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Zernike circle polynomials are in widespread use for wavefront analysis because of their orthogonality
over a circular pupil and their representation of balanced classical aberrations. However, some of the higher-
order modes contain linear and quadratic terms. A new aberration series is proposed to better separate the
low- versus higher-order aberration components. Because its higher-order modes are devoid of linear and
quadratic terms, our new basis can be used to better fit the low- and higher-order components of the wavefront.
This new basis may quantify the aberrations more accurately and provide clinicians with coefficient
magnitudes which better underline the impact of clinically significant aberration modes. © 2018 Optical

Society of America

https://doi.org/10.1364/JOSAA.35.002035

1. INTRODUCTION

Power series expansions have historically been used to describe
and characterize optical system aberrations. Aberrometers mea-
sure all the eye’s monochromatic aberrations and display
the result in the form of an aberration map that describes
the variation in optical path length from the source to retinal
image through each point in the pupil. The wave aberration is
expressed as a weighted sum of power series terms that are func-
tions of the pupil coordinates. When the wavefront aberration
is written as a series of its components, each mode can be re-
garded as a type of aberration. In ophthalmic optics, Zernike
coefficients are usually specified using the standard nomencla-
ture defined with reference to the standard coordinate system
recommended by the Optical Society of America [1]. Zernike
polynomials are orthogonal in a continuous fashion over the
interior of a unit circle and, as many other functions, are con-
venient for serving as a complete basis [2–4]. They are usually
expressed in polar coordinates, r and t , and are readily convert-
ible to Cartesian coordinates. Any continuous wavefront f
defined over a disk may be described as a sum of Zernike poly-
nomials Zm

n weighted by Zernike coefficients denoted zmn �f �.
These polynomials are mutually orthogonal, making the vari-
ance of the sum of modes equal to the sum of the variances of
each individual mode. Each mode of the Zernike polynomials
minimizes the root mean squared (RMS) wavefront error to the
order of that term. Each mode is constituted by the tensor
product R ⊗ T of a polynomial R�r� and a trigonometric

function T �t�. They can be scaled so that non-zero-order
modes have zero mean and unit variance. This common refer-
ence frame enables meaningful relative comparison between
them and makes Zernike polynomials suitable for accurately
describing wave aberrations as well as for data fitting.

The Zernike pyramid of aberration modes is organized by
row (polynomial of order n) and by column (sine or cosine
function of meridional frequency m) of the mathematical func-
tion Zm

n that define the mode. The orthogonality of the modes
of the same radial order n, which constitute the lines of the
Zernike pyramid is ensured by the trigonometric function
comprised within the tensor product since their azimuthal fre-
quency differs. The orthogonality of the modes of the same
azimuthal frequency m, which constitute the columns of the
Zernike pyramid, is ensured by the orthogonality of the poly-
nomials within the tensor products. These polynomials are gen-
erated using a Gram–Schmidt process. The lowest degree of the
terms contained in the radial function of the Zernike mode is
equal to the radial frequency of that mode. The value of this
lowest degree corresponds to the valuation of the polynomial.
The Gram–Schmidt process makes it orthogonal to each lower-
order mode, and each mode contains the appropriate amount
of each lower-order term. Hence, some polynomials of degree n
may contain terms of lower degree than n. Whenever m differs
from n, Zernike mode Zm

n contains lower than n order terms.
For example, when m ≤ 2, higher-order (n ≥ 3) modes contain
tilt (m � 1) or defocus (m � 0 or m � 2) lower-order
(n ≤ 2) terms.
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Part of the discrepancy between the second-order Zernike
modes and the best subjective sphero-cylindrical error might
be explained by the presence of second-order terms within
higher-order modes [5,6]. In addition, the combination of
the Zernike tilt modes does not reflect any possible tilt in
the wavefront since tilt terms (r1) are embedded in the Z�1

3

coma aberration modes. In ophthalmology, this mixing may
have detrimental consequences on the understanding of the im-
pact of higher-order aberrations (HOAs) on visual function. It
has been shown that most of the visual impact of fourth-order
Zernike aberrations can be attributed to the second-order terms
within these polynomials [6].

In this paper, we propose new describing functions for the
higher-order wavefront modes, which do not contain low (i.e.,
linear or quadratic) terms but maintain desirable mathematical
properties, such as orthogonality and normality.

Different decomposition schemes are examined which
include azimuthal and commonly used Zernike expansions,
as well as a newly proposed series expansion, which has
several advantages over the Zernike scheme. This alternative
series expansion leads to a new decomposition scheme for
ophthalmic work, where the low- and higher-order aberration
components of the wavefront may be better separated and
analyzed.

2. LOW-DEGREE HIGH-DEGREE
DECOMPOSITION AND A SUITABLE BASIS

A. Mathematical Treatment of Wavefronts

On a mathematically simplified viewpoint, the normalized
pupil is identified with the R2 unit disc D:

D ≔ f�x, y� ∈ R2; x2 � y2 ≤ 1g, (1)

D � f�r cos�t�, r sin�t��; 0 ≤ r ≤ 1, − π ≤ t ≤ �πg: (2)

The eye wavefront will then be seen as a real valued function f
defined on D:

f :
�

D → R
�x, y� ↦ f �x, y� : (3)

This function is assumed to be polynomial, without any loss of
generality, since linear combinations of xkyl monomials
provide arbitrarily close approximations of any continuous
function on D. In clinical applications, the total degree of this
polynomial function rarely exceeds 6.

