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Abstract

We consider dense graph sequences that converge to a connected graphon and prove that the GHP
scaling limit of their uniform spanning trees is Aldous’ Brownian CRT. Furthermore, we are able to
extract the precise scaling constant from the limiting graphon. As an example, we can apply this to
the scaling limit of the uniform spanning trees of the Erdös-Rényi sequence (G(n, p))n≥1 for any fixed
p ∈ (0, 1], and sequences of dense expanders. A consequence of GHP convergence is that several associated
quantities of the spanning trees also converge, such as the height, diameter and law of a simple random
walk.

1 Introduction

Uniform spanning trees (USTs) are fundamental objects in probability theory and computer science, with
close connections to many other areas of mathematics including electrical network theory [20], loop erased
random walks [32] and random interlacements [18], to name but a few.

It was recently shown in [7], building on the work of [31], that the universal metric measure space scaling
limit of USTs of a large class of graphs is Aldous’ Brownian continuum random tree (CRT). The purpose
of the present paper is to extend this result to sequences of dense graphs encoded by graphons. Due to a
transitivity assumption in previous papers, these USTs are not covered by the results of [31] and [7], but
here we establish that the CRT is nevertheless still the scaling limit. In addition we are able to express the
precise scaling factor in terms of the encoding graphon, making the result more precise than that in [7] and
demonstrating that the notion of graphon convergence is enough to fully determine the UST scaling limit.

The CRT, introduced by Aldous [1, 2, 3], is a well-known object in probability theory, and is perhaps
best-known as the scaling limit of critical finite variance Galton–Watson trees. We do not attempt to give a
full introduction here; we will give a formal definition in Section 3 and we refer to the survey of Le Gall [23]
for further background.

A weighted graph (G,w) is a graph G = (V,E) in which we assign to each edge e ∈ E a non-negative
weight we. In this paper, we will work with sequences of weighted graphs with no loops or multiple edges in
which we ∈ [0, 1] for each e ∈ E. In the case where all edge-weights are equal to 1, we say that the graph is
simple. We extend the definition of vertex degree to weighted graphs by defining deg v {Matan: ask Asaf}
to be the sum of the weights of the edges emanating from v.

The uniform spanning tree of a weighted graph (G,w) is a random spanning tree chosen from the set
of all spanning trees of G where each spanning tree t is chosen with probability proportional to

∏
e∈t we.

We will say that such a sequence (Gn)n≥1 of weighted graphs is dense if there exists δ > 0 such
that ∆n := minv∈Gn

deg(v) ≥ δ#V (Gn) for all n. The notion of convergence of dense graph sequences is
naturally captured by objects known as graphons, introduced by Lovász and Szegedy [25] and also Borgs,
Chayes, Lovász, Sós and Vesztergombi [10] for this purpose. See also [14] for a very quick introduction. A
graphon W is a symmetric measurable function from [0, 1]2 to [0, 1] and can be thought of as (roughly)
the continuum analogue of an adjacency matrix. Using this viewpoint, there is a natural notion of distance
between discrete graphs and graphons, known as the cut-distance, which we will define in Section 2.1. This
allows us to consider the notion of convergence to a given graphon W .
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Graphons are commonly used in combinatorics and computer science to analyze large dense graphs.
For example, they have been used in extremal graph theory [12], mean-field games [11], analysis of large
graphs [21], and to study the thermodynamic limit of statistical physics systems [27, 13], to give a very
non-exhaustive list.

Given a graphon W , define a constant

αW =
1(∫

[0,1]2
W (x, y)dxdy

)2 ·
∫
[0,1]

(∫
[0,1]

W (x, y)dy

)2

dx. (1)

Note it follows immediately from Jensen’s inequality that αW ≥ 1, with equality if and only if W is
constant almost everywhere. We also say that a graphon W is connected if for all A ⊂ [0, 1] of positive
Lebesgue measure, it holds that ∫

A

∫
AC

W (x, y)dxdy > 0.

The main result of the present paper is the following. Below, the GHP distance refers to the Gromov
Hausdorff Prohorov distance between metric measure spaces; we define it in Section 2.8.

Theorem 1.1. Let (Gn)n≥1 be a dense sequence of deterministic weighted graphs converging to a connected
graphon W , where each Gn has n vertices. For each n ≥ 1, let Tn be a uniform spanning tree of Gn. Denote
by dTn

the corresponding graph-distance on Tn and by µn the uniform probability measure on the vertices of
Tn. Then (

Tn,
√
αW√
n

dTn
, µn

)
(d)−→ (T , dT , µ)

where αW is defined as in (1), (T , dT , µ) is the CRT equipped with its canonical mass measure µ and
(d)−→

denotes convergence in distribution with respect to the GHP distance between metric measure spaces.

A single graphon can also encode sequences of random graphs G(k,W )k≥1 and H(k,W )k≥1 with k nodes,
obtained by sampling k uniform vertices x1, . . . , xk in [0, 1], and either adding an edge of weight 1 between
nodes i and j with probability W (xi, xj) (this is the sequence G(k,W )k≥1), or instead adding an edge
of weight W (xi, xj) (this is the sequence H(k,W )k≥1). We will deduce the following as a consequence of
Theorem 1.1.

Corollary 1.2. Let W be a connected graphon. Suppose that there exists δ > 0 such that the minimal degree
of G(n,W ) is at least δn with probability tending to 1 as n → ∞. For each n ≥ 1, let Tn be a uniform
spanning tree of G(n,W ). Denote by dTn the corresponding graph-distance on Tn and by µn the uniform
probability measure on the vertices of Tn. Then(

Tn,
√
αW√
n

dTn
, µn

)
(d)−→ (T , dT , µ)

where (T , dT , µ) is the CRT equipped with its canonical mass measure µ and
(d)−→ denotes convergence in

distribution with respect to the GHP distance between metric measure spaces.

Moreover, the same statement holds for H(n,W ) in place of G(n,W ).

For example, this applies to the Erdös-Rényi sequence (G(n, p))n≥1 for any fixed p ∈ (0, 1], which is the
sequence (G(n,W ))n≥1 when W is the graphon that is p (almost) everywhere, and in which case αW = 1.

Theorem 1.1 shows that graphons contain enough information to determine the scaling limit of USTs,
or in other words that the GHP scaling limit is continuous with respect to the topology induced by the
cut-distance. In [16], the authors show an analogous result for the Benjamini-Schramm local limit of the
USTs appearing in Theorem 1.1, and show that the local limit can be characterized as a multi-type critical
branching process conditioned to survive, where the offspring distributions are encoded by the limiting
graphon. Additionally, the authors show that continuity also holds for the total number of spanning trees
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of Gn, after being properly renormalized. However, they also give an example to show that this is no longer
true under weaker assumptions.

Note that convergence of a graph sequence to a connected graphon does not automatically imply that the
graph sequence must be dense, and in fact the local limit result for USTs of dense graphs obtained in [16] does
not require this assumption. There, the authors assume only that the limiting graphon is non-degenerate,
meaning that

degW (x) :=

∫
[0,1]

W (x, y)dy > 0 ∀x ∈ [0, 1], (2)

and that the graph sequence is connected. In fact this implies that “most” vertices have high degree; see [16,
Theorem 2.7 and Definition 2.6] for a precise statement. This is enough to prove a local limit statement since
with high probability, the local limit will not see the exceptional vertices of low degree. On the other hand,
the GHP scaling limit is a global statement and therefore we require more uniform control of the underlying
graphs. One can easily see this through a simple counterexample: let Gn denote the complete graph on
n − n2/3 vertices, and attach a stick of length n2/3 to one vertex of the complete graph. The graphs still
converge to the graphon that is 1 everywhere, and the local limit of UST(Gn) is once again the Poisson(1)
Galton–Watson tree conditioned to survive. On the other hand, the only non-trivial compact scaling limit
is a single stick, and not the CRT. One can also construct similar counterexamples with minimum degree at
least n

γn
for any sequence γn → ∞, meaning that the assumption of linear minimal degree is indeed necessary.

By definition, the CRT appearing in the preceding theorems has total mass equal to 1, but it is also
possible to define a larger version CRTm which is conditioned to have total mass equal to m. Aldous [1,
Section 6] showed that the sequence (CRTm)m≥1 admits a local limit as m → ∞ and introduced the term
self-similar CRT (SSCRT) to denote this object. In light of this, one can also ask whether the operations
of taking scaling limits and local limits of USTs commute. In general, answering this question seems quite
non-trivial, as the multitype branching process appearing as the local limit is very non-homogeneous and the
offspring distributions of successive generations are not independent. However, a special case arises when
the sequence (Gn)n≥1 is regular. In this case the local limit is a Poisson(1) Galton–Watson tree conditioned
to survive, which is well-known to rescale to the SSCRT; moreover we will show in Remark 7.3 that the
constant αW must be equal to 1, which entails that 1

αW
is equal to the variance of the Poisson(1) offspring

distribution, and from which we can deduce that the operations do indeed commute in this case.

For non-regular graph sequences, the question seems a bit more subtle. While the expected number of
non-backbone neighbours of the root vertex of the local limit is indeed 1, the variance is not necessarily
equal to 1

αW
. For example, for the complete bipartite graph K 2n

3 ,n3
, one can calculate using [16, Definition

1.2] that the variance of the offspring number of the root vertex is equal to 3
2 , but

1
αW

is equal to 8
9 . This

does not preclude the possibility that the operations commute, since the variance in subsequent generations
may converge to 1

αW
in the appropriate sense. For K 2n

3 ,n3
we can in fact apply results of Miermont [28] (the

local limit in this case is in fact a Galton–Watson tree with two alternating types: Poi(2) and Poi( 12 )) to
deduce that the operations do commute. However, in the general case the local limit is a Galton–Watson
tree with uncountably many types, for which, to the best of our knowledge, scaling limits are not covered
by the existing Galton–Watson tree literature.

Finally, we note that in [6], the authors consider similar dense graph sequences, but do not assume
that the sequence converges to a graphon. Under this weaker assumption, they prove that the diameter
of UST(Gn) is of order

√
n with high probability. We cannot hope to prove a scaling limit result under

the same hypotheses, since one can, for example, connect two copies of Kn/2 by a single edge, in which
case the diameter is still of order

√
n but the scaling limit is not the CRT. However, when the graphs are

well-connected, we can obtain the scaling limit.

In this paper we in fact prove the following theorem. In what follows, for a given γ > 0 we say that
a graph G is a γ-expander if for all U ⊂ V (G), the number of edges between U and V (G) \ U is at least
γ|U |(|V (G)| − |U |).

Theorem 1.3. Take γ > 0 and δ > 0 and let (Gn)n≥1 be a dense sequence of connected γ-expanders, where
each Gn has n vertices and minimal degree at least δn. For each n ≥ 1, let Tn be a uniform spanning tree
of Gn. Denote by dTn

the corresponding graph-distance on Tn and by µn the uniform probability measure on
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the vertices of Tn. Then there exists a sequence (αn)n≥1, satisfying 1 ≤ αn ≤ δ−1 for all n ≥ 1, such that(
Tn,

√
αn√
n

dTn , µn

)
(d)−→ (T , dT , µ)

as n → ∞ where (T , dT , µ) is the CRT equipped with its canonical mass measure µ and
(d)−→ denotes conver-

gence in distribution with respect to the GHP distance between metric measure spaces.

In fact the theorem holds slightly more generally, see Remark 1.4, but the above assumptions make the
proof more straightforward. Clearly one cannot hope for convergence of the parameter αn without making
stronger assumptions, since one can alternate graphs from sequences with different limiting values of αn.
For example, for the sequence of complete graphs αn → 1, but if Gn is instead the complete bipartite graph
Kn

3 , 2n3
, then αn → 9

8 .

As well as the convergence of the rescaled diameter, it follows directly from the GHP convergence of
Theorem 1.3 that we also have convergence of the rescaled height and rescaled simple random walk on
UST(Gn). More formally, the following three convergences hold in distribution.

1.
√
αn Diam(Tn)√

n

(d)→ Diam(T ).

2.
√
αn Height(Tn)√

n

(d)→ Height(T ).

3. If Xn is a simple random walk on Tn, then the quenched law of
(√

αn√
n
Xn(2n

3/2α
−1/2
n t)

)
t≥0

converges

in distribution to the quenched law of Brownian motion on the CRT. It also follows that the associated
mixing times converge on the same time scale.

See [7, Section 1.3] for further details of why these three properties follow from GHP convergence. In the
settings of Theorem 1.1 and Corollary 1.2, we can replace αn with αW in the above three statements.

1.1 Proof strategy

Clearly, in order to prove the main theorems, it suffices to first prove Theorem 1.3 and then show that the
graph sequence is an expander sequence and that αn → αW under the additional assumption of Theorem 1.1.

