The GHP scaling limit of uniform spanning trees of dense graphs - Archive ouverte HAL
Article Dans Une Revue Random Structures and Algorithms Année : 2023

The GHP scaling limit of uniform spanning trees of dense graphs

Eleanor Archer
Matan Shalev

Résumé

We consider dense graph sequences that converge to a connected graphon and prove that the GHP scaling limit of their uniform spanning trees is Aldous' Brownian CRT. Furthermore, we are able to extract the precise scaling constant from the limiting graphon. As an example, we can apply this to the scaling limit of the uniform spanning trees of the Erdös-Rényi sequence (G(n, p)) n≥1 for any fixed p ∈ (0, 1], and sequences of dense expanders. A consequence of GHP convergence is that several associated quantities of the spanning trees also converge, such as the height, diameter and law of a simple random walk.
Fichier principal
Vignette du fichier
GraphonsFinal.pdf (527.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Domaine public

Dates et versions

hal-03999536 , version 1 (21-02-2023)

Licence

Domaine public

Identifiants

Citer

Eleanor Archer, Matan Shalev. The GHP scaling limit of uniform spanning trees of dense graphs. Random Structures and Algorithms, 2023, 65 (1), pp.149-190. ⟨10.1002/rsa.21213⟩. ⟨hal-03999536⟩
11 Consultations
53 Téléchargements

Altmetric

Partager

More