Polynomial decomposition method for ocular wavefront analysis - Archive ouverte HAL
Article Dans Une Revue Journal of the Optical Society of America. A Optics, Image Science, and Vision Année : 2018

Polynomial decomposition method for ocular wavefront analysis

Résumé

Zernike circle polynomials are in widespread use for wavefront analysis because of their orthogonality over a circular pupil and their representation of balanced classical aberrations. However, some of the higher-order modes contain linear and quadratic terms. A new aberration series is proposed to better separate the low- versus higher-order aberration components. Because its higher-order modes are devoid of linear and quadratic terms, our new basis can be used to better fit the low- and higher-order components of the wavefront. This new basis may quantify the aberrations more accurately and provide clinicians with coefficient magnitudes which better underline the impact of clinically significant aberration modes.
Fichier principal
Vignette du fichier
josaa-35-12-2035.pdf (4.51 Mo) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

hal-03993081 , version 1 (05-04-2023)

Identifiants

Citer

Damien Gatinel, Jacques Malet, Laurent Dumas. Polynomial decomposition method for ocular wavefront analysis. Journal of the Optical Society of America. A Optics, Image Science, and Vision, 2018, 35 (12), pp.2035-2045. ⟨10.1364/JOSAA.35.002035⟩. ⟨hal-03993081⟩
21 Consultations
46 Téléchargements

Altmetric

Partager

More