We will prove Theorem 1.3 in two steps using the lower mass bound criterion of [8]. In particular, by
[7, Theorem 6.5], in order to prove the GHP convergence of Theorem 1.3 it is enough to prove the following
two statements.

(A) The convergence holds in a finite-dimensional sense (this will be formally stated in Theorem 3.1).

(B) The lower mass bound condition holds; that is, if mn(η) = infx∈UST(Gn)

{
|B(x,η

√
n)|

n

}
, then for every

η > 0 the sequence mn(η)
−1 is tight (this will be formally stated in Claim 6.4).

The second condition will follow quite straightforwardly from minor adaptations of the arguments in [7].
The bulk of this paper is devoted to proving the first condition. In fact, this condition is equivalent to the
joint convergence, for all k ≥ 1, of the set of

(
k
2

)
distances between k points chosen uniformly at random in

UST(Gn).

This type of convergence was previously proved for USTs of sequences of high-dimensional graphs in [31].
This is a different class of graphs and includes the assumption of transitivity. Their proof uses Wilson’s
algorithm, which is a method for sampling USTs one branch at a time by running loop erased random walks
(LERWs). In their proof, they couple Wilson’s algorithm on Gn with Wilson’s algorithm on the complete
graph and prove that the set of

(
k
2

)
distances on the two graphs must have the same scaling limit.
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Our proof, by contrast, is more direct. We also use Wilson’s algorithm, but we work directly with
UST(Gn) and use the Laplacian random walk representation of LERWs to sample each branch. By tightly
controlling the capacity of loop-erased random walks, we are able to directly compute the probability that
a given branch exceeds a given length, and show that this converges to the analogous quantity for the CRT
using Aldous’ stick-breaking construction.

Remark 1.4. As demonstrated by the examples and discussion above Theorem 1.3, the assumption of linear
minimal degree is necessary in order to obtain convergence in the GHP topology. In order to keep the exposi-
tion clean, we prove both conditions (A) and (B) above under these assumptions. However, the assumption
is not really necessary for condition (A). The proof would work unchanged if we allow o(n) vertices to have
degrees less than

√
n, for example (since the loop-erased random walk that we analyze in Section 5 will never

hit this set, whp). In fact, we believe that it may be possible to adapt our proof of condition (A) (Theorem 3.1)
to work under the original assumptions of [31], but this would require one to keep track of several additional
messy details, and would not add further insight.

1.2 Organization of the paper

This paper is organized as follows. In Section 2 we give the necessary background, including an introduction
to graphons, USTs and the topologies of interest. In Section 3 we introduce a general framework for stick-
breaking constructions of trees, and state Aldous’ stick-breaking construction of the CRT. In Section 4 we
give some precise random walk estimates and we apply these with the Laplacian random walk representation
in Section 5 to obtain estimates for the first steps of Wilson’s algorithm. In Section 6 we use these estimates
to couple stick-breaking on the CRT with Wilson’s algorithm and prove that the two processes are very
similar when n is large enough. This proves condition (A) above. We also explain how (B) can be deduced
from the results of [7] which in fact establishes Theorem 1.3. Finally, in Section 7 we prove Theorem 1.1 and
Corollary 1.2.

1.3 Acknowledgments

We would like to thank Asaf Nachmias and Jan Hladky for suggesting to look at graphons and for many
helpful comments.

2 Background

2.1 Graphons

A graphon is a symmetric measurable function [0, 1]2 → [0, 1]. As mentioned in the introduction, graphons
were introduced by Borgs, Chayes, Lovász, Sós, Szegedy and Vesztergombi [25, 10] in order to characterize
dense graph limits. To understand why this definition is natural, we define the graphon representation
of a discrete graph G as follows. Suppose that G is a simple graph with n vertices. Number the vertices
from v1 to vn and partition the interval [0, 1] into a sequence of intervals (Ii)

n
i=1, where Ii =

[
i−1
n , i

n

]
for

each 1 ≤ i ≤ n. We define the graphon WG : [0, 1]2 → [0, 1] by (e.g. see [25, Section 7.1])

WG((x, y)) = 1{v⌈nx⌉∨1 ∼ v⌈ny⌉∨1} ∀ (x, y) ∈ [0, 1]2.

If G is a weighted graph, we instead define

WG((x, y)) = w(v⌈nx⌉∨1, v⌈ny⌉∨1) ∀ (x, y) ∈ [0, 1]2,

where w(vi, vj) represents the weight of the edge joining vi and vj (and is zero if there is no such edge).

Note that, given only G, this definition of WG is not unique, since it depends on the ordering of the
vertices. Therefore, in order to define a metric on the space of graphons, we will instead consider equivalence
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classes of graphons. In particular, given two graphons W1 and W2 the cut-distance between them is defined
as (e.g. see [25, Equation (8.16)])

δ□(W1,W2) = inf
φ

||Wφ
1 −W2||□,

where the infimum is taken over all measure-preserving automorphisms of [0, 1], where Wφ is defined by
Wφ(x, y) = W (φ(x), φ(y)), and where the cut-norm of a measurable function U : [0, 1]2 → [−1, 1] is given
by

||U ||□ = sup
S,T∈B([0,1])

∣∣∣∣∫
x∈S

∫
y∈T

U(x, y)dxdy

∣∣∣∣.
We therefore say that a sequence of deterministic graphs (Gn)n≥1 converges to a graphon W if

δ□(WGn
,W ) → 0 as n → ∞.

Remark 2.1. Graphons can in fact be defined as functions from Ω2 → [0, 1], where Ω is any probability
space, see [25, Chapter 13], but since all probability spaces are isomorphic, this does not provide much greater
generality.

We will make use of the following lemma.

Lemma 2.2. [9, Lemma 7]. Let W be a connected graphon. Then, for every α ≤ 1/2 there exists some
constant β = β(W,α) such that for every set A with α ≤ µ(A) ≤ 1/2 we have∫

A

∫
AC

W (x, y)dxdy > β.

2.1.1 Random graphs and graphons

A graphon W can be used to define a random graph with n vertices in two ways.

1. Sample x1, . . . , xn i.i.d. uniformly on [0, 1]. We define a random simple graph on {1, . . . , n} by
joining nodes i and j with probability W (xi, xj), independently for each (unordered) pair (i, j). We
denote the resulting random graph G(n,W ).

2. Sample x1, . . . , xn i.i.d. uniformly on [0, 1]. We define a random weighted graph on {1, . . . , n} by
adding an edge between i and j of weight W (xi, xj) for each (unordered) pair (i, j). We denote the
resulting random graph H(n,W ).

In both constructions, note that we can use a single graphon to define a whole sequence of random graphs.
The following lemma tells that in either case, the cut-distance between a random sample of G(k,W ) or
H(k,W ) and W goes to zero w.h.p. as k → ∞.

Lemma 2.3. [25, Lemma 10.16]. Fix a graphon W and for k ≥ 1, let G(k,W ) and H(k,W ) be defined as
above. Then, δ□(WG(k,W ),W ) and δ□(WH(k,W ),W ) both tend to 0 in probability as k → ∞.

In particular this means that results we prove for USTs of deterministic sequences of graphs extend
automatically to sequences of the form G(k,W )k≥1 or H(k,W )k≥1 under the assumptions of Corollary 1.2.

For example, the classical Erdös-Rényi graphs G(n, p) for n ≥ 1, p ∈ [0, 1] correspond to the graphs
G(n,Wp) where Wp is the graphon that is equal to p everywhere.

For further background and applications of graphons, we refer to [25, Part 3].
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2.2 Mixing times

Let G be a connected weighted graph with n vertices, with weights (w(x, y))x,y∈V (G), and with no loops or
multiple edges. A random walk on G is the Markov Chain (Xm)m≥0 such that, for all vertices x, y ∈ V (G),
and all m ≥ 1,

P(Xm = y | Xm−1 = x) =
w(x, y)∑
z∼x w(x, z)

,

where z ∼ x means that z is a neighbour of x. Due to periodicity considerations, it is sometimes more
convenient to instead use the notion of a lazy random walk. This is defined by

P(Xm = y | Xm−1 = x) =
w(x, y)

2
∑

z∼x w(x, z)
∀y ∼ x and P(Xm = x | Xm−1 = x) =

1

2

for all m ≥ 1.

For each t ≥ 0 let pt denote the t-step transition density of a lazy random walk, i.e. pt(x, y) =
P(Xt = y | X0 = x) for all x, y ∈ V (G). We define the mixing time of G as

tmix(G) = min

{
t ≥ 0 : max

x,y∈G
|pt(x, y)− π(x)| ≤ 1

4

}
, (3)

(see [24, Equation (4.31)]), where π denotes the stationary measure on G.

We will also need the notion of total variation distance between two probability measures on µ and ν
on a finite subset X ⊂ V (G). This is defined by

dTV(µ, ν) = max
A⊂X

|µ(A)− ν(A)| .

Furthermore, by [24, Section 4.5], we have for any k ≥ 1, any t ≥ ktmix and any vertex x that

dTV(pt(x, ·), π(·)) ≤ 2−k. (4)

2.3 Expanders

We will use the following definition of an expander graph.

Definition 2.4. ([16, Definition 2.1]). For any γ > 0, a loopless weighted graph G is a γ-expander if for
all U ⊂ V (G), we have that w(U, V (G) \ U) ≥ γ|U |(V (G)− |U |) where w(A,B) =

∑
v∈A,u∈B w(v, u).

Although we give the definition for loopless graphs, note that adding loops to a graph does not change the
law of its UST, since loops can never appear in a UST. Note that often in the literature a slightly different
definition of expander is used, involving the Cheeger constant. We are using the definition above as it fits
more naturally into the framework of dense graphs (as we will later show in Claim 7.1) and is the same
definition used to consider the local limit in [16].

The main property of expanders that we will use is as follows.

Claim 2.5. Let γ > 0 and let G be a γ-expander with n ≥ 2 vertices. Then, provided that n is large enough
(depending on only γ), we have that

tmix(G) ≤ 64

γ4
log n.

Proof. Note that it follows from Definition 2.4 that G has minimal degree at least γ
2n. First note that by

[24, Theorem 12.4] that

tmix(G) ≤ trel log

(
8n

γ

)
,
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where trel is the relaxation time of G. By the Cheeger inequality (see [4, 5, 19, 22] for various proofs), 1
trel

is lower bounded by Φ(G)2/2, where

Φ(G) = min
S⊂V (G),π(S)≤1/2

w(S, V (G) \ S)∑
v∈S deg v

.

Note that π(S) ≤ 1/2 implies that (|V (G)| − |S|) ≥ nγ
4 . Since G is a γ-expander, it follows that

Φ(G) ≥ γ|S|(|V (G)| − |S|)∑
v∈S deg v

≥ γ|S|(|V (G)| − |S|)
|S|n

≥ γ2

4
.

Combining all the inequalities gives the result.

2.4 Loop-erased random walk and Wilson’s algorithm

We now describe Wilson’s algorithm [32] which is a widely-used algorithm for sampling USTs. A walk
X = (X0, . . . XL) of length L ∈ N is a sequence of vertices where (Xi, Xi+1) ∈ E(G) for every 0 ≤ i ≤ L− 1.
For an interval J = [a, b] ⊂ [0, L] where a, b are integers, we write X[J ] for {Xi}bi=a. Given a walk X, we
define its loop erasure Y = LE(X) = LE(X[0, L]) inductively as follows. We set Y0 = X0 and let λ0 = 0.
Then, for every i ≥ 1, we set λi = 1 + max{t | Xt = Yλi−1} and if λi ≤ L we set Yi = Xλi . We halt this
process once we have λi > L. When X is a random walk on the weighted graph G starting at some vertex
v and terminated when hitting another vertex u (L is now random), we say that LE(X) is a loop erased
random walk (LERW) from v to u.

To sample a UST of a finite connected weighted graph G we begin by fixing an ordering of the vertices of
V = (v1, . . . , vn). First let T1 be the tree containing v1 and no edges. Then, for each i > 1, sample a LERW
from vi to Ti−1 and set Ti to be the union of Ti−1 and the LERW that has just been sampled. We terminate
this algorithm with Tn. Wilson [32] proved that Tn is distributed as UST(G). An immediate consequence
is that the path between any two vertices in UST(G) is distributed as a LERW between those two vertices.
This was first shown by Pemantle [30].

2.5 Laplacian random walk

Here we outline the Laplacian random walk representation of the LERW (see [26, Section 4.1] for full details)
and its application to Wilson’s algorithm. Take a finite, weighted, connected graph G and suppose we have
sampled Tj for some j ≥ 1 using Wilson’s algorithm as described above. We now sample a LERW from vj+1

to Tj . Denote this LERW by (Ym)m≥0. Also let X denote a random walk on G. For a set A ⊂ G, let τA
denote the hitting time of A by X, and τ+A denote the first return time to A by X. The Laplacian random
walk representation of Y says that, conditionally on Tj and on the event {(Ym)im=0 ∩ Tj = ∅}, we have for
any i ≥ 0 that

P
(
Yi+1 = v

∣∣ (Ym)im=0

)
= PYi

(
X1 = v

∣∣∣ τTj
< τ+∪i

m=0{Ym}

)
=

PYi
(X1 = v)Pv

(
τTj

< τ∪i
m=0{Ym}

)
PYi

(
τTj

< τ+∪i
m=0{Ym}

) .

