Eulerian description for anisotropic hyper-élastic materials
Description eulérienne pour les matériaux anisotropes hyper-élastiques
Résumé
We propose to use a geometric description to construct covariant Eulerian models for anisotropic hyper elastic solids. After kinematic considerations we propose a relation between the rate of deformation and a deformation tensor. We obtain
covariant state equations and hyper-elastic constitutive models for finite transformations. The covariant context ensures invariance
with respect to the changes of observer and enables us to derive these equations and relations on any configuration, without referring to a Lagrangian description;
this is of particular interest for the case of anisotropic behaviors to construct hyper-elastic models valid for anisotropic materials in an Eulerian configuration. The geometric treatment, in particular of time derivatives and the rate
of deformation ensures that the quantities, operators and equations are genuinely intrinsic.
Fichier principal
Poster_Aussois_2023-4.pdf (186.25 Ko)
Télécharger le fichier
Poster Aussois 2023.zip (441.62 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|