πq‖Th

‖Πq‖Th

, for q ∈ {p, σx, σy}.

This quantity is plotted against k/h, which is proportional to the number of degrees
of freedom per wavelength. We would like to point out that all the plots in the
next sections will use a log-log scale.

8.1. Geometric settings and analytic solution. As depicted on Figure 5 we
consider a uniform directional flow v0 = Mc0ex, where M is the Mach number.

ℓ

ex

ey

v0

v0

v0

Figure 5. Sketch of the geometric configuration

Unless stated otherwise, we will always use the following parameters for the con-
vergence tests

O = (0, 2) × (0, 1) ; ρ0, c0 ≡ 1 ; ω = 5.55π,

and the choice of M will be specified for each numerical experiment.
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Analytic solution: The duct modes are a family of analytic solutions of (1) in a
waveguide, see [BBL03]. They are given by

p±
n (x, y) = eiβ±

n xϕn(y)
where

n < N0 : β±
n =

−κM ±
A

κ2 − n2π2

ℓ2 (1 − M2)
1 − M2

n > N0 : β±
n =

−κM ± i
A

n2π2

ℓ2 (1 − M2) − κ2

1 − M2

with
κ = ω

c0
and M = v0

c0

N0 =
B

κℓ

π
√

1 − M2

C

and
ϕ0(y) :=

√
ℓ−1

ϕn(y) :=
√

2ℓ−1 cos
9nπy

ℓ

:
, n ∈ N∗

The choice of n will be specified for each numerical experiment.

8.2. Numerical experiment with a low Mach number. We then move to a
flow with a low Mach number. In this case we have used the following parameters

n = 3, and M = 0.2.

101.4 101.6 101.8 102
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10−2

10−1

k/h

E p

P3
P4
P5

O(h5.0)
O(h6.0)
O(h7.0)

Figure 6. Low Mach convergence history for the volumetric un-
known ph

The convergence history for the volumetric unknown ph is displayed on Figure
6. We can see that the method achieves a convergence rate of k + 2 as expected
and actually is super-convergent. The convergence history for the total flux σh

is depicted on Figure 7. Once again, the method achieves the expected optimal
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convergence rate of k + 1. When the penalization parameter is badly chosen, the
convergence properties of the method may be affected, as illustrated in [Rou21, Sec.
3.6.3].
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Figure 7. Low Mach convergence history for the first component of σ

8.3. Numerical experiment with a large Mach number. Finally we also con-
sidered a flow with a large March number. In this case, we used the following
parameters

n = 3, and M = 0.8.

As the simulations of acoustic wave propagation in flows with large Mach numbers
is known to be more challenging, we expect to see worse performances than in the
previous subsection.
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O(h6.0)
O(h7.0)

Figure 8. Large Mach convergence history for the volumetric un-
known ph

The convergence history for the volumetric unknowns p and σ are depicted in
Figure 8 and Figure 9. We can see that the method still has a convergence rate
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of k + 2 for p and k + 1. The super-convergence of the method is achieved for large
Mach numbers for interpolation degree 3 and 4. However the asymptotic regime
does not seem totally established for the method with k = 5. In this case, it seems
reasonable to use the HDG method with interpolation degree limited to 3 or 4, as
we are not guaranteed to obtain a better accuracy for the additional cost of the
method with interpolation degree 5. Furthermore, if a post-processing scheme is
used the HDG method with interpolation degree 4 has a convergence rate of 6,
which should be sufficient for most applications. This lack of convergence can be
explained by the anisotropy of the medium. For large Mach numbers, the solution
is rapidly oscillating in some directions. This behavior is difficult to capture with
uniform interpolation. In this case, using lower order polynomial interpolation on
smaller elements seems to give more accurate results.
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Figure 9. Large Mach convergence history for the first component of σ

Conclusion

In this paper we have constructed and analyzed an upwind HDG method for the
convected Helmholtz equation. This work was deeply influenced by the important
contributions of Francisco-Javier Sayas. We refer to the renct special issue [GHM22]
of Computer Methods in Applied Mathematics that was dedicated to his memory.
Our method is based on the total-flux formulation, where the vectorial unknown
encompasses both diffusive and convective effects. For this formulation, we were
able to compute a physically informed value of the penalization parameter therefore
making the corresponding HDG method easy-to-use, as there is no arbitrary choice
of parameter to make.

For this method, detailed theoretical results on well-posedness convergence are pro-
vided. These properties are illustrated by numerical experiments that are consistent
with the super-convergence phenomenon.

As the HDG method of this paper is super-convergent, it is possible to devise a
post-processing scheme to locally enhance the convergence rate of the method. This
will be the subject of a future work.
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It is also worth noting that the convected Helmholtz equation can be solved by
using a diffusive flux formulation. Then. the vectorial unknown only takes diffusive
phenomena into account. In the near future, we aim at studying the HDG method
that has been proposed in [Rou21] and compare its efficiency with the method we
propose herein.
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