Clearly this is only non-zero when v /∈
⋃i

m=0{Ym}. We can now extrapolate this to ask about the law of

(Ym)i+H
m=i+1 for some H ≥ 1, given (Ym)im=0. In particular, if u0, u1, . . . , uH is a simple path in Gn, where

{u1, . . . , uH−1} is disjoint from
⋃i

m=0{Ym} ∪ Tj and u0 = Yi, then

P
(
(Ym)i+H

m=i+1 = (um)Hm=1

∣∣ (Ym)im=0

)
= Pu0

(
(Xm)Hm=1 = (um)Hm=1

)
C((Ym)im=0, Tj , (um)Hm=1)),

where

C((Ym)im=0, Tj , (um)Hm=1) =

H∏
h=1

Puh

(
τTj < τ∪i

m=0{Ym}∪ ∪h−1
m=1{um}

)
Puh−1

(
τTj < τ+

∪i
m=0{Ym}∪ ∪h−1

m=1{um}

) .
8



2.6 Capacity and closeness

Recall that G is a connected weighted graph with n vertices with minimal degree at least δn. The capacity
of a set of vertices of G quantifies how difficult it is for a random walk to hit the set. Let (Xi)i≥0 be a
random walk on G and for U ⊂ V (G), let τU = inf{i ≥ 0 : Xi ∈ U}. Given k ≥ 0 we define the k-capacity
of U by Capk(U) = Pπ(τU ≤ k).

Here we collect some useful facts about the capacity.

Lemma 2.6. Let A ⊂ V (G) and k ≥ 1. Then

Capk(A) ≤ kπ(A) ≤ k|A|
δn

. (5)

Moreover, if k|A| ≤ δ3n
2 , then

Capk(A) ≥ kπ(A)

2
≥ δk|A|

2n
. (6)

Proof. The upper bound follows from a union bound. The lower bound follows from the Bonferroni inequal-
ities and the lower bound on the degree, which imply that

Capk(A) ≥ kπ(A)−
(
k|A|
δn

)2

≥ δk|A|
2n

.

We will also use the following claim.

Claim 2.7. Let tmix = tmix(G). Let A ⊂ V (G), let M ≥ (log n)2tmix and suppose that (log n)2 · tmix|A| ≤ n.
Then, provided n is large enough,

sup
u∈V (G)\A

|Pu(τA ≤ M)− CapM (A)| ≤ 3 log n · tmix|A|
δn

.

Proof. Let X be a random walk started at u ∈ G. Clearly, for any t ≥ 0, the first t steps of X can be
coupled with the first t non-repeat steps of a lazy random walk X̃. Therefore, first run a lazy random walk
started from u until time T = 2 log n · tmix. Let N denote the total number of non-repeat jumps of this
lazy random walk. The distribution of X̃t is almost stationary by (4). Moreover, we have that 0 ≤ N ≤ T
deterministically. To sample (Xt)

M
t=0, we first couple it with the first N steps of (X̃t)

T
t=0 as explained above,

and then run X for a further M −N steps. Under this coupling, we therefore have from a union bound that

Pu(τA ≤ M) ≤ 2 log n · tmix|A|
δn

+ Pπ(τA ≤ M) + 2−2 logn ≤ CapM (A) +
3 log n · tmix|A|

δn
.

Similarly,

Pu(τA ≤ M) ≥ Pπ(τA ≤ M − T )− 2−2 logn ≥ CapM (A)− 3 log n · tmix|A|
δn

.

In order to obtain lower bounds on capacity, we define the k-closeness of two sets U and W by

Closek(U,W ) = Pπ(τU < k, τW < k). (7)

Corollary 2.8. For any disjoint sets U,W ⊂ G, we have that

sup
v∈G\(U∪W )

Pv(τU < k, τW < k) ≤ 2k2|U ||W |
δ2n2

.

In particular, Closek(U,W ) ≤ 2k2|U ||W |
δ2n2 .

9



Proof. Note that

sup
v∈G\(U∪W )

Pv(τU < k, τW < k) ≤ sup
v∈G\(U∪W )

{Pv(τU < τW < k) + Pv(τW < τU < k)}

≤ sup
v∈G\(U∪W ),u∈U,w∈W

{Pv(τU < k)Pu(τW < k) + Pv(τW < k)Pw(τU < k)} ≤ 2k2|U ||W |
(δn)2

.

2.7 Random variables

Here we present two elementary results that will be useful in Section 6.

Claim 2.9. Let ε > 0 and let 0 < a < b with b − a ≤ ε. Let Xa ∼ U([0, a]) and Xb ∼ U([0, b]). Then, we
can couple Xa and Xb such that P(|Xa −Xb| > ε) < ε.

Proof. We take Xb =
b
aXa. Then, |Xb −Xa| = | b−a

a ·Xa| ≤ |b− a| ≤ ε.

Lemma 2.10. For any L > 0, let XL be the random variable on (0,∞) satisfying

P(XL > x) = exp

{
− (x+ L)2 − L2

2

}
.

Then for any δ > 0, there exists η = η(δ, L) > 0 such that the following holds. Let Y be another random
variable on (0,∞), and suppose that for all x > 0,

|P(XL > x)− P(Y > x)| < η. (8)

Then this implies that we can couple XL and Y so that P(|XL − Y | > δ) < δ.

Furthermore, for any δ, L1 and L2 with L1 < L2, there exists η = η(δ, L1, L2) such that we can couple
XL and Y as described above for every L ∈ [L1, L2].

Proof. Note that we can couple XL and Y by first sampling U ∼ Uniform([0, 1]) and setting

XL(ω) = sup
x≥0

{P(XL ≥ x) ≥ U(ω)}, Y (ω) = sup
x≥0

{P(Y ≥ x) ≥ U(ω)}.

Now choose Kδ,L < ∞ so that P(XL ≥ Kδ,L) < δ. Wlog assume that δ < 1 and Kδ,L > 1, otherwise decrease
or increase them if necessary. Note that, for all 0 ≤ x < Kδ,L, we have that

exp

{
− (x+ L)2 − L2

2

}
− exp

{
− (x+ δ + L)2 − L2

2

}
≥ δ(x+ L) exp

{
− (x+ δ + L)2 − L2

2

}
≥ Mδ,L,

where Mδ,L = δL exp
{
− (2Kδ,L+L)2−L2

2

}
> 0.

Now suppose that (8) holds and η < Mδ,L. Then, for any 0 ≤ x < Kδ,L we have that

P(Y ≥ x+ δ) ≤ P(XL ≥ x+ δ) + η ≤ P(XL ≥ x)−Mδ,L + η ≤ P(XL ≥ x).

Therefore, under the coupling, we have for any x < Kδ,L that

{XL ≤ x} ⇔ {P(XL ≥ x) ≤ U} ⇒ {P(Y ≥ x+ δ) ≤ U} ⇔ {Y ≤ x+ δ}.

Similarly, {XL ≥ x} ⇒ {Y ≥ x− δ}. Therefore, under this coupling we have that

P(|XL − Y | > δ) ≤ P(XL ≥ Kδ,L) < δ,

as required.

For the second claim, note that for every L′ > L we also have that P(XL′ ≥ Kδ,L) < δ. Therefore for the
interval [L1, L2] we can simply use Kδ,L1

and Mδ,L1
on the whole interval.
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2.8 GHP topology

Here we define the GHP topology. We use the framework of [29, Sections 1.3 and 6] and work in the space Xc

of equivalence classes of metric measure spaces (mm-spaces) (X, d, µ) such that (X, d) is a compact metric
space and µ is a Borel probability measure on it, and we say that (X, d, µ) and (X ′, d′, µ′) are equivalent
if there exists a bijective isometry ϕ : X → X ′ such that ϕ∗µ = µ′ (here ϕ∗µ is the pushforward measure
of µ under ϕ). To ease notation, we will represent an equivalence class in Xc by a single element of that
equivalence class.

First recall that if (X, d) is a metric space, the Hausdorff distance dH between two sets A,A′ ⊂ X is
defined as

dH(A,A′) = max{sup
a∈A

d(a,A′), sup
a′∈A′

d(a′, A)}.

For ε > 0 and A ⊂ X we also let Aε = {x ∈ X : d(x,A) < ε} be the ε-fattening of A in X. If µ and ν are
two measures on X, the Prohorov distance between them is given by

dP (µ, ν) = inf{ε > 0 : µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε for any closed set A ⊂ X}.

Definition 2.11. Let (X, d, µ) and (X ′, d′, µ′) be elements of Xc. The Gromov-Hausdorff-Prohorov
(GHP) distance between (X, d, µ) and (X ′, d′, µ′) is defined as

dGHP((X, d, µ), (X ′, d′, µ′)) = inf{dH(ϕ(X), ϕ′(X ′)) ∨ dP (ϕ∗µ, ϕ
′
∗µ

′)},

where the infimum is taken over all isometric embeddings ϕ : X → F , ϕ′ : X ′ → F into some common
metric space F .

Recall that our aim in this paper is to prove distributional convergence with respect to the GHP topology.

Given an mm-space (X, d, µ) and a fixed m ∈ N we define a measure νm((X, d, µ)) on R(
m
2 ) to be the law of

the
(
m
2

)
pairwise distances between m i.i.d. points drawn according to µ. Each law P on Xc therefore defines

random measures (νm)m≥2 and annealed measures (ν̃m)m≥2 on R(
m
2 ), given by

ν̃m(P) :=
∫
Xc

νm((X, d, µ))dP.

In [7] we rephrased a result of [8, Theorem 6.1] in the distributional setting to characterize GHP conver-
gence in terms of convergence of the measures (ν̃m)m≥2 and a volume condition. To state the version that
we will use in this paper, given c > 0 and an mm-space (X, d, µ) we define

mc((X, d, µ)) = inf
x∈X

{µ(B(x, c))}

(cf [8, Section 3]).

In the proof of the next proposition we will also make reference to the (coarser) Gromov-Prohorov
topology, which is defined as follows.

Definition 2.12. Let (X, d, µ) and (X ′, d′, µ′) be elements of Xc. The Gromov-Prohorov (GP) distance
between (X, d, µ) and (X ′, d′, µ′) is defined as

dGP((X, d, µ), (X ′, d′, µ′)) = inf{dP (ϕ∗µ, ϕ
′
∗µ

′)},

where the infimum is taken over all isometric embeddings ϕ : X → F , ϕ′ : X ′ → F into some common
metric space F .

The key result is as follows.

Proposition 2.13. Let (X, d, µ) be an element of Xc with law P such that µ has full support almost surely.
Let ((Xn, dn, µn))n≥1 be a sequence in Xc with respective laws (Pn)n≥1 and suppose that:

11



(a) For all m ≥ 0, ν̃m(Pn) → ν̃m(P) as n → ∞.

(b) For any c > 0, the sequence
(
mc((Xn, dn, µn))

−1
)
n≥1

is tight.

Then (Xn, dn, µn)
(d)→ (X, d, µ) with respect to the GHP topology.

Proof. First we show that part (a) and (b) together imply that (Xn, dn, µn)
(d)−→ (X, d, µ) with respect to the

GP topology, by verifying the two conditions of [15, Corollary 3.1]. The second condition of [15, Corollary
3.1] is precisely (a). To verify the first condition we further use [15, Theorem 3] (recall that by Prohorov’s
Theorem the relative compactness of the measures is equivalent to their tightness) and verify conditions (i)
and (ii) there (see also Proposition 8.1 in [15]). Condition (i) is just saying that ν̃2 is a tight sequence of
measures on R, which follows from (a). Lastly, (b) directly implies condition (ii).

Therefore, by [7, Theorem 6.5], the spaces convergence with respect to the GHP topology.

3 Stick-breaking construction of trees

Our first goal will be to prove condition (a) of Proposition 2.13 which is equivalent to the following statement.

Theorem 3.1. Take γ > 0 and δ > 0 and let (Gn)n≥1 be a dense sequence of γ-expanders, where each Gn

has n vertices and minimal degree at least δn. Denote by dTn the graph distance on Tn and by (T , d, µ) the
CRT. Then there exists a sequence (βn)n≥1, satisfying

√
δ ≤ βn ≤ 1 for all n ≥ 1, such that for any fixed

k ≥ 1, if {x1, . . . , xk} are uniformly chosen independent vertices of Gn, then the distances

dTn(xi, xj)

βn
√
n

converge jointly in distribution to the
(
k
2

)
distances in T between k i.i.d. points drawn according to µ.

