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Abstract—Visualization strategies are a valuable tool in the
performance evaluation of HPC applications. Although the tra-
ditional Gantt charts are a widespread and enlightening strategy,
it presents scalability problems and may misguide the analysis
by focusing on resource utilization alone. This paper proposes
an overview strategy to indicate nodes of interest for further
investigation with classical visualizations like Gantt charts. For
this, it uses a progression metric that captures work done
per node inferred from the task-based structure, a time-step
clustering of those metrics to decrease redundant information,
and a more scalable visualization technique. We demonstrate
with six scenarios and two applications that such a strategy
can indicate problematic nodes more straightforwardly while
using the same visualization space. Also, we provide examples
where it correctly captures application work progression, showing
application problems earlier and as an easy way to compare
nodes. At the same time that traditional methods are misleading.

Index Terms—HPC, Visualization, Performance Analysis,
Task-Based, Heterogeneity

I. INTRODUCTION

The performance analysis of High-Performance Computing
applications is a vital step for achieving correct performance.
However, the complexity of the applications and systems,
including the many levels of heterogeneity [1], presents con-
siderable challenges. There is also a popularity increase of pro-
gramming paradigms like the Task-Based one, as it improves
the portability of applications across different systems, enables
easier asynchronous executions, and improves composability
of the applications [2]. Such characteristics demand tailored
behavior analysis tools and strategies to aid developers and
analysts in their performance evaluation. In this way, the per-
formance analysis of HPC applications through visualization
is considered an advantageous methodology [3], as it enables
a facilitated comprehension of large amounts of trace data [4].

However, even when using visualization, the comprehen-
sion of applications’ performance may be shadowed by the
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number of features the system presents. This is particularly
the case when using Gantt charts plotting states per node-
level resources (cores, GPUs) with large amounts of nodes.
Although there are techniques for aggregating and reducing
the size of such visualizations [5]–[8], the traditional idea of
having system elements as one axis would never scale as their
number grows. Moreover, these Gantt chart ideas focus on
resource utilization, which does not necessarily reflect how
well the application is distributed and progresses. Aggregating
many resources with the same utilization would also mask
application problems and their progression.

A critical aspect of such analysis workflow is the progres-
sion of the application through its final result. Measuring at
a given point how far the application is from its goal, from
its ideal performance, and how each node behaves compared
to each other can lead to performance improvement insights.
We argue that an entry-level visualization for the performance
analysis workflow that focuses on the progression would
complement the Gantt chart by providing an overview. Such
entry-level visualization should guide the analyst to points
and nodes of interest by serving as a preliminary step before
delving into the details of application behavior using the Gantt
chart. This visualization should enable the perception of node
outliers and handle heterogeneity in its many forms, such as
resources, application phases, and tasks.

This paper studies and proposes a performance analysis
methodology through an entry-level visualization for check-
ing the progression of task-based applications on individual
nodes to indicate moments and node groups of interest. This
methodology comprises three elements: a progression metric
per node that can be inferred from the structure of task-based
applications, a clustering method to classify nodes and reduce
the elements to show, and a final entry-level visualization
of such components. The specific contributions of the paper
are the following. (1) We study progress metrics and how
they detect and represent performance behavior when exposed
to different situations, system-level node heterogeneity, and
multiple tasks. (2) We propose a strategy for clustering and
visualizing such progression metrics to aid the identification of
problematic groups of nodes and how much these groups are



performing behind compared to the performance lower bound
references. (3) We perform a comprehensive analysis of such
visualization in six situations with two different applications,
using the Chameleon dense linear algebra library [9] over the
StarPU runtime [10] and the ExaGeoStat application [11].

The paper is structured as follows. Section II presents the
background and related work on performance visualization of
HPC and task-based applications. Section III proposes the
methodology for visualizing the progression of groups of
nodes. Section IV demonstrates how this strategy discovers
problems in different cases. Section V concludes the paper
with a discussion and future perspectives. A publicly available
companion1 includes the paper’s data and visualization code.