One then defines the inner (or scalar) product of two wave-
fronts f and g as

hf , giD ≔
1

π

ZZ
D

f �x, y�g�x, y�dxdy: (4)

This inner product provides the space of polynomial wavefronts
with a geometrical structure, and allows us to consider wave-
fronts as vectors in an Euclidian space. It also provides the
means of defining orthogonality between wavefronts (with zero
inner product) and the distance between two wavefronts as

d �f , g� ≔
�
1

π

ZZ
D
�f �x, y� − g�x, y��2dxdy

�
1∕2

: (5)

The classical RMS is the distance from a wavefront to its
average:

p0�f � ≔
1

π

ZZ
D
f �x, y�dxdy �piston�,

RMS � d �f , p0�f �� �
�
1

π

ZZ
D
�f �x, y� − p0�f ��2dxdy

�
1∕2

·

B. Azimuthal Expansion and Low-Degree
High-Degree Decomposition

Every polynomial wavefront has a Taylor expansion,
given by

f �
X
n≥0

X
m∈In

xmn �f �Xm
n , (6)

where 8<
:

Xm
n ≔ �x, y� ↦ x

n�m
2 y

n−m
2

xmn �f � ≔ 1
n!

∂nf

∂x
n�m
2 ∂y

n−m
2
�0, 0� ·

Using a Fourier expansion of degree homogeneous terms in
Eq. (6), one gets a new expansion of f , called its azimuthal
expansion.

Sorted by radial degree n, and for a given degree in increas-
ing order of azimuthal frequency m, the azimuthal expansion of
f can be written

f �
X
n≥0

�X
m∈I n

amn �f �Am
n

�
, (7)

or, expressed in trigonometric form,

f �r cos�t�, r sin�t�� �
X
n≥0

�X
m∈In

amn �f �R�n��r�Tm�t�
�
, (8)

where R�n�:r ↦
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
rn are normed monomials.

Azimuthal polynomial functions Am
n with different azimu-

thal frequencies m are orthogonal, but the whole azimuthal
basis is not orthonormal.

The main advantage of azimuthal basis relies in the degree
separation they allow. Whereas Zernike expansion Eq. (15)
mixes low-degree and higher-degree monomials, expansions
Eqs. (6) and (7) allow a clear-cut separation between them.

Let LD be the vector space of low-degree (≤ 2) wavefronts:
LD ≔ spanfAm

n ; n ≤ 2,m ∈ Ing, (9)

where

A0
0 � 1,

A−1
1 � 2r sin�t� � 2y,

A�1
1 � 2r cos�t� � 2x,

A−2
2 � r2

ffiffiffi
6

p
sin�2t� � 2

ffiffiffi
6

p
xy,

A0
2 �

ffiffiffi
3

p
r2 �

ffiffiffi
3

p
�x2 � y2�,

A�2
2 � r2

ffiffiffi
6

p
cos�2t� �

ffiffiffi
6

p
�x2 − y2�:

The vector space PD of all polynomial wavefronts admits a
direct sum decomposition,
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PD � LD⊕HD, (10)

where HD is the vector space of wavefronts with no low-degree
monomial:

HD ≔ spanfAm
n ; n ≥ 3,m ∈ Ing: (11)

For every polynomial wavefront f there is a unique couple
�f l, f h� of polynomial wavefronts, the former in LD, the latter
in HD, such that

f � f l � f h: (12)

Low-degree and higher-degree components f l and f h are
easily derived from azimuthal expansion Eq. (7):

f l �
X2
n�0

�X
m∈In

amn �f �Am
n

�
, (13)

f h �
X
n≥3

�X
m∈In

amn �f �Am
n

�
: (14)

Decomposition Eq. (12) will be called the low-degree high-
degree (LDHD) decomposition of f .

C. Zernike Expansion

Sorted by radial degree n, and for a given degree in increasing
order of azimuthal frequency m, the well-known Zernike
expansion of a wavefront f is

f �
X
n≥0

�X
m∈I n

zmn �f �Zm
n

�
, (15)

or, expressed in its trigonometric form,

f �r cos�t�, r sin�t�� �
X
n≥0

�X
m∈I n

zmn �f �Rm
n �r�Tm�t�

�
, (16)

where8>>>>>>>><
>>>>>>>>:

In ≔ f−n, − n� 2,…, � n − 2, � ng

Tm�t� ≔

8><
>:

ffiffiffi
2

p
sin�−mt� sim < 0

1 sim � 0ffiffiffi
2

p
cos�mt� sim > 0

Rm
n �r� ≔

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p P
0≤k≤n−jmj

2

�−1�k �n−k�!
k!�n−m2 −k�!�n�m

2 −k�! r
n−2k

:

For example,

R0
0�r� � 1,

R−1
1 �r� � R1

1�r� �
ffiffiffi
2

p
r,

R−2
2 �r� � R2

2�r� �
ffiffiffi
3

p
r2,

R0
2�r� �

ffiffiffi
3

p
�2r2 − 1�,

R−3
3 �r� � R3

3�r� � 2r3,

R1
3�r� � R−1

3 �r� � 2�3r3 − 2r�,
R−4
4 �r� � R4

4�r� �
ffiffiffi
5

p
r4,

R−2
4 �r� � R2

4�r� �
ffiffiffi
5

p
�4r4 − 3r2�,

R0
4�r� �

ffiffiffi
5

p
�6r4 − 6r2 � 1�:

Azimuthal functions Tm form an orthonormal set with respect
to the inner product:

�U ,V � ↦ hU ,V iazi ≔
1

2π

Z �π

−π
U �t�V �t�dt: (17)

Radial polynomial functions Rm
n form an orthonormal set with

respect to the inner product:

�R, S� ↦ hR, Sirad ≔ 2

Z
1

0

R�r�S�r�rdr: (18)

Therefore, bivariate functions

Zm
n � Rm

n ⊗ Tm ≔ �r, t� ↦ Rm
n �r�Tm�t�

form an orthonormal set with respect to the inner product
given by Eq. (4). They are classically called Zernike polynomials,
whereas numerical coefficients zmn in Eq. (15) are called the
Zernike coefficients of wavefront f .