To prove this theorem, we will use Aldous’ stick-breaking construction of the CRT which is particularly
well adapted to dealing with the pairwise distances between a set of k uniform points. Our strategy will be
to show that the first k steps of Wilson’s algorithm on Gn closely approximate those of this stick-breaking
process when n is large. In this section we briefly recall the stick-breaking construction of the CRT and some
of its key properties.

We start with a more general description of how one can construct a sequence of trees from sticks on the
real line.

Definition 3.2. (Stick-breaking construction of a tree sequence). Set y0 = z0 = 0, and suppose that we
have a sequence of points y1, y2, . . . ∈ [0,∞) and z1, z2, . . . ∈ [0,∞) such that yi−1 < yi and zi ≤ yi for all
i ≥ 1. Construct trees as follows. Start by taking the line segment [y0, y1) at time 1. This is T (2) (as it
contains two marked points). We proceed inductively. At time i ≥ 2, take the interval [yi−1, yi) and attach
the base of the interval [yi−1, yi) to the point on T (i) corresponding to zi−1. This gives a new tree with i+ 1
marked points (in bijection with the set (yj)

i
j=0), which we call T (i+1).

Given two such sequences and any k ≥ 2 we define SB(k)((y0, y1, y2, . . .), (z0, z1, z2, . . .)) or equivalently

SB(k)((y0, y1, y2, . . . , yk−1), (z0, z1, z2, . . . , zk−2)) to be equal to the tree T (k).

In general, the sequence of trees constructed in this way above may not converge, but Aldous showed
that by choosing the points in the right way, we can in fact construct the CRT via stick-breaking.

Proposition 3.3. [1, Process 3]. Set Y0 = Z0 = 0, let (Y1, Y2, . . .) denote the ordered set of points of
a non-homogeneous Poisson process on [0,∞) with intensity t dt, and let Zi be chosen uniformly on the
interval [0, Yi) for each i ≥ 1. Construct the sequence (T (k))∞k=2 as in Definition 3.2. Then the closure of the
limit of T (k) is equal in distribution to the CRT. Moreover, if one stops the process after k − 1 steps, then
the resulting tree T (k) has the same distribution as the subtree spanned by k uniform points in the CRT, and
the points corresponding to the set (Yi)

k−1
i=0 can be identified with k uniform points in the CRT.
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In particular, the set of
(
k
2

)
pairwise distances between points corresponding (Yi)

k
i=1 is equal in distribution

to the set of
(
k
2

)
pairwise distances between k uniform points in the CRT.

The following proposition will be important for the comparison with Wilson’s algorithm later on. It can
be verified by a direct computation.

Proposition 3.4. Define the sequence (Y1, Y2, . . .) as in Proposition 3.3. Then for any k ≥ 1 and any x ≥ 0,

P
(
Yk+1 − Yk ≥ x

∣∣ (Yi)
k
i=0

)
= exp

{
−1

2

(
(Yk + x)2 − Y 2

k

)}
.

The following lemma will also be useful.

Lemma 3.5. There exists a function f : [0,∞) × N → [0, 1] such that for every k ∈ N we have that
limC→∞ f(C, k) → 0, and such that if Yk is as in Proposition 3.3, then

P
(
C−1 ≤ Yk ≤ C

)
≥ 1− f(C, k).

Proposition 3.6. Let (y0, y1, y2, . . .), (z0, z1, z2, . . .) and (y′0, y
′
1, y

′
2, . . .), (z

′
0, z

′
1, z

′
2, . . .) be the inputs to two

separate stick-breaking processes as defined in Definition 3.2. Fix any k ≥ 1 and let T (k+1) and T (k+1)′ be
the trees formed after k steps of the processes. Let d and d′ denote distances on T (k+1) and T (k+1)′ .

Fix some ε > 0 and suppose that the following holds.

(i) |yi − y′i| ≤ ε for all i ≤ k and |zi − z′i| ≤ ε for all i ≤ k − 1,

(ii) |zi − yj | ≥ 3ε for all i ≤ k − 1, j ≤ k.

Then, for all 0 ≤ i, j ≤ k, it holds that

|d(yi, yj)− d′(y′i, y
′
j)| ≤ 2kε.

Proof. When conditions (i) and (ii) hold, we have for all i ≤ k − 1, j ≤ k that yj ≤ zi ≤ yj+1 if and only if
y′j ≤ z′i ≤ y′j+1. We claim that this implies that |d(yi, yj) − d′(y′i, y

′
j)| ≤ 2kε for all i, j ≤ k + 1. Indeed, it

follows by construction that d(yi, yj) is the sum of lengths of at most k branch segments in T (k+1), and all
of their lengths can be written in the form |yj − yj−1|, |zj − yℓ| or |zj − zℓ|. Moreover, by construction on the
events in (i) and (ii), d′(y′i, y

′
j) can be written as the same sum but replacing each zj with z′j and replacing

each yj with y′j . It therefore follows from the triangle inequality that |d(yi, yj)− d′(y′i, y
′
j)| ≤ 2kε.

4 Random walk properties

In this section we prove some results on random walk hitting probabilities and capacity, which we will later
transfer to segments of LERW using the Laplacian random walk representation of Section 2.5.

Throughout the section we fix a small κ ∈ (0, 1
32 ) and for n ≥ 1 we set Mn = nκ. In what follows we will

simply write M instead of Mn.

Notational remark. For the statements in this section, we will take a sequence of graphs satisfying the
assumptions of Theorem 1.3 which is therefore associated with two positive constants γ > 0 and δ > 0. In
this section we will treat these constants as fixed, and therefore o(·) and O(·) quantities may also depend on
γ and δ.
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4.1 Hitting probabilities

We start with some results on hitting probabilities. Let X be a (non-lazy) random walk on Gn for some
n ≥ 1. For a set A ⊂ V (Gn), we define

τA = inf{t ≥ 0 : Xt ∈ A}.

The main lemma is the following.

Lemma 4.1. Take γ > 0 and δ > 0 and let (Gn)n≥1 be a dense sequence of γ-expanders, where each Gn has
n vertices and minimal degree at least δn. Take κ and M as defined at the start of Section 4. Then there
exists a sequence (ηn)n≥1 with ηn → 0, depending only on δ and γ, such that for any disjoint A,B ⊂ Gn

satisfying |A|+ |B| ≤ δ3

2 n
1
2+2κ:∣∣∣∣Pπ(τA < τB)−

CapM (A)

CapM (A) + CapM (B)

∣∣∣∣ ≤ CapM (A)ηn
CapM (A) + CapM (B)

.

Proof. Let (Xi)
M
i=1 be a random walk of length M . Then, by Bayes’ formula, Corollary 2.8 and the lower

bound in Lemma 2.6,

Pπ(τA < M | τA ∧ τB < M) =
CapM (A)

CapM (A) + CapM (B)− Pπ(τA ∨ τB < M)

=
CapM (A)

CapM (A) + CapM (B)

(
1 +O

(
δ−3M |B|

n

))
.

Pπ(τA ∨ τB < M | τA ∧ τB < M) =
Pπ(τA ∨ τB < M)

CapM (A) + CapM (B)− Pπ(τA ∨ τB < M)

≤ Pπ(τA < M | τA ∧ τB < M)O

(
δ−3M |B|

n

)
.

Therefore, combining these and applying Lemma 2.6:

Pπ(τA < τB | τA ∧ τB < M) = Pπ(τA < M | τA ∧ τB < M) +O(Pπ(τA ∨ τB < M | τA ∧ τB < M))

=
CapM (A)

CapM (A) + CapM (B)

(
1 +O

(
δ−3M |B|

n

))
.

It similarly follows from Claim 2.7 and the lower bound in Lemma 2.6 that uniformly over all u ∈ Gn\(A∪B),

Pu(τA < τB | τA ∧ τB < M) =
CapM (A)

CapM (A) + CapM (B)

(
1 +O

(
δ−3M |B|

n
+

tmix · log n
δ2M

))
.

Now we decompose time into intervals of length M . For each i ≥ 1, define the interval Ai by

Ai = [iM, (i+ 1)M ].

We then have that, using Corollary 2.8:

Pπ(τA < τB) ≥
∞∑
i=0

Pπ(τA < τB | τA∪B ∈ Ai)Pπ(τA∪B ∈ Ai)

≥
∞∑
i=0

inf
u∈Gn\(A∪B)

Pu(τA < τB | τA∪B ∈ A0)Pπ(τA∪B ∈ Ai)

≥ CapM (A)

CapM (A) + CapM (B)

(
1 +O

(
δ−3|B|M

n
+

tmix · log n
δ2M

))
We deduce that, uniformly over all permitted A and B,

Pπ(τA < τB) ≥
CapM (A)

CapM (A) + CapM (B)
(1− oδ,γ(1)), (9)
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where the oδ,γ(1) term is uniform over all A and B but may depend on δ and γ. Similarly, for an upper bound
on Pπ(τA < τB) we simply exchange the roles of A and B. We deduce that, uniformly over all permitted A
and B,

Pπ(τA < τB) =
CapM (A)

CapM (A) + CapM (B)
(1− oδ,γ(1)). (10)

We will also need the following minor adaptation.

Lemma 4.2. Take γ > 0 and δ > 0 and let (Gn)n≥1 be a dense sequence of γ-expanders, where each Gn

has n vertices and minimal degree at least δn. Take κ and M as defined at the start of Section 4. Then, for

any disjoint A,B ⊂ Gn satisfying |A| + |B| ≤ δ3

2 n
1
2+2κ, every u ∈ Gn \ (A ∪ B) and every v ∈ Gn \ A we

have that

Pu(τA < τB) = Pπ(τA < τB)(1 + o(n3κ−1/2t+mix)) and Pv

(
τA < τ+B

)
= Pπ(τA < τB)(1 + o(n3κ−1/2t+mix)).

Proof. We start by proving the first statement for a lazy random walk, since this is equivalent, and we denote
such a lazy random walk by X. Throughout this proof, we will also use the following notation. For a set
C ⊂ Gn and some time t ≥ 0 we write τ(C, t) for the first time s strictly larger than t such that Xs ∈ C.
Furthermore, write t+mix for log22(n)tmix so that by (4) we have that for every u ∈ Gn,

dTV(pt+mix
(u, ·), π(·)) ≤ n− log(2) log(n).

Now let u ∈ Gn \A. We start with a lower bound on Pu(τA < τB). We have that

Pu(τA < τB) ≥ Pu

(
t+mix < τA < τB

)
≥ Pu

(
τ(A, t+mix) < τ(B, t+mix)

)
− Pu

(
τA∪B < t+mix < τ(A, t+mix) < τ(B, t+mix)

) (11)

Note that by (4), the first term can be lower bounded by Pπ(τA < τB)−n− log(2) log(n). For the second term,
let us upper bound the probability of the event {τA∪B < t+mix < τ(A, tmix) < τ(B, t+mix)}. Using a union
bound we obtain

Pu

(
τA∪B < t+mix < τ(A, t+mix) < τ(B, t+mix)

)
≤ Pu

(
τA∪B < t+mix < τ(A, t+mix) < 2t+mix

)
+ Pu

(
τA∪B < t+mix and τ(A, 2t+mix) < τ(B, 2t+mix)

)
.

≤ |A|t+mix

δn
+

(|A|+ |B|)t+mix

δn
· (Pπ(τA < τB) + n− log(2) log(n)).

Note that, by Lemma 2.6 and Lemma 4.1 we have that

|A|t+mix

Pπ(τA < τB)δn
≤ |A|t+mix

δn
· 2(|A|+ |B|)

δ2|A|
≤ 2(|A|+ |B|)t+mix

δ3n
,

so that, by Claim 2.5

|A|t+mix

δn
= Pπ(τA < τB) ·Oγ(n

2κ−1/2t+mix) = Pπ(τA < τB) · oγ(n3κ−1/2t+mix) (12)

Substituting everything back into (11), we therefore deduce that

Pu(τA < τB) ≥ Pπ(τA < τB)(1 + o(n3κ−1/2t+mix)).

For an upper bound on Pu(τA < τB), we simply write

Pu(τA < τB) ≤ Pu

(
τA < t+mix

)
+ Pu

(
t+mix < τ(A, t+mix) < τ(B, t+mix)

)
≤ |A|t+mix

δn
+ Pπ(τA < τB) + n− log(2) log(n).

Using (12) again we obtain that

Pu(τA < τB) = Pπ(τA < τB)(1 + o(n3κ−1/2t+mix)).

For the second statement, it is again enough to prove it for the lazy random walk, replacing τ+B with the
first hitting time of B after making at least one non-lazy step using the exact same proof.
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4.2 Capacity

Here we prove some similar properties for the capacity and closeness of a random walk.