II. BEHAVIOR VISUALIZATION OF HPC APPLICATIONS

HPC Applications traditionally run on a large number of
dedicated computing nodes. Identifying performance distur-
bances, bottlenecks, or computation progression in such sce-
narios is challenging, requiring more than general summarized
metrics such as makespan, speed-up, bandwidth, and memory
usage. The instrumentation of the source code to register
relevant timestamped events enables later reconstruction of the
execution behavior.

A common approach is to translate the logged events into
a visual representation. Performance analysis visual represen-
tations come in different flavors as histograms, call-graphs,
scatter plots, line charts, or treemaps [4], [12]. Regardless
of this assortment, the most prevailing views are Gantt-like
charts [13] where one axis is the time, and the other represents
resources or entities with application states being mapped on
such space.

Gantt-like charts, however, have some limitations. Regard-
ing the platform, they do not scale with a large number of
nodes, each one possibly exposing many workers (e.g., CPU
cores, GPU cards). Considering the software, such charts do
not allow us to easily distinguish the numerous hierarchical
states disclosed by current applications (e.g., phases, iterations,
low-level library kernels). Some tools [5]–[8] provide scaling
to Gantt charts through aggregation, looking for similarity and
uniformity to group similar states or behavior. Other scalability
approaches rely on different representations such as treemaps
[4], foldable graphs [14], or concurrent iterations [3].

A. Task-Based applications and their visualizations

In the task-based paradigm, the algorithm is structured
in small portions of work (i.e., tasks). Each task has its
parameters flagged as input, output, or input/output. In addition
to the submission order, this allows the construction of a
Directed Acyclic Graph (DAG) of tasks depicting their depen-
dencies. From this graph, it is possible to identify and execute
independent tasks in parallel. Task-based applications run on
top of dynamic runtime systems [10], which are in charge
of synchronizations, load distribution, and data transfers. In
this work, we use the StarPU runtime system that can split

1https://gitlab.com/lnesi/companion-pdp-2023

the application workload (i.e., the DAG of tasks) among dis-
tributed nodes, each one running a local scheduler. This model
enables fine-grained synchronizations, which favors workers’
occupation and performance but increases the complexity of
the performance analysis.

Some recent works [14]–[16] present task-based-oriented
performance analysis features. They rely on task-based ap-
plications’ DAG structure to provide scalable views through
node folding/unfolding. StarVZ [3], [17], [18] offers different
approaches that allow following the application’ progress aside
from the Gantt chart. It offers two progress views, one expos-
ing the start/end time of iterations on iterative applications
and the other exploiting the elimination tree structure used by
sparse linear algebra solvers.

This work proposes a new visualization strategy that cap-
tures actual node progress based on its total scheduled work-
load. Our strategy relies on clustering to group nodes by
their current performance enabling much better scalability than
existing visualizations. This groping method quickly drives the
analyst to problematic nodes, even when the traditional Gantt
visualizations still do not disclose the performance issues.
Aside from issues harming a few nodes, our new strategy
also differs from existing ones because it can identify global
performance disturbances affecting all nodes by comparing
their current behavior with theoretical lower bounds.

III. METHOD PROPOSAL: NODE PROGRESSION
VISUALIZATION THROUGH CLUSTERING

As shown in the last Section, Gantt charts usually play
a central role when analyzing HPC applications. However,
when many resources have to be considered, the raw Gantt
visualization is inadequate, and other summarizing techniques
should be used. Instead of observing the Gantt chart or
its variations as the first instrument, this Section presents a
methodology for an entry-level tool to provide an overview.
This overview can indicate and classify nodes of interest,
where the traditional methods (including detailed Gantt charts)
could use such groups to focus on non-redundant information.

A. Progression Metrics

The notion of how much work the application has accom-
plished at a given time, or how much it requires to finish,
can be captured into a progression metric. When improving
or analyzing an application’s performance, its progression is
an aspect of main interest, as if it progresses correctly and
fast, the application’s execution time will be optimized. In
a distributed scenario with many resources, it is desired to
understand how each node performs relatively.