D. New Basis for High-Degree Wavefronts

Starting with the azimuthal basis �Am
n �n≥3,m∈In ofHD and using

Gram–Schmidt procedure, we have derived an orthonormal ba-
sis �Gm

n �n≥3,m∈I n of HD.
For all n ≥ 3 and m ∈ In,

Gm
n ≔

�
R3�12N�n�
n ⊗ Tm if jmj ≤ 2

Rm
n ⊗ Tm otherwise

, (19)

where 12N�n� � 1 if n is even, 0 if n is odd.
Thus, polynomial wavefronts Gm

n (n ≥ 3 and m ∈ In) given
by Eq. (19) form an orthonormal basis of HD with respect to
the inner product Eq. (4). Polynomial wavefronts Zm

n (n ≥ 3
and m ∈ In) still form an orthonormal family but are not low-
order free: whenever it differs from Gm

n , polynomial wavefront
Zm

n does not belong to HD:

Fig. 1. Visualization of the differences between the Zernike and
new LDHD modes of clinical importance.
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G−3
3 � Z −3

3 � 2
ffiffiffi
2

p
r3 sin�3t�, G−1

3 � 2
ffiffiffi
2

p
r3 sin�t�, Z −1

3 � 2
ffiffiffi
2

p
�3r3 − 2r� sin�t�,

G�1
3 � 2

ffiffiffi
2

p
r3 cos�t�, Z�1

3 � 2
ffiffiffi
2

p
�3r3 − 2r� cos�t�, G�3

3 � Z 33
3 � 2

ffiffiffi
2

p
r3 cos�3t�,

G−4
4 � Z −4

4 �
ffiffiffiffiffi
10

p
r4 sin�4t�, G−2

4 �
ffiffiffiffiffi
10

p
r4 sin�2t�, Z −2

4 �
ffiffiffiffiffi
10

p
�4r4 − 3r2� sin�2t�, G0

4 �
ffiffiffi
5

p
r4,

Z 0
4 �

ffiffiffi
5

p
�6r4 − 6r2 � 1�, G2

4 �
ffiffiffiffiffi
10

p
r4 cos�2t�, Z −2

4 �
ffiffiffiffiffi
10

p
�4r4 − 3r2� sin�2t�,

G�4
4 � Z�4

4 �
ffiffiffiffiffi
10

p
r4 cos�4t�, G−5

5 � Z −5
5 � 2

ffiffiffi
3

p
r5 sin�5t�, G−3

5 � Z −3
5 � 2

ffiffiffi
3

p
�5r5 − 4r3� sin�3t�,

G−1
5 � 2

ffiffiffi
3

p
�5r5 − 4r3� sin�t�, Z −1

5 � 2
ffiffiffi
3

p
�10r5 − 12r3 � 3r� sin�t�, G�1

5 � 2
ffiffiffi
3

p
�5r5 − 4r3� cos�t�,

Z�1
5 � 2

ffiffiffi
3

p
�10r5 − 12r3 � 3r� cos�t�, G�3

5 � Z�3
5 � 2

ffiffiffi
3

p
�5r5 − 4r3� cos�3t�, G�5

5 � Z�5
5 � 2

ffiffiffi
3

p
r5 cos�5t�,

G−6
6 � Z −6

6 �
ffiffiffiffiffi
14

p
r6 sin�6t�, G−4

6 � Z −4
6 �

ffiffiffiffiffi
14

p
�6r6 − 5r4� sin�4t�, G−2

6 �
ffiffiffiffiffi
14

p
�6r6 − 5r4� sin�2t�,

Z −2
6 �

ffiffiffiffiffi
14

p
�15r6 − 20r4 � 6r2� sin�2t�, G0

6 �
ffiffiffi
7

p
�6r6 − 5r4�, Z 0

6 �
ffiffiffi
7

p
�20r6 − 30r4 � 12r2 − 1�,

G�2
6 �

ffiffiffiffiffi
14

p
�6r6 − 5r4� cos�2t�, Z�2

6 �
ffiffiffiffiffi
14

p
�15r6 − 20r4 � 6r2� cos�2t�, G�4

6 � Z�4
6 �

ffiffiffiffiffi
14

p
�6r6 − 5r4� cos�4t�,

G�6
6 � Z�6

6 � 2
ffiffiffiffiffi
14

p
r6 cos�6t�, G−7

7 � Z −7
7 � 4r7 sin�7t�, G−5

7 � Z −5
5 � 4�7r7 − 6r5� sin�5t�,

G−3
7 � Z −3

7 � 4�21r7 − 30r5 � 10r3� sin�3t�, G−1
7 � 4�21r7 − 30r5 � 10r3� sin�t�,

Z −1
7 � 4�35r7 − 60r5 � 30r3 − 4r� sin�t�, G�1

7 � 4�21r7 − 30r5 � 10r3� cos�t�, Z�1
7 � 4�35r7 − 60r5 � 30r3 − 4r� cos�t�,

G�3
7 � Z�3

7 � 4�21r7 − 30r5 � 10r3� cos�3t�, G�5
7 � Z�5

5 � 4�7r7 − 6r5� cos�5t�, G�7
7 � Z�7

7 � 4r7 cos�7t�:

Figure 1 allows visualization of the differences between modes
of clinical importance (including coma Z�1

3 , spherical aberra-
tion Z 0

4, and secondary astigmatism Z�2
4 ).