In this section we can also introduce the sequence (αn)n≥1 appearing in Theorem 1.3. Given the graph
sequence (Gn)n≥1, take M = nκ as defined at the start of Section 4, let X be a random walk on Gn, and
for each n ≥ 1 set

αn =
nEπ

[
CapM (X[0, nκ/2))

]
Mnκ/2

.

Proposition 4.3. Take γ > 0 and δ > 0 and let (Gn)n≥1 be a dense sequence of γ-expanders, where each
Gn has n vertices and minimal degree at least δn. Let u ∈ Gn and let (Xi)i≥0 denote a random walk on Gn

started at u. Take M = nκ as defined at the start of Section 4. Then for all sufficiently large n,

P
(∣∣∣∣CapM (X[0,M))− αnM

2

n

∣∣∣∣ ≥ αnM
2

n
n−κ/16

)
≤ 2M2

δn
.

Proof. The proof is a simplified version of that of [31, Lemma 5.3]. First recall from Lemma 4.2 that

t+mix = log22(n)tmix. Let (Tj)
nκ/2

j=1 be a sequence of i.i.d random variables with distribution Bin(t+mix, 1/2).

Then, for all 1 ≤ j ≤ nκ/2 let

Bj = [(j − 1)nκ/2 + Tj , jn
κ/2 − t+mix + Tj ].

Note that by (4) we have that for all j ≤ nκ/2, given X[0, jnκ/2], the starting point of Bj+1 is nearly

stationary. Also let (X ind,j)n
κ/2

j=1 denote a sequence of independent random walk segments each of length

nκ/2 − t+mix, and each started from stationarity. Note that, by (4), the segments (XBj
)n

κ/2

j=1 can be coupled

with the segments (X ind,j)n
κ/2

j=1 so that the segments coincide for all j ≤ nκ/2 with probability at least

1− nκ/2n− log2(n). (13)

Note that the segments (X ind,j)j are i.i.d. and, by definition,

E
[
CapM (X ind,j)

]
= E
[
CapM (X ind,j

[0,nκ/2)
)
]
+O

(
Mt+mix

δn

)
=

αnMnκ/2

n

(
1 +O

(
t+mix

δnκ/2

))
. (14)

Moreover, by a union bound, we also have the deterministic bound

CapM (X ind,j) ≤ Mπ(X ind,j) ≤ Mnκ/2

δn
. (15)

It therefore follows from a Hoeffding bound [17, Theorem 1] that there exist C < ∞, c > 0 such that for any
t > 0,

P

∣∣∣∣∣∣
nκ/2∑
j=1

CapM (X ind,j)− nκ/2E
[
CapM (X ind,1)

]∣∣∣∣∣∣ ≥ αnM
2t+mix

2n1+κ/8

 ≤ 2 exp

−2nκ/2

 αnM
2t+mix

2n1+5κ/8

Mnκ/2

δn

2


= 2 exp

(
−nκ/4(t+mix)

2α
2
nδ

2

2

)
.

In particular, since it follows from (14) that∣∣∣∣nκ/2E
[
CapM (X ind,1)

]
− αnM

2

n

∣∣∣∣ ≤ O

(
αnMnκ/2

n

t+mix

δ

)
≪ αnM

2t+mix

n1+κ/8
,

we deduce that

P

∣∣∣∣∣∣
nκ/2∑
j=1

CapM (X ind,j)− αnM
2

n

∣∣∣∣∣∣ ≥ αnM
2t+mix

n1+κ/8

 ≤ 2 exp

(
−nκ/4(t+mix)

2α
2
nδ

2

2

)
. (16)
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We would like to approximate the capacity of the whole segment X[iM, (i+1)M) by the sum of the capacities
of the smaller segments, but this is potentially a slight overestimate, since we are double-counting random
walk trajectories that hit more than one smaller segment. To account for this, we use the concept of closeness
defined in Section 2.6. For each J ≤ nκ/2, note that conditionally on (X ind,j)j≤J all being disjoint, which
happens with probability at least

1− M2

δn
, (17)

we have by Corollary 2.8 that

CloseM (X ind,J ,∪j<J(X
ind,j)j) ≤

2M3nκ/2

δ2n2
.

Equally, approximating CapM (X[0,M)) by
∑n

κ
2

j=1 CapM (XBj
) might be undercounting slightly, since there

is also a contribution to the capacity from the set X[0,M) \
(
∪j<nκ/2XBj

)
.

We now combine the above estimates as follows. Note that, on the event XBj
= X ind,j for all j ≤ J , we

have (also using (15) and a union bound) that for all sufficiently large n:∣∣∣∣∣∣CapM (X[0,M))−
n

κ
2∑

j=1

CapM (X ind,j)

∣∣∣∣∣∣ ≤
nκ/2∑
J=1

CloseM (XBj ,∪j<JXBj ) + P
(
τ
X[0,M)\

(
∪

j<nκ/2XBj

) ≤ M

)

≤ 2M4

δ2n2
+

Mnκ/2t+mix

δn
≤ n−κ/8αnM

2t+mix

n1+κ/8
.

(18)

Therefore, combining with the estimates of (13), (16), (17) in a union bound, applying (18) and using that

t+mix ≪ nκ/32, we see that with probability at least 1− 2M2

δn we have that∣∣∣∣CapM (X[0,M))− αnM
2

n

∣∣∣∣ ≤ o

(
αnM

2

n
· n−κ/16

)
.

5 Laplacian random walk representation and Wilson’s algorithm

Throughout all of this section, we let (Gn)n≥1 be a sequence of graphs satisfying the assumptions of Theo-
rem 1.3 with parameters δ > 0 and γ > 0. By Claim 2.5, this implies that tmix = O(log n). For each n, k ≥ 1,

T
(k−1)
n will denote the tree obtained after running Wilson’s algorithm on Gn on the vertex set (v1, . . . , vk−1).

Given such a sequence (Gn)n≥0, we set

αn =
nEπ

[
CapM (X[0, nκ/2))

]
Mnκ/2

, βn =
1

√
αn

, (19)

where X is a random walk on Gn and κ is as defined at the start of Section 4. Lastly, if A ⊂ Gn, we will
use the notation τA to denote the hitting time of A for a random walk on Gn.

The goal of this section is to prove the forthcoming Proposition 5.2 for such a sequence of graphs, for
which we will need the following definition.

Definition 5.1. We say that a subgraph T ⊂ Gn is good if

1. T is a tree.

2. |T | ≤ n1/2+κ.

3. For every open connected subset A ⊂ T with |A| ≥ n3κ we have that |CapM (A) − αnM |A|/n| ≤
αnM |A|

n · n−κ/16.
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Note that T
(1)
n , the tree consisting of the first single vertex, is trivially good.

Proposition 5.2. Take any good subgraph T ⊂ Gn. Take any u ∈ V (Gn) \ T and let Y be a LERW started
at u and terminated when it hits T .

(1) Take any C ∈ (0,∞) and any B ∈ (0,∞). Suppose additionally that |T | ≤ B
√
n. Then

Pu

(
Y [0, Cβns

√
n] ∩ T = ∅

)
= exp

{
− (C + |T |/βn

√
n)2 − (|T |/βn

√
n)2

2

}
(1 + oB(1)).

(2) Let HT be the time that Y hits T . Then for any connected A ⊂ T with |A| ≥ n3κ and for all n2κ/M ≤
i ≤ n1/2+κ/M ,

Pu(YHT
∈ A | HT ∈ [iM, (i+ 1)M)) =

|A|
|T |

(1 + o(1)),

where the o(1) is uniform over all n2κ/M ≤ i ≤ n1/2+κ/M .

(3) For any k ≥ 1 and B ∈ (0,∞), if |T | ≤ B
√
n then

P
(
T (k)
n is good

∣∣∣ T (k−1)
n = T

)
= 1− oB(1).

Proposition 5.2 will allow us to compare Wilson’s algorithm with the CRT stick-breaking process in
Section 6 and prove Theorem 1.3.

5.1 Comparison of path probabilities

We will use the Laplacian random walk representation of LERW outlined in Section 2.5 to compare the
probability of different LERW trajectories. We first fix some n ≥ 1 and we run Wilson’s algorithm on Gn.
Let {v1, . . . , vn} denote the ordering of the vertices for this process.

Now fix some k ≥ 2, suppose we have run k − 2 steps of Wilson’s algorithm to form a tree spanned by

the vertices (v1, . . . , vk−1), which we denote by T
(k−1)
n . Let X denote a random walk on Gn, killed when

it hits T
(k−1)
n , and let (Ym)m≥0 denote its loop erasure. Recall from Section 2.5 that, if u0, u1, . . . , uH is a

simple path in Gn, where {u0, u1, . . . , uH−1} is disjoint from
⋃L

m=0{Ym} ∪ T
(k−1)
n and u0 = YL, then

P
(
(Ym)L+H

m=L+1 = (um)Hm=1

∣∣ (Ym)Lm=0

)
= Pu0

(
(Xm)Hm=1 = (um)Hm=1

)
C((Ym)Lm=0, T

(k−1)
n , (um)Hm=1)), (20)

where

C((Ym)Lm=0, T
(k−1)
n , (um)Hm=1) =

H∏
h=1

Puh

(
τ
T

(k−1)
n

< τ{Ym}L
m=0∪ {um}h−1

m=0

)
Puh−1

(
τ
T

(k−1)
n

< τ+
{Ym}L

m=0∪ {um}h−1
m=0

) . (21)

At some points in this section, we will condition on an event of the form T
(k−1)
n = T and X and Y will

respectively denote a random walk and a LERW, both killed when they hit T . For notational convenience,
if HT is the time that Y hits T , we set Ym = YHT

for all m ≥ HT .

Remark 5.3. To prove Theorem 3.1, we should choose the vertices {v1, . . . , vk} uniformly on Gn. In fact
we will prove a result that holds for any choice of distinct {v1, . . . , vk}.

The strategy to prove Proposition 5.2 will be roughly as follows. Firstly, Lemma 5.4 enables us to control
the behavior of a first small segment of Y . This will enable us to give tight estimates for the constant C
defined by (21), which we do in Lemma 5.5. In Corollary 5.6 we combine this with Proposition 4.3 and
(20) to tightly control the capacity of LERW segments. In Lemma 5.7 we estimate the random walk hitting
measure on a good tree T , and in Corollary 5.8 we combine this with the estimates on the constant C to
plug into (20) and obtain analogous estimates for LERW.
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Lemma 5.4. There exists N < ∞ such that for all n ≥ N the following holds. Let T ⊂ Gn be a subgraph
with |T | ≤ n

1
2+κ. Take any u ∈ V (Gn) \ T and let Y be a LERW started at u and terminated when it hits

T . Then

Pu

(
|Y | ≤ n2κ

)
≤ 4n2κ(n2κ + |T |)

δ3n
.

Proof. For each K < n2κ, we will use the Laplacian random walk representation to bound the probability
that P(|Y | = K + 1 | |Y | > K). To this end, we have by (20) for every v ∈ T and every simple path φ of
length K with φ ∩ T = ∅ that

Pu

(
YK+1 = v

∣∣ (Ym)Km=0 = φ
)
≤ 1

δn
· 1

PYK

(
τT < τ+φ

) .
By Lemma 4.1 and Lemma 4.2, the second term can be bounded by estimating the capacities of T and of
φ. We claim that up to some constants depending on the minimal degree, they both can be estimated by

their sizes. Indeed, for any set of A size less than n1/2+κ, we have that δM |A|
2n ≤ CapM (A) ≤ |A|M

δn when n
is large enough by Lemma 2.6.

Therefore, as φ is of size K < n2κ < n1/2+κ and T is of size at most n1/2+κ we have that

CapM (T )

CapM (T ) + CapM (φ)
≥ δ2|T |

2(n2κ + |T |)
.

Therefore, by Lemma 4.1, Lemma 4.2 and summing over all v ∈ T we have for all sufficiently large n that

Pu

(
YK+1 ∈ T

∣∣ (Ym)Km=0 = φ
)
≤ 4(n2κ + |T |)

δ3n
.

By a union bound, we can thus conclude that Pu

(
|Y | ≤ n2κ

)
≤ 4n2κ(n2κ+|T |)

δ3n as required.

We will also need the following result to control the constant C defined by (21). The reader should have

in mind that we will eventually apply the result with T = T
(k−1)
n .

Lemma 5.5. Take n2κ/M ≤ i ≤ n1/2+κ

M . Then, for all simple paths {Ym}iMm=0, all simple paths {um}Hm=0

such that u0 = YiM and H ≤ M , and all connected subgraphs T ⊂ Gn such that {um}H−1
m=1, {Ym}iMm=0 and T

are disjoint and such that |T | ≤ n1/2+κ we have the following

(a) If uH /∈ T , then ∣∣C((Ym)iMm=0, T, (um)Hm=1)− 1
∣∣ = o(n5κ−1/2).

