Summarizing task-based applications behavior over many nodes through progression clustering
Résumé
Visualization strategies are a valuable tool in the performance evaluation of HPC applications. Although the traditional Gantt charts are a widespread and enlightening strategy, it presents scalability problems and may misguide the analysis by focusing on resource utilization alone. This paper proposes an overview strategy to indicate nodes of interest for further investigation with classical visualizations like Gantt charts. For this, it uses a progression metric that captures work done per node inferred from the task-based structure, a time-step clustering of those metrics to decrease redundant information, and a more scalable visualization technique. We demonstrate with six scenarios and two applications that such a strategy can indicate problematic nodes more straightforwardly while using the same visualization space. Also, we provide examples where it correctly captures application work progression, showing application problems earlier and as an easy way to compare nodes. At the same time that traditional methods are misleading.
Domaines
Informatique [cs]Origine | Fichiers produits par l'(les) auteur(s) |
---|