E. New Expansion and Coefficients

Low-degree Zernike polynomials Zm
n �n ≤ 2� provide a basis for

LD. Concatenating this basis with the new basis for HD, one
gets a complete set of modes, i.e., a basis of PD.

The corresponding wavefront error envelopes of these
modes is represented in Fig. 2.

Using this basis of PD, we get the following new expansion
of any polynomial wavefront f , which we will call its new
expansion:

f � f l � f h

�
X2
n�0

�X
m∈In

gmn �f �Zm
n

�
�

X
n≥3

�X
m∈I n

gmn �f �Gm
n

�
, (20)

where
�

gmn �f � � hf l,Z
m
n iD if n ≤ 2

gmn �f � � hf h,G
m
n iD if n ≥ 3

,

since �Zm
n �n≤2,m∈I n is an orthonormal basis of LD and

�Gm
n �n≥3,m∈I n is an orthonormal basis of HD.
Low-degree and higher-degree components f l and f h do

not immediately follow from Zernike expansion Eq. (15),
but they are easily derived from azimuthal expansion Eq. (7).

In order to get f l component in LDHD decomposition
Eq. (12) from Zernike expansion, one has to collect low-order
terms.

Let cmn�2p�n� be the nth degree coefficient in radial
polynomial function Rm

n�2p.
For every integer p ≥ 0,

cmn�2p�n� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2p� 1

p �−1�p�n� p�!
p!�n−m2 �!�n�m

2
�! , (21)

since

Rm
n�2p�r� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2p� 1

p X
0≤k≤n�2p−jmj

2

�−1�k

×
�n� 2p − k�!

k!
�
n�2p−m

2 − k
�
!
�
n�2p�m

2 − k
�
!
rn�2p−2k:

Cumulating terms of the same degree, we get

amn �f � �
X
p≥0

zmn�2p�f �cmn�2p�n�: (22)

Henceforth, new low-order coefficients can be obtained
through orthogonal projection on linear subspace LD,Fig. 2. Pyramid of the new expansion mode envelopes.
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f l �
X2
n�0

�X
m∈In

�X
p≥0

zmn�2p�f �cmn�2p�n�
��

Am
n

�
X2
n�0

�X
m∈In

gmn �f �Zm
n

�
, (23)

and new higher-order coefficients can be obtained through
orthogonal projection on linear subspace HD,

f h � f − f l �
X
n≥3

�X
m∈In

gmn �f �Gm
n

�
: (24)

Using either Zernike �Zm
n �0≤n≤N or �Zm

n �n≤2 and �Gm
n �3≤n≤N

functions to fit an arbitrary wavefront shape would produce the
same polynomial function f , since both sets of functions pro-
vide a basis of the same vector space. This space is the set of all
polynomial wavefronts with a maximal chosen degree (e.g.,
N � 6). Therefore, the residual errors would be exactly the
same in both methods.

3. SPATIAL REPRESENTATIONS

The purpose of this section is to provide geometrical represen-
tations of Zernike and GM expansions, in order to visualize
their differences. These representations must be faithful to
the Euclidean geometry of wavefronts defined by the inner
product Eq. (4).

A. Pseudo-Variances and Pseudo-RMS

In order to compare clinically relevant lower-order terms, we
decided to remove piston and tilt coefficients and work with
“centered and aligned” wavefronts.

Centering and aligning a wavefront f provides a zero mean
zero tilt wavefront (z00�f �� � 0, z−11 �f �� � 0, z�1

1 �f �� � 0)
f � given by Eq. (25):

f � � f − z00�f �Z 0
0 − z

−1
1 �f �Z −1

1 − z�1
1 �f �Z�1

1

�
X
n≥2

�X
m∈I n

zmn �f �Zm
n

�
: (25)

We then define the pseudo-variance and pseudo-RMS of f as
the variance and RMS of f � [Eqs. (26) and (27)]:

V ��f � � kf �k2D � 1

π

ZZ
D
�f ��x, y��2dxdy

�
X
n≥2

�X
m∈In

�zmn �f ��2
�
, (26)

RMS��f � �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V ��f �

p
: (27)

B. Geometry of Wavefront Functions

Geometrically speaking, wavefront pseudo-RMS is tantamount
to the vector length:

kf �kD �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V ��f �

p
: (28)

Likewise, the “angle” of two wavefronts may be defined from
their “pseudo-covariance,”

C��f , g� � hf �, g�iD � 1

π

ZZ
D
f ��x, y�g��x, y�dxdy

�
X
n≥2

�X
m∈I n

zmn �f �zmn �g�
�
, (29)

through Eq. (30):

Angle��f , g� � ArcCos

�
C��f , g�

kf �kDkg�kD

�
: (30)

Accordingly, the whole geometrical configuration of several
wavefronts may be derived from the Gram matrix of their
pseudo-variances and covariances.