(b) If uH ∈ T , then

C((Ym)iMm=1, T, (um)Hm=1) =
[CapM (T ) + Cap((Ym)iMm=1)](1 + o(1))

CapM (T )
.

Proof. Fix some 1 ≤ h ≤ H. In case (a), in order to bound a term appearing in the product in (21), we
would like to compare the probabilities

Puh

(
τT < τ{Ym}iM

m=0∪ {um}h−1
m=0

)
and Puh−1

(
τT < τ+

{Ym}iM
m=0∪ {um}h−1

m=0

)
. (22)

By Lemma 4.2 and by the triangle inequality, we have that∣∣∣Puh

(
τT < τ{Ym}iM

m=0∪ {um}h−1
m=0

)
− Puh−1

(
τT < τ+

{Ym}iM
m=0∪ {um}h−1

m=0

)∣∣∣
≤ Puh

(
τT < τ{Ym}iM

m=0∪ {um}h−1
m=0

)
(o(n3κ−1/2t+mix)).
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In other words,

Puh

(
τT < τ{Ym}iM

m=0∪ {um}h−1
m=0

)
Puh−1

(
τT < τ+

{Ym}iM
m=0∪ {um}h−1

m=0

) = 1 + o(n3κ−1/2t+mix).

Hence we have that the product in (21) is bounded by

(1 + o(n3κ−1/2t+mix))
nκ

= 1 + o(n4κ−1/2t+mix).

To conclude, we use that tmix = o(nκ) as n → ∞ by Claim 2.5.

For (b), if uH ∈ T , then C((Ym)iMm=1, T, (um)Hm=1) is instead equal to

1

PuH−1

(
τT < τ+

{Ym}iM
m=0∪ {um}h−1

m=0

) H−1∏
h=1

Puh

(
τT < τ{Ym}iM

m=0∪ {um}h−1
m=0

)
Puh−1

(
τT < τ+

{Ym}iM
m=0∪ {um}h−1

m=0

) ,
where the product is equal to C((Ym)iMm=1, T, (um)H−1

m=1) and is therefore 1 + o(1) by (a). Then note that by
Lemma 4.1 and Lemma 4.2, we have that

PuH−1

(
τT < τ+

{Ym}iM
m=0∪ {um}h−1

m=0

)
=

CapM (T )(1 + o(1))

CapM (T ) + CapM ((Ym)iMm=0 ∪ {um}h−1
m=0)

=
CapM (T )(1 + o(1))

CapM (T ) + CapM ((Ym)iMm=0)
,

where the last equality holds since i ≥ n2κ/M and thus CapM ({um}h−1
m=0) ≤ M2

δn = o( δiM
2

2n ), which is a lower
bound for CapM ((Ym)iMm=0)) by Lemma 2.6. This proves the claim.

Using the Laplacian random walk representation, we can now tightly control the probability that the
next LERW segment will have good capacity.

Corollary 5.6. Let T ⊂ Gn be a subgraph such that |T | ≤ n1/2+κ and let Y be a LERW trajectory started

at some u ∈ V (Gn) \ T and killed when it hits T . Then for each 0 ≤ i ≤ n1/2+κ

M , and any LERW trajectory
{Ym}iMm=0 = {ym}iMm=0 disjoint from T we have

P
(
(Ym)

(i+1)M
m=iM ∩ T = ∅ and

∣∣∣∣CapM (Y [iM, (i+ 1)M))− αnM
2

n

∣∣∣∣ ≥ αnM
2

n
n−κ/16

∣∣∣∣ {Ym}iMm=0 = {ym}iMm=0

)
≤ 4M2

δn
.

Proof. Let A be the set of simple paths (um)Mm=0 not intersecting T , with
∣∣∣CapM (u[0,M))− αnM

2

n

∣∣∣ ≥
αnM

2

n n−κ/16 and with u0 = YiM . It follows from (20) that for any i ≥ 1,

P
(
(Ym)iM+M

m=iM+1 ∈ A
∣∣ (Ym)iMm=0 = (ym)iMm=0

)
≤ PYiM

(
(Xm)Hm=1 ∈ A

)
sup

(um)Mm=1∈A

{
C((ym)iMm=1, T, (um)Mm=1))

}
.

(23)

As (um)
M
m=1 does not intersect T , by Lemma 5.5, the supremum is at most 2 for all sufficiently large n.

Therefore, by Proposition 4.3, we have that

P
(∣∣∣∣CapM (Y [iM, (i+ 1)M))− αnM

2

n

∣∣∣∣ ≥ αnM
2

n
n−κ/16 and Y [iM, (i+ 1)M) ∩ T = ∅

∣∣∣∣ (Ym)iMm=0 = (ym)iMm=0

)
≤ 4M2

δn
.

In the next lemma we compute some hitting probabilities for a random walk.
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Lemma 5.7. Let X be a random walk on Gn. Let T ⊂ Gn be a subgraph such that |T | ≤ n1/2+κ, and let A

be a connected subset of T . Then for any 0 ≤ i ≤ n1/2+κ

M , for any simple path y[0, iM ] on Gn disjoint from
T and any u /∈ T ∪ y[0, iM ]

Pu(X[0,M ] ∩A ̸= ∅ and ̸ ∃0 < j < ℓ ≤ τA : Xj = Xℓ and ̸ ∃j ≤ τA : Xj ∈ y[0, iM ] ∪ (T \A))

= CapM (A)(1 + o(1)).

Proof. Upper bound. Recall that t+mix = log22(n)tmix. First note that by Claim 2.7, we have that

Pu(X[0,M ] ∩A ̸= ∅ and ̸ ∃0 < j < ℓ ≤ τA : Xj = Xℓ and ̸ ∃j ≤ τA : Xj ∈ y[0, iM ] ∪ (T \A))

≤ Pu(X[0,M ] ∩A ̸= ∅)

≤ CapM (A) +
3|A| log n · tmix

δn
≤ CapM (A)

(
1 +

t+mix

δ2M

)
.

Here the final line follows because of Lemma 2.6, which implies that CapM (A) ≥ δM |A|
2n on the event

|T | ≤ n1/2+κ.

Lower bound. We first note that

Pu(X[0,M ] ∩A ̸= ∅)− Pu(X[0,M ] ∩A ̸= ∅ and ∃0 < j < ℓ < τA : Xj = Xℓ)

− Pu(X[0,M ] ∩A ̸= ∅ and ∃j < M : Xj ∈ y[0, iM ] ∪ (T \A)).

≤ Pu(X[0,M ] ∩A ̸= ∅ and ̸ ∃0 < j < ℓ ≤ τA : Xj = Xℓ and ̸ ∃j ≤ τA : Xj ∈ y[0, iM ] ∪ (T \A))

We will now bound all three terms on the left hand side. First, we lower bound Pu(X[0,M ] ∩A ̸= ∅)
by CapM (A)

(
1− 3t+mix

δ2M

)
by Claim 2.7. For the second term, we upper bound it by the product of the

probabilities for X to self intersect in M steps, and then to hit A in another M steps. This is upper bounded
by

M2

δn
· M |A|

δn
.

The third term can be bounded by the probability to hit y[0, iM ]∪ (T \A) in at most M steps, and then to
hit A in at most another M steps, which is upper bounded by

M |A|
δn

· M(iM + |T |)
δn

.

We conclude that

CapM (A)

(
1 +O

(
t+mix

M

))
≤ CapM (A)

(
1− t+mix

δ2M

)
− 2 · M |A|

δn
· M(iM + |T |)

δn

≤ Pu(X[0,M ] ∩A ̸= ∅ and ̸ ∃0 < j < ℓ ≤ τA : Xj = Xℓ and ̸ ∃j ≤ τA : Xj ∈ y[0, iM ] ∪ (T \A)).

We now have estimates for all the quantities appearing in (20). We combine these in the next corollary.

Corollary 5.8. Let T ⊂ Gn be a subgraph such that |T | ≤ nκ+1/2, and let A ⊆ T . Let Y be a LERW on

Gn killed when it hits T . For each n2κ

M ≤ i ≤ n1/2+κ

M and for any simple path (ym)iMm=0 not intersecting T ,
satisfying ∣∣∣∣CapM (y[jM, (j + 1)M))− αnM

2

n

∣∣∣∣ ≤ αnM
2

n
n−κ/16 for all

n2κ

M
≤ j < i,

it holds that

P
(
Y hits T in time interval [iM, (i+ 1)M) in set A

∣∣ (Ym)iMm=0 = (ym)iMm=0

)
=

CapM (A)

CapM (T )

(
CapM (T ) +

αniM
2

n

)
(1 + o(1)).
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Proof. First note that it follows from Corollary 2.8 that

CapM (y[0, iM)) =
αniM

2(1 + o(1))

n
.

Given 1 ≤ H < M , (ym)iMm=0 and T , let ΓyiM→A,T,H denote the set of simple paths with u0 = yiM that first
hit T in the set A and at time H, and avoid (ym)iMm=0 until that time. We can then write, using Lemma 5.5(b)
and Lemma 5.7:

P
(
Y hits T in time interval [iM, (i+ 1)M) in set A

∣∣ (Ym)iMm=0 = (ym)iMm=0

)
=
∑

H<M

∑
(um)Hm=0∈

ΓyiM→A,T,H

P
(
Y [iM, iM +H] = (um)Hm=0

∣∣ (Ym)iMm=0 = (ym)iMm=0

)

=
∑

H<M

∑
(um)Hm=0∈

ΓyiM→A,T,H

C((ym)iMm=1, T, (um)Hm=1)PyiM

(
X[0, H] = (um)Hm=0

)

=
∑

H<M

∑
(um)Hm=0∈

ΓyiM→A,T,H

[CapM (T ) + Cap((Ym)iMm=0)](1 + o(1))

CapM (T )
PyiM

(
X[0, H] = (um)Hm=0

)

=
[CapM (T ) + Cap((Ym)iMm=0)](1 + o(1))

CapM (T )

∑
H<M

∑
(um)Hm=0∈

ΓyiM→A,T,H

PyiM

(
X[0, H] = (um)Hm=0

)

=
[CapM (T ) + Cap((Ym)iMm=0)]

CapM (T )
CapM (A)(1 + o(1)).

Here the final line follows by Claim 2.7, Corollary 2.8 and Lemma 5.7.

Proof of Proposition 5.2. (1) Fix some T which is good, and fix some C > 0. For every i ≤ Cβn
√
n/M , let

EC,i be the event that∣∣∣∣CapM (Y [iM, (i+ 1)M))− αnM
2

n

∣∣∣∣ ≤ αnM
2

n
n−κ/16 and Y [iM, (i+ 1)M) ∩ T = ∅.

Write Eprefix for the event ∩i≤n2κ/MEC,i. Note that by Lemma 5.4 and Corollary 5.6 we have that

P(Eprefix) = 1− o(1).

Note that, by Corollary 5.6 and Corollary 5.8, for any i ≥ n2κ/M , given Eprefix ∩n2κ/M≤j≤i EC,j , using
Corollary 5.8 we have

P
(
EC,i

∣∣ Eprefix and ∩n2κ/M≤j≤i EC,j

)
= 1−

(
CapM (T ) +

αniM
2

n

)
(1 + o(1))−O

(
4M2

δn

)
= 1−

(
αnM |T |

n
+

αniM
2

n

)
(1 + o(1)).

Here the final line holds since T is good, i ≥ n2κ

M and our conditioning on Eprefix ∩ ∩n2κ/M≤j≤iEC,j .
Then, write EC for the event that

Eprefix and {Y [0, Cβn

√
n] ∩ T = ∅} and

(
∩Cβn

√
n/M

i=n2κ/M EC,i

)
,

we have that,

P
(
EC

∣∣∣ T (k−1)
n = T

)
=

P
(
Eprefix

∣∣∣ T (k−1)
n = T

)
·
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Cβn
√
n/M∏

i=n2κ/M

P
(
EC,i

∣∣ Eprefix and ∩n2κ/M≤j<i EC,j

)
= (1− o(1))

Cβn
√
n/M∏

i=n2κ/M

(
1−

(
αnM |T |

n
+

αniM
2

n

)
(1 + o(1))

)

= (1− o(1)) exp

−
Cβn

√
n/M∑

i=n2κ/M

(1− o(1))αn(M |T |/n+ iM2/n)


= (1− o(1)) exp

(
−αn

Cβn
√
n

2M
(2M |T |/n+ CβnM/

√
n)

)
= (1− o(1)) exp(−(C2/2 + C|T |/(βn

√
n)).