We define a progression metric to capture the individual
and normalized [0, 1] progression of a node’s work while
maintaining the relative comparison possible. This comparison
means that when nodes achieve the same relative progression
(i.e., 50% of work), their metric should be the same.

The important aspect is the quantification of work. It can
be directly associated with the application’s main algorithm;
for example, the iteration number concluded on a particular



simulation step. However, it could be agnostic to the applica-
tion and use information from the programming paradigm, in
our case, the task-based one. In this agnostic case, universal
information for all applications like tasks, the DAG, and task
performance models can be used to measure work.

One very simple progression metric to be defined in the
context of the task-based programming paradigm is the num-
ber of tasks completed Cs,n at a given moment s in a node n
as the primary measure of work and normalizing it by dividing
with the node’s (n) total amount of tasks Nn. The progression
of a node n at a given time s, Pn,s will be given by:

Pn,s =
Cn,s

Nn
(1)

However, this simple metric works when the application
has a clear dominant phase and task. Complex applications
with multiple phases [19] and a variety of significant tasks
would require quantifying different tasks costs considering the
possible intra-node heterogeneity. This quantification could be
achieved by using tasks duration Tn,t,r of each heterogeneous
resource r (CPU, GPU) in the node n to relativize them
between task types t. The proposed metric is present on
Equations 2 and 3. Wt,n is essentially how much time a task
t would hypothetically take if all node n resources with an
available implementation could run it simultaneously, creating
a weight per task type. Then, the progression (Pn,s) can be
measured by summing for each task, the number of tasks
completed Cn,s,t of type t on node n at time s multiplied
by the respective weight (Wt,n), and normalizing in the same
way by replacing C by N . Such a metric would detect fewer
longer tasks’ progression and contribution correctly.

Wt,n =
1∑

r
1

Tn,t,r

(2)

Pn,s =

∑
t(Cn,s,tWt,n)∑
t(Nn,tWt,n)

(3)

To illustrate how this metric behaves, consider a case of
the dense linear algebra Chameleon library with the LU
factorization, where when using 30 nodes with two GPUs
each, two nodes were faulty and were initialized with only one
GPU. Figure 1 presents the aggregated Gantt chart per node
resource of such execution made with StarVZ. Each node has
two rows; the first is the aggregation utilization of the CPUs
(four cores per node), while the second is for GPUs (two per
node). In this case, it is possible to notice that two nodes (0
and 1) were working more than the others, and already with
30 nodes, such visualizations present scalability problems even
with intra-node resource aggregation. The initial yellow tasks
represent a generation data phase, and after synchronization,
the green area represents the main computational task, the
gemm operation.

Figure 2 presents the progression metric that accounts for
heterogeneity for each node of Figure 1 execution. At the start
of the execution, annotation A.3, there is a split in behavior.
The below line (actually two overlapping lines) represents the

Fig. 1. Gantt chart with nodes’ resources aggregation of the Chameleon LU
Factorization execution with 30 nodes where two are misbehaving.

progress of the two slower nodes. The upper lines show the
progression of the other nodes. In the middle of the execution,
there is also a division of nodes in two distinct behavior,
annotation B.3, observed from Gantt chart areas B.1 and B.2.

The progression metric, which is not a utilization metric
(as in the Gantt chart), indicates that a group of nodes is
progressing slower since the beginning, annotation A.3, a situ-
ation that is not clear in the Gantt area A.1. The Gantt gives a
false impression in area A.1 that things were progression well,
where actually there was a problem in the load partition since
the start (considering the relative real speed of the machines).
In the middle of the execution, the split in behavior is directly
associated with the data partition, as will be discussed in
Section IV. Where B.1 and B.2 are associated respectively
with nodes that communicate directly or indirectly with the
two problematic nodes. Also, this visualization already has a
lot of lines (one per node).