Gram matrix G�f � in Eq. (31) summarizes the geometrical
configuration of Zernike and new LDHD decompositions:

G�f �

�

0
BBBBB@

V ��f zl� 0 C��f zl,f l� C��f zl,f h�
0 V ��f zh� 0 C��f zh,f h�

C��f l,f zl� 0 V ��f l� C��f l,f h�
C��f h,f zl� C��f h,f zh� C��f h,f l� V ��f h�

1
CCCCCA
,

(31)

where 8>>>>>>>>>>><
>>>>>>>>>>>:

f zl � P
2
n�0

� P
m∈In

zmn �f �Zm
n

�

f zh �
P
n≥3

� P
m∈I n

zmn �f �Zm
n

�

f l � P
2
n�0

� P
m∈I n

gmn �f �Zm
n

�

f h �
P
n≥3

� P
m∈In

gmn �f �Gm
n

�
·

C. Four Spatial Representations

Higher than 3D representations being impossible, we chose the
most significant spatial representations to describe the geomet-
rical structure of LDHD decompositions.

1. Zernike versus New LD Expansion

Low-degree f �
zl and f �

l expansions in orthonormal basis
�Z −2

2 ,Z 0
2,Z

�2
2 � allow the following three-dimensional repre-

sentation of low-degree components f zl and f l:

f �
l � hf �

l,Z
−2
2 iDZ −2

2 � hf �
l,Z

0
2iDZ 0

2 � hf �
l,Z

�2
2 iDZ�2

2 ,

(32)

f �
zl � hf �

zl,Z
−2
2 iDZ −2

2 � hf �
zl,Z

0
2iDZ 0

2 � hf �
zl,Z

�2
2 iDZ�2

2 :

(33)

2. Zernike versus New LDHD Decomposition

Expanding zero mean zero tilt LDHD decompositions

f � � f �
zl � f �

zh � f �
l � f �

h

in orthonormal basis
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8>>><
>>>:

Uf ,1 � 1
kf �

zlkD
f �
zl

Uf ,2 � 1
kf �

zhkD
f �
zh

U f ,3 � 1
kf �

zlkD
f �
zl ×

1
kf �

zhkD
f �
zh

allows the following three-dimensional representation of
Zernike and new LDHD decompositions:

f �
zl�kf �

zlkDUf ,1,

f �
zh�kf �

zhkDUf ,2,

f �
l�hf �

l,Uf ,1iDUf ,1�hf �
l,Uf ,3iDUf ,3,

f �
h�hf �

h ,Uf ,1iDUf ,1�hf �
h ,Uf ,2iDUf ,2�hf �

h ,Uf ,3iDUf ,3:

3. Zernike HD Expansion

Zernike higher-degree component f �
zh may be expanded as

f �
zh � f �

zh3 � f �
zh4 � f �

zh56, (34)

where 8>>>>><
>>>>>:

f �
zh3 �

P
m∈I3

zm3 �f �Zm
3

f �
zh4 �

P
m∈I4

zm4 �f �Zm
4

f �
zh56 �

P
n≥5

� P
m∈In

zmn �f �Zm
n

� ·

Expanding f �
zh in orthonormal basis8>>><
>>>:

Uf zh,1 � 1
kf �

zh3kD
f �
zh3

Uf zh,2 � 1
kf �

zh4kD
f �
zh4

Uf zh,3 � 1
kf �

zh56kD
f �
zh56

allows the following three-dimensional representation of
Zernike high-degree component f zh:

f �
zh � kf �

zh3kDUf zh,1 � kf �
zh4kDUf zh,2 � kf �

zh56kDUf zh,3:

4. New HD Expansion

High-degree component f �
h may be expanded as

f �
h � f �

h3 � f �
h4 � f �

h56, (35)

where 8>>>>><
>>>>>:

f �
h3 �

P
m∈I3

gm3 �f �Gm
3

f �
h4 �

P
m∈I4

gm4 �f �Gm
4

f �
h56 �

P
n≥5

� P
m∈In

gmn �f �Gm
n

� :

Expanding f �
h in orthonormal basis8>>><
>>>:

Uf h,1 � 1
kf �

h3kD
f �
h3

Uf h,2 � 1
kf �

h4kD
f �
h4

Uf h,3 � 1
kf �

h56kD
f �
h56

allows the following three-dimensional representation of
Zernike high-degree component f h:

f �
h � kf �

h3kDUf h,1 � kf �
h4kDUf h,2 � kf �

h56kDUf h,3:

(36)

In all these 3D representations, note that the 3D orthonormal
basis will not be shown.

4. THEORETICAL EXAMPLES

Figure 3 shows an artificial set of third-order LDHD coeffi-
cients of a wavefront aberration over a circular pupil, each
loaded with 1 μm, and the corresponding Zernike expansion.
In addition to the introduction of Zernike tilt, the value of the
Zernike coma coefficient is one third of its corresponding
LDHD mode. The trefoil modes coefficients are not affected,
since their analytical expressions do not differ between the two
decompositions.

Figure 4 shows an artificial set of third-order Zernike coef-
ficients of a wavefront aberration over a circular pupil, each
loaded with 1 μm, and the corresponding LDHD expansion.
This conversion reveals the tilt contained in the coma modes of
the Zernike classification. The value of the coma coefficient is
multiplied by 3 in the LDHD classification. The trefoil modes
coefficients are not affected, since their analytical expressions do
not differ between the two decompositions.

Figure 5 shows an artificial set of fourth-order LDHD co-
efficients of a wavefront aberration over a circular pupil, each
loaded with 1 μm, and the corresponding Zernike expansion.

Fig. 3. Visualization of the differences between the Zernike and
new third-order coefficients.

Fig. 4. Visualization of the differences between the new LDHD
and Zernike third-order coefficients.