(Here in the last line we used that β2
n = 1

αn
by definition). To conclude, note that

P
(
Y [0, Cβn

√
n] ∩ T (k−1)

n = ∅
∣∣∣ T (k−1)

n = T
)
− P
(
EC

∣∣∣ T (k−1)
n = T

)
≤ Cβn

√
n

M
· 4M

2

δn
= o(1) (24)

by Corollary 5.6. On the event |T | ≤ B
√
n, this can be written in the form oB(1)P

(
EC

∣∣∣ T (k−1)
n = T

)
using the estimate above.

(2) It follows directly from Corollary 5.8 and Definition 5.1 that for any i > n2κ/M , conditionally on
H

T
(k−1)
n

∈ (iM, (i+ 1)M ], we have that

P
(
YH

T
(k−1)
n

∈ A
∣∣∣ HT

(k−1)
n

∈ (iM, (i+ 1)M ]
)
=

|A|(1 + o(1))

|T (k−1)
n |

,

as required.

(3) Given ε > 0, first choose C < ∞ so that the probability appearing in part (1) is at most ε. Then, on

the event Y [0, Cβn
√
n]∩ T ̸= ∅, we have that the probability that T

(k)
n is not good is upper bounded by

ε+ o(1) by (24). Since ε > 0 is arbitrary this gives the result.

6 Proof of Theorem 1.3

In this section we prove Theorem 1.3. We start by using the estimates of the previous section to prove
Theorem 3.1. At the end of the section, we address the lower mass bound condition which completes the
proof of Theorem 1.3.

6.1 Proof of Theorem 3.1

In Definition 3.2 we defined how a sequence of trees can be constructed through a stick-breaking process. In
what follows next we outline how, for any k ≥ 1, Wilson’s algorithm on Gn can be used to give two sequences
(Yi)

n
i=0 and (Zi)

n−1
i=0 such that SB(k)((Y0, Y1, . . . , Yk−1), (Z0, Z1, . . . , Zk−2)) is equal to the subtree obtained

after the first k − 1 steps of Wilson’s algorithm, and such that the
(
k
2

)
distances appearing in Theorem 3.1

therefore match those between the points (Y0, Y1, . . . , Yk−1) in the stick-breaking construction.

Let Gn be a graph on n vertices and recall the definition of βn from (19). We will define a stick-breaking
process (Y n

i )ni=0, (Z
n
i )

n−1
i=0 which arises from Wilson’s Algorithm on Gn. To ease notation, we shall remove

the superscript and begin with Y0 = 0, Z0 = 0. We choose an ordering of the vertices of G, denoted by
{v1, . . . , vn}. Then, at the first step, we sample the UST path (using Wilson’s algorithm) from v2 to v1. We
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denote this path by T
(2)
n , and let Y1 be the length of this path divided by βn

√
n. For every vertex z on this

path we say that z was added at the first step. Let k ≥ 2 and assume that we sampled T
(k)
n and Z0, . . . , Zk−2

and Y0, . . . , Yk−1. For the kth step, take vk+1 and sample (again, using Wilson’s algorithm) its path to T
(k)
n .

Denote this path Pk and set T
(k+1)
n = Pk ∪ T

(k)
n . For every vertex in Pk \ T

(k)
n , we say that it was added

on the kth step. Let Yk = Yk−1 +
|Pk|
βn

√
n
. In order to define Zk−1, first let z be the vertex at which Pk hits

T
(k)
n . If z is of the form vm for some m, set Zk−1 = Ym−1. Otherwise, let m < k be the step at which z was

added. Then, Ym−1 ≤ Zk−1 ≤ Ym and the exact value of Zk−1 is

Zk−1 = Ym − d(z, vm+1)

βn
√
n

.

Furthermore, this way we can define a function I that identifies every v ∈ T
(k)
n with a point in [0,∞). If

v was added at the mth step then we set I(v) = Ym − d(v,vm+1)

βn
√
n

.

Throughout this section, we also let (Y ′
i )i≥0 and (Z ′

i)i≥0 be the analogous quantities for stick-breaking
of the CRT, sampled as described in Proposition 3.3.

We will use the following claim. Recall the definition of “good” from Definition 5.1.

Claim 6.1. Assume that T
(k−1)
n is good and that |T (k−1)

n | ∈ [C−1
√
n,C

√
n]. Let Imax = max

v∈T
(k−1)
n

I(v).

Let Y be a LERW started from vk, and let H
T

(k−1)
n

be the time at which Y hits T
(k−1)
n . Let j ≤ n1/2+κ/M

and let Pd,j be the measure on [0, Imax] defined by

Pd,j(I(v)) = P
(
YH

T
(k−1)
n

= v
∣∣∣ HT

(k−1)
n

∈ [jεβn

√
n/2, (j + 1)εβn

√
n/2)

)
∀v ∈ T (k−1)

n .

Then, for every ε > 0 there exists N ∈ N such that for all n > N and for all j ≤ n1/2+ε/M , the Prohorov
distance between the measure Pd,j and the uniform probability measure on [0, Imax] is less than ε.

Proof. We assume that C/βn is larger than ε, otherwise Imax is smaller than ε and there’s nothing to
prove. We also assume wlog that ε < 1. Decompose [0, Imax] into intervals of size ε by writing [0, Imax] =
∪i≤⌊Imax/ε⌋[iε,min{Imax, (i + 1)ε}]. Fix j, write Pd in place of Pd,j and denote by Pu the uniform measure
on [0, Imax]. Note that every interval I ⊂ [0, Imax] of length ε can be identified with the union of at most k

connected subsets of T
(k−1)
n such that the sum of their lengths is εβn

√
n (which is much larger than n3ε). By

discarding those that are of length less than n3ε we can apply Proposition 5.2(2) to the remaining subsets
(by decomposing them and I into smaller intervals if necessary) to deduce that

Pd(I) =
ε

Imax
(1 + o(1)), Pu(I) =

ε

Imax
.

Now take N large enough such that the o(1) error is bounded by ε. Then, take some set A in [0, Imax] and
let IA be the set of intervals of the form [iε, (i+ 1)ε) intersecting A. Now, we have that

|IA|
ε

Imax
− ε ≤ |IA|

ε

Imax
(1 + o(1)) ≤ Pd(IA) ≤ |IA|

ε

Imax
(1 + o(1)) ≤ |IA|

ε

Imax
+ ε

and

Pd(A) ≤ Pd(IA) ≤ |IA|
ε

Imax
+ ε ≤ Pu(IA) + ε ≤ Pu(A

ε) + ε,

Pu(A) ≤ Pu(IA) = |IA|
ε

Imax
≤ Pd(IA) + ε ≤ Pd(A

ε) + ε.

Hence the Prohorov distance between these two measures is at most ε.

The main claim of this section is now as follows.
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Claim 6.2. For every ε > 0 and k ≥ 1 there exists N such that for all n > N we can couple the stick-breaking
process for the CRT and for the UST such that |Yi−Y ′

i | ≤ ε for all 0 ≤ i ≤ k− 1 and |Zi−Z ′
i| ≤ ε for every

0 ≤ i ≤ k − 2 with probability at least 1− ε.

Proof. We prove the claim by induction. Clearly when k = 1 (i.e. for T
(1)
n ) the statement holds trivially

since the tree is a single point and Y0 = Y ′
0 = 0 by construction. Moreover since a tree consisting of a single

vertex is always good and since Z0 = Z ′
0 = 0, it also follows directly from Lemma 2.10, Proposition 3.4 and

Proposition 5.2 that the statement holds for k = 2 as well.

Now fix k ≥ 3 and suppose that the claim holds for all m < k. We will now show that the claim holds
also for k. That is, suppose that for every ε > 0 there exists N large enough such that for all n > N we can

successfully couple T
(k−1)
n with the CRT. It suffices to show that for every ε > 0, there exists 0 < ζ < ε/8

such that if we condition on a successful coupling of the previous step with parameter ζ, then we can couple
(Yk−1, Zk−2) with (Y ′

k−1, Z
′
k−2) such that |Yk−1 − Y ′

k−1| < ε and |Zk−2 −Z ′
k−2| < ε with probability at least

1− ε/2.

To this end, let ζ > 0 (its precise value will be chosen later) and suppose we have successfully coupled
(Yi)i≤k−2 and (Zi)i≤k−3 with (Y ′

i )i≤k−2 and (Z ′
i)i≤k−3 as in the statement of the claim with parameter ζ.

Note that it follows directly by iterating Point 3 of Proposition 5.2 that T
(k−1)
n is good with probability at

least 1− ε/3 for all sufficiently large n. Moreover, it therefore also follows from Lemma 3.5 that 0 < g(ε) ≤
Yk−2 ≤ f(ε) with probability at least 1 − ε/3, for some functions f and g where g(ε) > 0 and f(ε) < ∞.

Hence we can assume that we coupled T
(k−1)
n with the CRT, that T

(k−1)
n is good and that g(ε) ≤ Yk−2 ≤ f(ε).

Under the coupling, we can write
|T (k−1)

n |
βn

√
n

= Yk−2 = Y ′
k−2 + ε′ where ε′ ∈ [−ζ, ζ]. Therefore, since T

(k−1)
n

is good, it follows from Proposition 5.2(1) with B = f(ε) that for any C ∈ (0,∞),

P
(
Yk−1 − Yk−2 > C

∣∣∣ T (k−1)
n

)
= exp

{
−
(C + Y ′

k−2 + ε′)2 − (Y ′
k−2 + ε′)2

2

}
+ o(1)

= exp

{
−
(C + Y ′

k−2)
2 − (Y ′

k−2)
2

2

}(
1 + e−Cε′ − 1

)
+ o(1),

so∣∣∣∣P(Yk−1 − Yk−2 > C
∣∣∣ T (k−1)

n

)
− exp

{
−
(C + Y ′

k−2)
2 − (Y ′

k−2)
2

2

}∣∣∣∣ ≤ |1− e−Cε′ |e
−C2

2 + o(1) ≤ Cζe
−C2

2 + o(1).

(25)

The first term on the right hand side goes to 0 as ζ → 0 uniformly over C > 0. By Lemma 2.10, there exists
η depending on ε such that if f(ε) ≤ Yk−2 ≤ g(ε) and the right-hand side of (25) is smaller than η, then we
can couple Yk−1 − Yk−2 and Y ′

k−1 − Y ′
k−2 such that the probability that they are ε/4 close to one another

is at least 1 − ε/4. When this happens, by the triangle inequality, we have that |Yk−1 − Y ′
k−1| < ε/2. We

therefore choose ζ small enough (and smaller than ε/8) and n large enough such that the right-hand side is
smaller than this η.

However, we note that Zk−2 is not independent of Yk−1 and we are required to couple the pair (Yk−1, Zk−2)
with (Y ′

k−1, Z
′
k−2). To do so, we will decompose R+ into intervals of length ε/2, that is, we write R+ =

⋃∞
j=0 Ij

where Ij = [jε/2, (j+1)ε/2). LetMk−1 (respectivelyM ′
k−1) be the unique j such that Yk−1 ∈ Ij (respectively

Y ′
k−1 ∈ Ij). By Lemma 2.10 and the discussion above, there exists a coupling of Mk−1 and M ′

k−1 such that
the difference between them is at most 1 with probability 1− ε/8. By Lemma 3.5, with probability at least
1− ε/8 we have that M ′

k−1 ≤ n1/2+ε − 1 for n large enough (and then so is Mk−1).

Then, given Mk−1, we sample Zk−2 according to its conditional law. By Claim 6.1, when n is large
enough, for every j ≤ n1/2+κ, conditionally on Mk−1 = j we have that the Prohorov distance between Zk−2

and a uniform random variable on [0, Yk−2] is at most ζ. By Claim 2.9, the Prohorov distance between a
uniform random variable on [0, Yk−2] and Z ′

k−2 (recall that, given Y ′
k−2, Z

′
k−2 is independent of Y ′

k−1 and
hence of M ′

k−1) is at most ζ. Therefore, the Prohorov distance between Z ′
k−2 and Zk−2 conditionally on

Mk−1 = j is at most 2ζ. Since ζ < ε/8, it follows that we can couple the pairs (Yk−1, Zk−2) and (Y ′
k−1, Z

′
k−2)

such that |Yk−1 − Y ′
k−1| < ε and |Z ′

k−2 − Zk−2| < ε with probability at least 1− ε/2, as required.
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Corollary 6.3. For every ε > 0 and k ≥ 1 there exists N such that for all n > N we can couple the
stick-breaking process for the CRT and for the UST such that, with probability at least 1− ε, it holds for all
0 ≤ i, j ≤ k that

|d(yi, yj)− d′(y′i, y
′
j)| ≤ ε.

Proof. Take η > 0 and k ≥ 1. We verify that there is a coupling such that each of the conditions of
Proposition 3.6 hold with high probability.

