Ultra Low Power Ambient Artificial Intelligence - Archive ouverte HAL
Poster De Conférence Année : 2023

Ultra Low Power Ambient Artificial Intelligence

Résumé

The increase in autonomy of ambient intelligence devices has led to the evolution of Internet of Things (IoT) towards the notion of Edge Computing and is driving Wireless Sensor Networks (WSN) (considered as the Low End Devices of IoT) towards total energy autonomy by recovering ambient energy. While the majority of current Machine Learning applications are still centralized in Clouds, we could take advantage of those frugal developments to propose systems that take into account their hardware and energy limitations for collaborative and adaptive distributed learning.
Fichier principal
Vignette du fichier
Poster_GDR_RSD_Jan_2023.pdf (2.54 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-03986137 , version 1 (13-02-2023)

Licence

Identifiants

  • HAL Id : hal-03986137 , version 1

Citer

Antoine Bonneau, Frédéric Le Mouël, Fabien Mieyeville. Ultra Low Power Ambient Artificial Intelligence. Journées non thématiques du GDR RSD, Jan 2023, Villeurbanne, France. ⟨hal-03986137⟩
96 Consultations
77 Téléchargements

Partager

More