2040 Vol. 35, No. 12 / December 2018 / Journal of the Optical Society of America A Research Article



In addition to the introduction of piston, Zernike defocus and
astigmatism modes non-null coefficients, the value of the
Zernike spherical aberration and secondary astigmatism coeffi-
cients are one fourth and one sixth of that of their correspond-
ing LDHD modes. The quadrafoil modes coefficients are not
affected.

Figure 6 shows an artificial set of fourth-order Zernike co-
efficients of a wavefront aberration over a circular pupil, each
loaded with 1 μm, and the corresponding LDHD expansion.
This conversion reveals the piston and defocus contained in the
fourth-order spherical aberration mode of the Zernike classifi-
cation, and the second-order astigmatism contained in the
fourth-order astigmatism modes of the Zernike classification.
The value of the LDHD spherical aberration coefficient is
multiplied by 6, and that of the secondary astigmatism by
4. The quadrafoil modes coefficients are not affected, since
their analytical expressions do not differ between the two
decompositions.

5. CLINICAL EXAMPLES

The Zernike coefficients were obtained from automated
retinoscopy with an infrared light beam (808 nm wavelength)
and aberrometry measurement using the OPD-scan III instru-
ment (Nidek, Gammagori, Japan) on a 6 mm pupil (natural
dilatation in mesopic conditions). The coefficients of the
LDHD decomposition were obtained from the procedure

described in subsection 2.D. The spatial representations were
generated using the method described in Section 3.

A. Myopic Eye

Figure 7 enables comparison between the Zernike and LDHD
decompositions of the wavefront of a myopic eye with a 6 mm
pupil. The value of the tilt coefficients g�1

1 is negligible,
which suggests that after the collection of all the tilt terms
in r1 from the total wavefront analytical expression, the total
tilt of the wavefront has vanished. The value of the defocus
and astigmatism terms are not significantly different between
the two decompositions. The magnitude and signs of the co-
efficients weighting the third- and fifth-order coma and fourth-
and sixth-order spherical aberration differ slightly between the
two expansions.

The spatial representation of the LD expansion (see Fig. 8)
reflects the proximity in the magnitude of the low-order modes
coefficients. The lack of orthogonality between the low f �

l
and the high f �

h wavefront components of the LDHD expan-
sion is evidenced on the Zernike versus new HD spatial
representations.

Fig. 5. Visualization of the differences between the Zernike and
new fourth-order coefficients.

Fig. 6. Visualization of the differences between the new LDHD
and Zernike fourth-order coefficients.

Fig. 7. Comparison between the Zernike and new expansion
coefficients of a myopic eye.

Fig. 8. Geometrical representations of the Zernike and GM expan-
sions: (a) comparison of f zl and f l; (b) comparison of the Zernike
versus LDHD split between low (f zl versus f l) and high (f zh versus
f h) components; (c),(d) comparison between the Zernike HD versus
new HD expansion.
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B. Eye with Keratoconus

The comparison between the Zernike and LDHD decompo-
sitions reveals the presence of large differences between the
value of the low-degree astigmatism coefficient (g−22 � 4.6 μm,
z−22 � 1.46 μm) (Fig. 9). This difference is explained by the
presence of low-order astigmatism terms within the secondary
astigmatism Zernike modes Z�2

4 . Because the G�2
4 modes of

the LDHD classification are free of these terms, they are all
collected in the low-order wavefront component and this
results in an increase in the magnitude of the total low-order
astigmatism. The magnitude of the tilt coefficients in the
Zernike decomposition mostly results from the necessity to
compensate for the tilt terms present in the coma modes Z�1

3 .
The spatial representation of the LD expansion (Fig. 10)

reflects the difference in the magnitude of the low-order modes
coefficients. The lack of orthogonality between the low f �

l and
the high f �

h wavefront components of the LDHD expansion is
evidenced on the Zernike versus new HD spatial representa-
tion. While the magnitude of all the third-order modes
coefficients (f �

zh3) seem to predominate in the Zernike HD
component (f �

zh), the repartition between the third- and
fourth-order aberration compartments is more balanced in
the new HD expansion f �

h .

C. Eye Operated with LASIK for High Myopia

Figure 11 represents a histogram of the coefficients obtained
from the wavefront reconstruction between the Zernike and
LDHD polynomial basis. The patient is emmetropic but com-
plains of halos at night. In the presence of increased amounts of
positive spherical aberration and coma, the magnitude of the
coefficients of the first- and second-degree modes is different
between the Zernike and LDHD decompositions. The sign
of the defocus term is positive in the Zernike mode (z02 �
2.56 μm, which suggests the presence of a myopic defocus)
and one magnitude order lower in the LDHD mode
(g02 � −0.274 μm). The coefficients of the tilt modes are
negligible in the LDHD decomposition, whereas their values
in the Zernike decomposition are due to the necessity to com-
pensate for the r1 terms present in the Zernike coma modes.

The vectorial representations in Fig. 12 underline the
differences between the magnitude of the low- and high-
wavefront components of f � in the Zernike versus LDHD
decompositions. The magnitude of f �

l is much lower than that

of f �
zl. The proximity of f �

h and f � suggests that the global
wavefront error is mostly due to higher-order aberrations. The
predominance of fourth-order aberration modes in the wave-
front error is better rendered in the new HD expansion.

Fig. 9. Comparison between the Zernike and new expansion coef-
ficients of an eye with keratoconus.