For the first condition note that, by Claim 6.2, we can couple the stick-breaking process for the CRT and
for the UST such that |Yi−Y ′

i | ≤ η for all 0 ≤ i ≤ k and |Zi−Z ′
i| ≤ η for every 0 ≤ i ≤ k−1 with probability

at least 1− η for all sufficiently large n. For the second condition, note that it follows from Proposition 3.3
that we can choose δ = δ(η, k) > 0 such that |Z ′

i − Y ′
j | ≥ 3η for all i ≤ k − 1, j ≤ k with probability at least

1− δ, and such that δ ↓ 0 as η ↓ 0.

Therefore, it follows from Proposition 3.6 that under this coupling, it holds with probability at least
1 − η − δ that sup1≤i,j≤k |d(yi, yj) − d′(y′i, y

′
j)| ≤ 2kη. Given ε > 0, we can therefore choose η > 0 small

enough that 2kη + δ < ε in order to deduce the claim as stated.

Proof of Theorem 3.1. For k ≥ 1, let D
(k)
n denote the matrix of distances between k uniform points in

UST(Gn). Let D
(k) denote the analogous matrix for the CRT.

We showed that for any k ≥ 1 and any ε > 0, we can couple T
(k)
n and the CRT so that ||D(k)

n −D(k)||∞ < ε

with probability at least 1− ε for all sufficiently large n. Thus we have that ||D(k)
n −D(k)||∞ converges to 0

in probability and therefore D
(k)
n converges to D(k) in distribution, which is equivalent to the statement of

Theorem 3.1.

6.2 Lower mass bound

To strengthen the convergence obtained in Theorem 3.1 to GHP convergence (and therefore prove Theo-
rem 1.3), it suffices to verify that Proposition 2.13(b) holds. Therefore, in our setting, it is enough to show
the following.

Claim 6.4 (Lower mass bound). Let (Gn)n≥1 be a dense sequence of deterministic graphs satisfying the
assumptions of Theorem 1.3. For each n ≥ 1, let Tn be a uniformly drawn spanning tree of Gn. Denote by
dTn

the corresponding graph-distance on Tn and by µn the uniform probability measure on the vertices of Tn.
Then, for any c > 0 and any η > 0 there exists some ε > 0 such that for all n ∈ N

P
(
∃v ∈ Tn : |BTn(v, c

√
n)| ≤ εn

)
≤ η.

The results of [7] establish the lower mass bound for a sequence (Gn)n≥1 such that |Gn| = n for all n,
satisfying the following three conditions.

1. There exists θ < ∞ such that sup
n

sup
x∈Gn

√
n∑

t=0

(t+ 1)pt(x, x) ≤ θ.

2. There exists α > 0 such that tmix(Gn) = o(n
1
2−α) as n → ∞.

3. Gn is transitive for all n.

For a graph sequence satisfying the assumptions of Theorem 1.3, note that the second condition is
immediately satisfied by Claim 2.5. The first condition is also satisfied since pt(x, x) ≤ 1

δn for all x ∈ Gn

and all t ≥ 1.

However, we would like to relax the condition that Gn is transitive and instead require only that the
graphs are balanced ; that is, that there exists a constant D < ∞ such that

maxv∈Gn
deg v

minv∈Gn
deg v

≤ D
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for all n. As remarked at the end of [7], it is straightforward to extend the proof of the lower mass bound to
this setting by carrying the constant D through all of the computations in [7]; we do not provide the details
as they are not illuminating. Under the assumptions of Theorem 1.3, we can take D = δ−1 so this easily
verifies Claim 6.4 and therefore Proposition 2.13(b). Moreover, Theorem 3.1 ensures that Proposition 2.13(a)
is also fulfilled. Theorem 1.3 therefore follows directly.

7 Proof of Theorem 1.1 and Corollary 1.2

Recall from the introduction that that a graphon W is non-degenerate if the function

degW (x) :=

∫
[0,1]

W (x, y)dy

is defined and strictly positive for every x ∈ [0, 1], and that a non-degenerate graphon W is connected if
for every measurable A ⊂ [0, 1] we have that∫

A

∫
AC

W (x, y)dxdy > 0.

In order to verify Theorem 1.1 as consequence of Theorem 1.3, we need to verify that under the assump-
tions of Theorem 1.1, the graph sequence is an expander sequence and that αn → αW .

We start with the first of these. Recall the definition of a γ-expander sequence is given in Definition 2.4.

Claim 7.1. Let W : [0, 1]2 → [0, 1] be a connected graphon and let Gn be a sequence of weighted graphs with
minimal degree at least δn converging in cut-distance to W . Then there exists γ = γ(W, δ) > 0 such (Gn)n≥1

is a γ-expander sequence.

Proof. Take U ⊂ Gn. We split the proof into two cases depending on whether |U | ≥ 1
2δn or not.

Case 1: |U | ≤ 1
2δn. Since Gn has minimal degree at least δn and the maximal weight of every edge is

1, it follows that there is a total weight of 1
2δn emanating from every vertex leading to V (G) \ U , so that

w(U, V (G) \ U) ≥ 1

2
|U |δn ≥ 1

2
δ|U |(V (G)− |U |).

Case 2: |U | > 1
2δn. By Lemma 2.2, there exists a constant β = β(W, δ) such that for every set U with

δ
2 ≤ µ(U) ≤ 1/2 we have ∫

U

∫
UC

W (x, y) > β.

In particular, since Gn converges to W this implies that there exists N > ∞ such that for all such U and all
n ≥ N ,

1

n2
w(U, V (G) \ U) =

∫
U

∫
UC

Wn(x, y) >
β

2
.

Since |U |(V (G)− |U |) ≤ n2 trivially, this implies that e(U, V (G) \ U) ≥ β
2 |U |(V (G)− |U |).

We now turn to verifying the convergence αn → αW . Recall that in Section 4 we defined

αn =
nEπ

[
CapM (X[0, nκ/2))

]
Mnκ/2

.

where X is a RW on Gn started from stationarity, and showed that under some assumptions, the sequence(
UST(Gn),

√
αndn√
n

, µn

)
(d)→ (T , d, µ) (26)
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with respect to the GHP topology. We also let Uπn
denote a random stationary vertex of Gn, and define

α̃n = nE[πn(Uπn)].

In fact it is more convenient to deal with α̃n rather than αn. This is sufficient as we show in the following
claim (we write the proof for completeness, but really it follows directly just from linearity of expectation
and Corollary 2.8).

Claim 7.2. Let (Gn)n≥0 be a sequence of weighted graphs on n vertices with minimal degree δn. Let αn and
α̃n be defined as above. Then αn = α̃n(1 + o(1)) as n → ∞.

Proof. By the Bonferroni inequalities and linearity of expectation, and letting Z denote an independent RW
started from stationarity, we can write (recalling also from Lemma 2.6 that CapM (Uπ) ≥ Mδ

2n deterministi-
cally):

∣∣∣E[CapM (X[0, nε/2))
]
− nε/2E[CapM (Uπ)]

∣∣∣ =
∣∣∣∣∣∣E
[
CapM (X[0, nε/2))

]
−

nε/2∑
i=0

E[CapM (Xi)]

∣∣∣∣∣∣
≤ Pπ

(
∃0 ≤ t1 < t2 ≤ M − 1 : Zt1 ∩X[0, nε/2) ̸= ∅ and Zt2 ∩X[0, nε/2) ̸= ∅

)
≤
(
Mnε/2

δn

)2

≤ 2Mnε/2

δ3n
· nε/2E[CapM (Uπ)].

Similarly, then note that, since π(v) ≥ δ
n for all v ∈ Gn deterministically,

|E[CapM (Uπ)]−ME[π(Uπ)]| =

∣∣∣∣∣E[CapM (Uπ)]−
M−1∑
i=0

Pπ(Zi = Uπ)

∣∣∣∣∣
≤ Pπ(∃0 ≤ t1 < t2 ≤ M − 1 : Zt1 = Zt2 = Uπ) ≤

(
M

δn

)2

≤ M

δ3n
·ME[π(Uπ)].

To conclude, we combine to get that

αn =
n

Mnε/2
E
[
CapM (X[0, nε/2))

]
=

n

M
E[CapM (Uπ)](1 + o(1)) = nE[π(Uπ)](1 + o(1)) = α̃n(1 + o(1)),

as required.

It therefore follows that the convergence of (26) holds with the sequence (α̃n)n≥1 in place of (αn)n≥1. To
prove main convergence theorem, it is therefore sufficient to show that, under the assumptions of Theorem 1.1,

α̃n → αW , (27)

where αW is as in (1).

Remark 7.3. Note that α̃n is 1 when Gn is regular, so clearly (27) will entail that αW = 1 for a regular
graph sequence.

Our next goal is to show the following.

Claim 7.4. Let W : [0, 1]2 → [0, 1] be a connected graphon and let Gn be a sequence of graphs with stationary
measures πn converging in cut-distance to W . Then,

α̃n := nEπn
[πn(v)] →

1(∫
[0,1]2

W (x, y)dxdy
)2 ·

∫
[0,1]

(∫
[0,1]

W (x, y)dy

)2

dx.
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Proof. We will begin with showing that

1

n2

∑
v∈V

degGn
(v) →

(∫
[0,1]2

W (x, y)dxdy

)
. (28)

Indeed, as Gn → W in the cut-distance, there exist ϕn measure-preserving automorphisms such that the
graphon representations Wn of Gn satisfy

sup
S,T∈B([0,1])

∣∣∣∣∫
S

∫
T

Wϕn
n (x, y)−W (x, y)dxdy

∣∣∣∣→ 0.

We henceforth write Wn in place of Wϕn
n . In particular, choosing S = T = [0, 1] we obtain that∫

[0,1]

∫
[0,1]

Wn(x, y)dxdy →
∫
[0,1]

∫
[0,1]

W (x, y).

However, by the definition of a graphon representation of a graph given in Section 2.1, we also have that∫
[0,1]

∫
[0,1]

Wn(x, y)dxdy =
1

n2

∑
v∈V

degGn
(v),

which establishes (28). Next, we will show that

1

n3

∑
v∈Gn

degGn
(v)2 →

∫
[0,1]

(∫
[0,1]

W (x, y)dy

)2

dx (29)

Note that in every graphon representation Wn of Gn we have that

1

n3

∑
v∈Gn

degGn
(v)2 =

1

n

∑
v∈Gn

(
degGn

(v)

n

)2

=
1

n

∑
v∈Gn

(∫
[0,1]

Wn(xv, y)dy

)2

,

where xv is some point in [0, 1] corresponding to v. Moreover, in the notation of Section 2.1, it follows from
the construction given there that

1

n

∑
v∈Gn

(∫
[0,1]

Wn(xv, y)dy

)2

=

n∑
i=1

∫
Ii

(∫
[0,1]

Wn(x, y)dy

)2

dx =

∫
[0,1]

(∫
[0,1]

Wn(x, y)dy

)2

dx.

To establish (29), it thus suffices to prove that

∫
[0,1]

(∫
[0,1]

Wn(x, y)dy

)2

dx →
∫
[0,1]

(∫
[0,1]

W (x, y)dy

)2

dx.

In other words, writing degW and degWn
for the corresponding normalized degree functions of the graphons

W and Wn as defined in (2), we need to show that∫
[0,1]

(
degWn

(x)2 − degW (x)2
)
dx → 0. (30)

As degWn
and degW are measurable functions, we have that the set {x ∈ [0, 1] : degWn

(x) > degW (x)} is
measurable. Denote this set by S. We have that∫

S

degWn
(x)2 − degW (x)2dx =

∫
S

(degWn
(x)− degW (x))(degWn

(x) + degW (x))dx

≤ 2

∫
S

(degWn
(x)− degW (x))dx = 2

∫
S

∫
[0,1]

Wn(x, y)−W (x, y)dydx → 0.

29



By symmetry and considering Sc we similarly have that∫
Sc

degWn
(x)2 − degW (x)2dx → 0,

from which we conclude that (30) and therefore (29) hold. Finally, given (28) and (29), note that

α̃n = n
∑
v∈Gn

(
deg(v)∑

v∈Gn
deg(v)

)2

= n · 1(∑
v∈Gn

deg(v)
)2 ∑

v∈Gn

(deg(v)2)

=

(
n2 · 1∑

v∈Gn
deg(v)

)2

·

(∑
v∈Gn

1

n3
deg(v)2

)
→ 1(∫

[0,1]2
W (x, y)dxdy

)2 ·
∫
[0,1]

(∫
[0,1]

W (x, y)dy

)2

dx,

as required.

Proof of Theorem 1.1. We showed in Claim 7.1 that under the assumptions of Theorem 1.1, the graph
sequence in question is an expander sequence, so that Theorem 1.3 applies. In Claim 7.2 and Claim 7.4,
we showed that the sequence αn appearing in the conclusion of Theorem 1.3 converges to αW as n → ∞,
exactly as required.

Corollary 1.2 is a direct consequence of Theorem 1.1 and Lemma 2.3.
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