B. Summarizing by Clustering

Analyzing such progression metrics may still be difficult in
cases with many nodes having similar behavior, i.e., similar
metric values. The identification of nodes or groups of nodes
of interest can still be overwhelming. A possible solution is
summarizing such metrics by clustering and understanding the
behavior of node groups instead of individual ones. We utilize
the notion of discrete time-steps, computing the progress
metrics and clustering the nodes only for those moments.
This clustering per step is particularly useful because some
performance degradation may arise at lonely moments of the
execution, and while at that particular moment, the node is an



Fig. 2. Progression heterogeneous metric applied to the Chameleon simulation
of the LU Factorization on 30 nodes.

outlier, during the rest of the execution, it behaves the same
as other nodes.

At a given time-step, the progression may be summarized
by clustering nodes that follow the intuitive, though weak and
relative, characteristics: (1) Have the same progress behavior
but have differences in the progression metric because of sys-
tem variability, where one would expect a normal distribution;
(2) Have genuine, though light, differences in behavior (small
variances in workload, for example), but such small differences
relatively do not reflect points of interest for the analyst. To
comply with such characteristics, we select modal clustering,
where the populations and clusters are defined as high regions
of density divided by low regions of density [20]–[22]. Such
a definition would encompass both characteristics.

We also tested K-Means and Gaussian Mixture Models
(GMM) [23], but such approaches require determining the
number of k clusters or distribution components. One of
the most popular approaches to determine this is using BIC
(Bayesian Information Criterion); however, it requires the
number of observations to be large [24], [25]. In our case,
we also may want to cluster groups with a few outlier nodes,
even if this group comprises only one member. Also, for the
case of the GMM, which models clusters as a realization of a
normal distribution, we prefer generality that our groups are
not necessarily normal distributions.

The modal clustering is performed with the principle of the
mean shift algorithm [20], where data points are moved to the
near kernel density modes and clusters are divided by local
minimums [21], [22]. For this one-dimensional case with a
relatively small number of data points, this can be achieved by
computing the density estimation (using the Gaussian kernel in
our case) with a bandwidth parameter h and finding the local
minimums [22]. All data points between the same minimums
are classified in the same group as belonging to that mode.
Figure 3 presents the density estimations for the first ten time-
steps with a bandwidth of 0.01, where the horizontal axis is
the progression metric value, the vertical one is the density,
and the blue vertical lines are the local minimums. At step

one, all nodes share the same progression metric, zero, so it
has a unique mode centered at 0. At step two, two nodes start
to depart from the other 28; this causes a skewed distribution,
with the mode much closer to the metric of the 28 nodes. But
still, the distance between points using this bandwidth was
not sufficiently far for creating another mode. At step three,
there was enough distance, making two local modes, with a
local minimum in the middle separating the groups. The left
side represents the two slower nodes, while the right side is
the other 28 nodes. The same principle continues through the
remaining steps.

The advantages of this clustering method are that they
work with a small number of data points, has a bandwidth
parameter that controls the sensibility and the smoothing factor
of the density estimation, enabling the adjustment of the
clusters spread, and that clusters may be a complex mixture
distribution that admits more complex density shapes than a
normal distribution. The disadvantages of this clustering are
that it does not capture possible sub-populations of interest
that share the same mean but have different variances and
the control parameter that must be adjusted. Also, this step-
based clustering discards temporal knowledge that could be
exploited.

Fig. 3. Kernel density estimations of the first ten time-steps with the Gaussian
kernel and bandwidth 0.01 for all steps considering metrics of Figure 2.

C. Progression Visualization

After having computed the clusters for each time-step,
we propose a visualization to show the modal clustering
progression. It is then shown in Figure 4 for the same data as
Figure 2. At each time-step, one point is displayed per cluster.
A line will connect two points of subsequent steps if they
share nodes, and the number of shared nodes determines its
thickness. In this way, from time 0 to time ~2000, all nodes are
associated with the same cluster and share all nodes. However,
at time ~2500, two clusters are detected, and the difference in
thickness (thin on the bottom and thick on the top) informs
that most of the nodes followed the up path behavior. This is
the case as the upper cluster is made of two nodes while the
below one is made of 28 nodes. At each disjoint path, the paths
with fewer nodes have a label with the nodes that follow it.
Also, the visualization keeps the original progression metrics
per node (as of Figure 2) as background semi-transparent gray
lines.

