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Abstract

The increase in autonomy of ambient intelligence devices has led to the evolution of Inter-

net of Things (IoT) towards the notion of Edge Computing and is driving Wireless Sensor

Networks (WSN) (considered as the Low End Devices of IoT) towards total energy au-

tonomy by recovering ambient energy. While the majority of current Machine Learning

applications are still centralized in Clouds, we could take advantage of those frugal devel-

opments to propose systems that take into account their hardware and energy limitations

for collaborative and adaptive distributed learning.

Thesis Goals

I Deployment of a WSN as a monitoring and adaptive action solution

I Minimal footprint energy aiming for autonomy (battery-less)

I Exploiting networking AI to improve and maintain itself

I Energy efficiency as a cross-cutting topic

I Focus on Time Series data (reduced feature set and samples)

Ampere’s active control platform

Figure 1: Ampere’s vibrating bench

I Experimental Issues

I Low computational power but High Energy Harvesting (EH) potential

I Reduce vibration under a threshold locally, collaboratively and

globally

I Keep WSN up through piezoelectric EH and energy balancing

CITI’s Cortex Lab

Figure 2: Nodes and activation example in Cortex Lab platform

I Experimental Issues

I High computational power but Low EH potential

I Modify antennas behaviour (reallocation, beamforming, power off, …)

I Maximize covering, bandwidth, signal homogeneity, …

I Minimize interferences

On-Device Learning : Resources constrained learning

I Memory constraints → Compressed Models [1]

I Pruning (adaptative, distributed, …)

I Quantization (aware training, partial, …)

I Huffman Encoding.

I Computation constraints → Preprocessed Models [2]

I Use pre-trained models on boards.

I Sparsely fine tune model depending on the model.

Target : WSN Nodes / IoT low-end devices

MCU Arch Clock speed On-Board Storage RAM Current

16 or 32 bit ≤ 50 MHz ≤ 512 KB ≤ 64 KB ≤ 10 mA

Intermittent Learning : Duty Cycling

Figure 3: Intermittent Learner duty [3]

I Extreme power scarcity → Energy Harvesting

I Save computations through gradient / energy-aware checkpointing

I Decompose monolithic ML with task-based approaches [3]

I Changes in energy availability → Energy-aware reconfiguration [4]

I Power on / off different peripherals and change sensors sampling rates

I Adapt compute complexity through early exiting

I Change focus from learning to inference

Federated Learning : Bypass computational weaknesses

Figure 4: DFL architectures [5]

I Learning in a spatially correlated group → Adaptive Neighbor Matching

I Select neighbors based on similar performances (gossip and PENS)

I Establish selection that can significantly improve convergence speed

and training loss.

I Communication is energy-consuming → Optimize transmission

I Reduce shared model size with compressed sensing [6]

I Choosing communication-efficient aggregators (e.g Dynamic Average

Consensus-Based)

Perspectives

I Build a simulator on top of ns3 to evaluate communication energy

consumption of Federated Learning for different topologies.

I Varying microcontrollers to determine how low you can go : Raspberry Pi,

STM32 F302R8, STEVAL-STLK01, MSP430

I Plugging different types of Energy Harvesting modules (Solar, RF,

piezoelectric) and adapting intermittent schedulers to federated learning.

I Comparing energy consumption to traditional AI approaches (ARIMA)
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