Experimental Damage Localization and Quantification with a Numerically Trained Convolutional Neural Network
Résumé
Structural Health Monitoring (SHM) based on Lamb wave propagation is a promising technology to optimize maintenance costs, enlarge service life and improve safety of aircrafts. A large quantity of data is collected during all the life cycle of the structure under monitoring and must be analysed in real time. We propose here to use 1D-CNN to estimate the severity and the localisation of a damage with the signals measured on a composite structure monitored with piezoelectric transducers (PZT). Two architectures have been tested: one takes for input the difference of the time signals of two different states and the second takes for in-puts temporal damage indexes. Those simple networks with a few layers predict with high precision the position and the severity of a damage in a composite plate. The evaluations on different cases show the robustness to simulated manufacturing uncertainties and noise. An evaluation on experimental measurement shows promising results to localise a damage on a real plate with a CNN trained with numerical data.
Origine | Fichiers produits par l'(les) auteur(s) |
---|