However, even if all nodes follow the same behavior, the
application does not necessarily achieve the ideal performance.



Fig. 4. Progression visualization strategy applied to the Chameleon simulation
of the LU Factorization on 30 nodes.

All nodes could share the same problems and be equally late.
We plot two additional metrics to aid the observation of such
a problem (see Figure 4). First, the visualization presents the
global Area Bound Estimation (ABE) [3] as a vertical dashed
line. This is a lower bound when assuming that the duration
of the tasks is not impacted. Second, we compute the ABE
per time-step and perform a cumulative sum for each step of
their ABE and their previous ones. A series of black points
interconnected by a dotted line, usually in the upper part,
demonstrates the cumulative per-step ABE. The first point
is the ABE per step of the first step, while the second one
is the ABE per step of the second step plus the first one,
and so on. This metric captures some critical paths and steps’
resource restrictions. For example, until step one, there are
only tasks that do not utilize GPUs; the ABE of this step will
only consider CPUs letting the GPUs idle. This is different
from the global ABE, which will try to “pack” all tasks as if
they do not have dependencies and compute the bound as if
the GPUs were used in the early moments of the execution by
future tasks. This difference explains why the per-step ABE
may be longer than the global ABE. With those two metrics,
one can have a better reference of the nodes’ progress.

IV. EVALUATION ON REAL APPLICATIONS

This Section presents the adoption of our proposed method-
ology on real applications and how it could identify problems.

A. System and Software

The experiments were conducted with real executions and
simulations (with StarPU-Simgrid [26], [27]) using Chameleon
commit 54e4ec73, StarPU commit 0fb603d8, and Simgrid
commit 61ee012f. The version of ExaGeoStat, the applica-
tion used in Section IV-C, is 9518886. Simulation was used
for the LU factorization experiments (Section IV-B) with a
workload of size 96000 × 96000, considering 30 machines
with eight cores (Intel Xeon E5-2620 v4) and 2 NVIDIA
GTX 1080ti GPUs each. For the ExaGeoStat real experiments
(Section IV-C), two partitions of machines were used with
a 96100 × 96100 workload. First, six nodes with 32 cores
each (2x AMD EPYC 7301); second, two nodes with 24 cores

(2x Intel Xeon 6126), and two Nvidia P100 each. The modal
clustering uses the density function from R 4.2.1 [28].

B. Chameleon predefined abnormal behaviors

Intending to test the methodology’s identification power
in common problems, we define a set of situations that
may happen during the execution of real applications. Such
situations are: (a) Communications contention problems of one
or more nodes; (b) The utilization of a wrong distribution,
giving more load to some nodes; (c) Global bad behavior that
appears to be correct. Those situations were created using
StarPU-Simgrid simulations and the Chameleon application.
The next Sections detail these situations.

1) One node with slower connection: In this case, the first
node has only a 1Gb/s network while the others have 25Gb/s.
Figure 5 shows the progress clustering metric with 20 time-
steps on the upper panel and the respective Gantt chart with
nodes’ resources aggregation on the lower one.

Fig. 5. Progression visualization strategy and aggregated Gantt chart of
Chameleon’s LU Factorization simulation over 30 nodes where the first node
has a slower network.

Three groups of nodes dominate such execution. The slow-
est group, comprised of only one node (node zero), is exactly
the node with the network reduction. The second slowest group
is composed of nodes 1-6, 12, 18, and 24 and is only a little
better than group one (the slowest). At the same time, the



final and last group is composed of all remaining nodes. The
distance from the lower bounds is significant, and while groups
one and two started with the slowest progression since the
beginning, group three followed the lower bound’s progression
until time ~15s. The explanation of this group split relies on
the application matrix distribution.