Fig. 10. Geometrical representations of the Zernike and GM
expansions: (a) comparison of f �

zl and f �
l; (b) comparison of the

Zernike versus LDHD split between low (f �
zl versus f �

l) and high
(f �

zh and f �
h ) components; (c),(d) comparison between the Zernike

HD versus new HD expansion.

Fig. 11. Comparison between the Zernike and new expansion co-
efficients of an eye corrected with LASIK for myopia.

Fig. 12. Geometrical representations of the Zernike and GM
expansions: (a) comparison of f �

zl and f �
l; (b) comparison of the

Zernike versus LDHD split between low (f �
zl versus f �

l) and high
(f �

zh and f �
zh) components; (c),(d) comparison between the

Zernike HD versus new HD expansion.
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D. Eye with LASIK Performed with Aspheric
Photoablation for Hyperopia and Presbyopia

This eye had LASIK performed for combined hyperopia and
presbyopia with an aspheric ablation. There is a marked differ-
ence between the value of the defocus (z02 � 0.18 μm,
g02 � 4.05 μm) between the two decompositions (Fig. 13). In
this case, most of the defocus terms are embedded in the Z 0

4

mode, which is weighted by z04 � −0.62 μm. In the LDHD
decomposition, the terms in r2 are decoupled from the terms
in r4.

The spatial representation of the low- and high-order wave-
front components obtained through the Zernike and LDHD
polynomial basis displays these differences (Fig. 14). The ap-
parent magnitude of each of the main Zernike wavefront com-
ponents is significantly reduced, compared to the magnitude of
their LDHD counterparts. The Zernike HD expansion does
not reflect the dominance of the fourth-order aberration modes
coefficients (f �

zh4) within the higher-order wavefront compo-
nent as well as the new HD expansion in which the f �

h4
component predominates.

6. DISCUSSION

Wavefront aberrometry is a modern method to measure the
optical characteristics of normal and clinically abnormal eyes.
It expanded the scope of ocular optics far beyond measuring
sphero-cylindrical errors, to include additional optical flaws
such as trefoil, coma, and spherical aberration [7,8]. As aberr-
ometers moved from laboratory to the clinic in 2000, a
consensus was reached to mathematically describe the complex
aberration structure of human eyes in the form of fundamental
elements and expressing their respective importance into
Zernike coefficients [1]. This consensus led to national
(ANSI Z80.28) and international (ISO 24157) standards for
reporting the ocular aberrations in a clear and meaningful
way. The second-order terms, whose leading component is
of order 2 and the other lower-order terms (piston and tilt)
are the aberrations traditionally dealt with in ophthalmic optics.
Terms of order 3 and higher are therefore referred to as higher-
order terms. However, the use of Zernike modes has some
drawbacks with regards to the interpretation of the values of
the coefficients. As shown in Figs. 3 and 5, in the presence
of a theoretical high-order wavefront component free of terms
of lower degree than 3, the Zernike expansion brings non-null
RMS coefficients for the low-degree Zernike modes to compen-
sate for the r0, r1, and r2 terms which are embedded into the
higher-order modes. Since all the odd Zernike high-order
modes (Z�1

n , n >� 3) contain linear terms, the interpretation
of the altered Zernike tilt coefficient should not be related to
any prismatic deviation of the wavefront. The tilt coefficients of
the Zernike series do not bring direct relevant information
about any misalignment between the eye and wavefront sensing
instrument axes. Because of similar mathematical reasons, the
presence of terms of second degree in higher-order Zernike
modes with m < 3 may alter the interpretation of the z02
coefficient value. The influence of higher-order modes coeffi-
cients on the low-order defocus coefficient can be dramatic
(Cases 3 and 4).

The decomposition of the wavefront in our new basis re-
quires new coefficients which are obtainable from Zernike ex-
pansion after collection of low-order terms. The normalization
coefficients of the Zernike modes have higher magnitudes than
their corresponding LDHD modes. This results in the minimi-
zation of the magnitude of some coefficients of clinical impor-
tance, such as z�1

3 , z04, z
�2
4 , in the Zernike classification as

compared to the LDHD classification. This may reduce the
apparent contribution of the higher-order wavefront terms
in the total wavefront expansion. As the reduction incurred
for the fourth-order modes is greater than for the third-order
modes, this may also affect the clinical interpretation of the
higher-order component, and artificially reduce the apparent
contribution of the fourth-order modes to the wavefront error.

Our new mathematical functions do not incur these draw-
backs, but keep most of the desirable properties of the Zernike
basis. The collection of all the lower terms (r0, r1, and r2)
should provide a more pertinent characterization of the low
component of the ocular wavefront, equivalent to what would
be obtained through a Seidel decomposition. Classical Seidel
aberrations are not orthogonal. Stephenson has proposed an
alternative series expansion which combines some desirable

Fig. 13. Comparison between the Zernike and new expansion
coefficients of an eye operated with an aspheric photoablation for
hyperopia and presbyopia—PresbyLASIK.