The Chameleon library uses the traditional block-cyclic
distribution [29] to divide its matrix across many nodes.
Considering n nodes, this distribution works by setting two
parameters p and q as p × q = n. These parameters will be
used to create a simple partition with p rows and q columns
that will be used as a repetitive pattern through all the matrix
block distributions. This partition matrix is depicted at the
bottom right of the progression metric panel and presents the
partition with p = 5 and q = 6 used in this case. In this
distribution, considering the LU factorization kernel, nodes
essentially communicate with other nodes that share the same
row and columns. The nodes that share the row and columns
with the problematic node zero are exactly the nodes of cluster
two. This is not necessarily obvious, as one could expect
one problematic node to cause a global slowdown in the
whole system. However, the behavior of nodes that maintain
direct communication with node zero is more affected. This
observation corroborates that the clustering manages to group
significant co-related nodes. From the performance analysis
perspective, the nodes with a slower progression would have
a priority in the analysis with more detailed tools such as Gantt
charts. When observing the Gantt chart solely, it is not clear
what is the group of most problematic nodes, though there is a
distinction between the two groups in behavior. The progres-
sion metric informs such problematic nodes straightforwardly,
with the benefit of being a more scalable visualization.

2) Bad distribution of load across nodes: In this case, we
consider a heterogeneous distribution (1D-1D [30]), giving
50% more load to the first node and 25% more load to the
second node. Figure 6 presents the progression metrics for
this execution in the upper panel with the partition of this
heterogeneous distribution on the bottom right. The bottom
panel is the aggregated Gantt chart. Nodes zero and one have
larger areas related to the increase in load (though they have
the same computational power as the others). There is an
expectation that this execution would have problems, but we
are interested in checking how the nodes clusters relate to
these problematic nodes.

Groups one and two from time 8s to 24s are solely the nodes
zero and one, the problematic ones. There are five clusters at a
maximum on time of ~24s. Group three is essentially nodes 2-
5, 10, 15, 20, and 25, while group four is nodes 6, 11, 16, 21,
26, and group five is the others. This corresponds to the nodes
that directly communicate with the problematic nodes, with a
small difference between groups three and four, that the latter
communicates more with node one (25% slowdown). While
the groups can be recognizable in the Gantt chart, it is unclear
to indicate which ones are the most affected. Another situation
is that most nodes get affected by the slowdown only at the
20s-25s, progressing until then near the bound.

Fig. 6. Progression visualization strategy and aggregated Gantt chart of
Chameleon’s LU Factorization simulation over 30 nodes where the first and
second nodes received 50% and 25% more load, respectively.

3) All nodes with bad network: The network can also
globally impact the performance of the application. This
case considers a scenario where the infrastructure has not an
optimal network. In this case, all nodes have a 1Gb/s network.
Figure 7 left presents the clustering metrics for this case. All
nodes share the same cluster and present similar behavior.
This could lead to the analysis that the execution was well
performed. However, the metrics distance to the lower bounds
of per-step and global ABE indicates a problem in execution.

The problem of Figure 7 left execution is even more
discernible when it is compared to a correct execution without
problems, as shown in Figure 7 right side. In the correct case,
it is possible to check the proximity of the metric to the
lower bound, indicating a well-behaved execution. The correct
execution also demonstrates the difficulties of adhering to both
ABE bounds at the end, when parallelism diminishes.

C. A multi-phase application over heterogeneous nodes

ExaGeoStat is a machine learning application that models
Geostatistics with the Gaussian Process [11]. ExaGeoStat
has five phases, the two most prominent phases being data
generation and Cholesky factorization.



Fig. 7. Progression visualization strategy of Chameleon’s LU Factorization
simulation over 30 nodes where, on the left, all nodes have slow networks,
and on the right, regular networks.

In this case, we use eight nodes, where six are CPU-
only, and two have CPUs and two GPUs. Figure 8 presents
the progress cluster visualization on the top panel and the
aggregated Gantt chart on the bottom. The first phase is
depicted in the Gantt by the yellow tasks and in the A area
on the top panel.

Fig. 8. Progression visualization strategy (with a bandwidth of 0.15) and
aggregated Gantt chart of ExaGeoStat real execution iteration on eight
heterogeneous nodes.

After the first phase, the nodes split into two clusters,
despicted in the B area, and for a short period, three clusters.
The fastest cluster (the top one) comprises six nodes that
are exactly the nodes of the first partition, while the slowest
cluster (in red) is the two nodes of the second partition
(six and seven). With this indication from the progression
visualization that some nodes were not performing correctly,

further investigation is performed into them. In this case, the
slow performance is caused by mainly two problems. First, we
used distributions that consider the machines’ relative power as
inputs for this heterogeneous execution. The mean duration of
all tasks on all nodes is considered for computing such power.
However, when generating such distribution, there was an
overestimation of the performance of the main task, dgemm,
on GPUs by 5%. Second, this power considers a continuous
utilization of the GPUs. However, in this case, these workers
had short idle times between many tasks, accounting for 9%
idle time. The StarPU scheduler used, dmdas, first greedy
considers priorities, then the locality of data of ready tasks. A
task becomes ready when its data is available on that node,
i.e., dependencies are met and transferred to that node via
MPI. Because of data of high-priority tasks arriving on this
node, the scheduler will not be able to pre-fetch such data
and will immediately schedule such high-priority tasks above
all others, even if their data is still in RAM and have to be
transferred to the GPU. Although there is a pipeline of tasks on
GPU workers, the transfer duration is higher than the duration
of the tasks, and the GPU will wait for the transfer to finish
before starting the high-priority task.

This case also illustrates how the Gantt chart can be
misleading directly. Figure 9 shows the Gantt chart for all
resources for this execution (of Figure 8) for a middle point in
the execution for node 0 (Gantt chart behavior equal to nodes
1, 2, 4, 5), node 3, the one that formed a new cluster between
the fastest and slowest one, and node 6 (Same behavior as node
7). When looking at this Gantt, one may conclude that there
is a huge problem on node three because of CPU workers’
idle times. However, it is difficult to notice the small GPU
idle times that account for a considerable loss in overall
performance, as described before. The idle times on node 3
are mainly critical paths of late tasks of nodes six and seven
that increased communication contention.

Fig. 9. Traditional Gantt chart of selected nodes of Figure 8 execution.

V. CONCLUSION AND DISCUSSION

Performance analysis of complex HPC applications is the
core for improving and accelerating them even more. However,



such performance analysis is difficult, as both applications and
platforms present many levels of complexity, like heterogene-
ity, different phases, and sizes. Visualization can aid in this
situation by quickly assisting in interpreting the application
behavior. However, even the best visualizations have limited
space for representing such amounts of data. Gantt charts are
a classical visualization approach for such analysis. However,
they are not scalable to the number of nodes and may point
in the wrong direction. Although Gantt charts help visually
identify resource idleness, they fail to determine or pinpoint
the root cause of such inactivity that might be located else-
where because task dependencies are much more complex in
task-based systems.

This paper, intending to present a summary of application
behavior and quickly capture the progression of nodes and
indicate problematic ones, presents an entry-level strategy
to provide an overview of the execution before using other
methods, like Gantt charts. This strategy utilizes a progression
metric to capture the behavior of the nodes, a clustering of
such progression metric to identify nodes groups of interest
and reduce the number of elements to show, and a visual-
ization of such clustering over execution time. We evaluate
such strategies over four crafted problematic scenarios with
the dense linear algebra library Chameleon, which correctly
detected the group of nodes with problems. In a real case
with the ExaGeoStat application, it handled heterogeneity and
indicated the most problematic nodes more straightforwardly
than a traditional Gantt Chart. All of these results show the
potential of such strategies. Future work includes the study of
other progression metrics and clustering algorithms that may
be tailored for some particular situations and the identification
of clusters considering the temporal perspective.
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