Fig. 14. Spatial representations of the Zernike and LDHD expan-
sion: (a) comparison of f �

zl and f �
l; (b) comparison of the Zernike

versus LDHD split between low (f �
zl versus f �

zl) and high (f �
zh

and f �
h ) components; (c),(d) comparison between the Zernike HD

versus new HD expansion.
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characteristics of the Zernike and Seidel classifications [9].
However, the modes in this series were not orthogonal. There
is no orthogonality between the low- and higher-order terms in
the LDHD split; however, the LDHD scheme preserves the
orthogonality within the low-order (f l) and higher-order
(f h) components, respectively. The lack of orthogonality be-
tween the low- and higher-order components does not allow
direct calculation of the total wavefront RMS, but this may
not be too detrimental in ophthalmic optics, where it is often
intrinsic to proper clinical interpretation to consider low- and
higher-order aberrations separately. In this new scheme, the
third-order coma and primary spherical aberration modes are
equivalent to the classic coma and primary Seidel modes, where
the wavefront error only varies with the third and fourth power
of the pupil radius, respectively. In both of our clinical exam-
ples, the magnitude of the coma (g�1

3 ) and spherical aberration
(g04) coefficients was larger than that of their corresponding
Zernike modes. They may better reflect their exact contribu-
tion within the higher-order aberration component of the
wavefront. In our second example (eye with keratoconus),
the differences in the Zernike and the new LDHD expansion
affect both the low- and higher-order wavefront components.
The magnitude of the low-order astigmatism is reduced in
the Zernike versus new LDHD expansion (z22 � 1.46,
g22 � 4.6 microns). The coefficients of the tilt modes are al-
most zeroed in the low-order component. The decomposition
of the f h component into Zernike modes highlights the insuf-
ficiency of this classification to properly segregate the true
low- versus higher-degree components of the ocular wavefront.

Zero-order (piston), first-order (tilt), and second-order (de-
focus and astigmatism) modes belong to the low-order aberra-
tions group and are traditionally corrected with the prescription
of spectacles or contact lenses. High-order aberrations comprise
the third- and higher-order modes of the Zernike classification.
The least-square fitting of an aberration map with a quadratic
surface leads to the value of second-order Zernike coefficients,
which include the second-order aberrations of defocus and as-
tigmatism. These second-order Zernike coefficients can be con-
verted to a sphero-cylindrical prescription in power vector
notation [10]. Many studies have shown that the coefficients
of low-order aberrations (second-degree Zernike modes) do
not enable prediction of subjective refraction accurately
[6,11,12]. The Zernike defocus is that which best fits the wave-
front aberration in an RMS sense over a particular circular pu-
pil, whereas the full pupil refraction appears to be dominated by
near paraxial optics. Several studies have shown that eliminating
the second-order Zernike aberrations does not necessarily op-
timize the subjective impression of best-focus nor the objective
measurement of visual performance [10,13,14]. Eliminating
second-order Zernike aberrations is equivalent to minimizing
the RMS wavefront error, but this minimization does not nec-
essarily optimize the quality of the retinal image [10].

Matching paraxial curvature of the ocular wavefront can ac-
curately predict the results of subjective refraction. This
method is closely related to the Seidel expansion of wavefronts
because it isolates the purely parabolic (r2) term. It also corre-
sponds to a paraxial analysis since the r2 coefficient is zero when
the paraxial rays are well focused. This method was accurate to

within 1/8D for predicting astigmatism, which may be suffi-
cient for most clinical purposes [10].

In addition, Zernike primary spherical aberration has been
experimentally manipulated and it has been shown that its pri-
mary effect on the refractive error and image quality is actually
caused by the low-order term r2, which is embedded in this
polynomial [6]. Similarly, the level of r2 embedded in secon-
dary spherical aberration can affect image quality and refraction
[15]. Hence, in situations where there is a significant increase in
primary and secondary Zernike spherical aberration, the predic-
tion of subjective refraction from the z02 coefficient may be even
more inaccurate, as this term will not include the r2 terms par-
celed in higher-order modes, such as Z 0

4 and Z
0
6. Our third and

fourth clinical examples highlight this situation. In the third
clinical example the wavefront error of the eye operated with
myopic LASIK is predominantly in r4 across the pupil, but the
Zernike fitting of it results in an increase in the magnitudes of
both the z04 and z06 coefficients. This suggests the presence of a
strong defocus component in an otherwise post-refractive sur-
gery emmetropic eye. The discrepancy between the low-order
coefficients can be explained by the presence of high levels of
positive spherical aberration. The value of the z02 coefficient
would suggest the presence of a myopic refraction; however,
the r2 terms comprised in that mode are induced in the wave-
front decomposition to cancel the r2 terms embedded in the Z 0

4
mode. Similar compensation occurs for the r1 terms comprised
in the tilt coefficients (z�1

1 ) and the coma coefficients (z�1
3 ).

The fourth clinical example corresponds to a situation where
most of the quadratic error of the wavefront is “hidden” in
the Z 0

4 mode. However, this quadratic wavefront error accounts
for the myopic refraction, which is unveiled in the new LDHD
expansion.

Because its higher-order modes are devoid of quadratic
terms, our new basis can be used to better fit the higher-order
component of the wavefront (which should not be contami-
nated by r2 terms). In addition, the collection of the quadratic
defocus terms to obtain (g02, g

�2
2 ) should better predict the ob-

jective refraction of a given eye, and the remaining error could
then be decomposed into the new HD basis without inducing
quadratic terms. The application of wavefront analysis technol-
ogy to the human eye has allowed refractive surgeons to identify
and treat HOAs, in addition to sphere and cylinder. This has
led to potentially significant improvement in the quality of vi-
sion following refractive surgery and the ability to correct pre-
existing or induced post-surgical HOAs. Since it provides a
clearer separation between the low- and higher-order wavefront
components, our method reduces the risk of miscalculations in
procedure planning inherent to the presence of low-order terms
in higher-order Zernike modes. This method should also pro-
vide better accuracy for predicting the retinal image quality
from pupil-based quality metrics related to the best spectacle
correction [16] and a better understanding of the selective
impact of higher-order terms on the depth of focus [17–20].
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