Eulerian description for anisotropic hyper-élastic materials - Archive ouverte HAL
Poster De Conférence Année : 2023

Eulerian description for anisotropic hyper-élastic materials

Description eulérienne pour les matériaux anisotropes hyper-élastiques

Emmanuelle Rouhaud
  • Fonction : Auteur
  • PersonId : 1048222
Benoît Panicaud
  • Fonction : Auteur
  • PersonId : 842253

Résumé

We propose to use a geometric description to construct covariant Eulerian models for anisotropic hyper elastic solids. After kinematic considerations we propose a relation between the rate of deformation and a deformation tensor. We obtain covariant state equations and hyper-elastic constitutive models for finite transformations. The covariant context ensures invariance with respect to the changes of observer and enables us to derive these equations and relations on any configuration, without referring to a Lagrangian description; this is of particular interest for the case of anisotropic behaviors to construct hyper-elastic models valid for anisotropic materials in an Eulerian configuration. The geometric treatment, in particular of time derivatives and the rate of deformation ensures that the quantities, operators and equations are genuinely intrinsic.
Fichier principal
Vignette du fichier
Poster_Aussois_2023-4.pdf (186.25 Ko) Télécharger le fichier
Poster Aussois 2023.zip (441.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03979833 , version 1 (09-02-2023)

Identifiants

  • HAL Id : hal-03979833 , version 1

Citer

Emmanuelle Rouhaud, Benoît Panicaud. Eulerian description for anisotropic hyper-élastic materials. Colloque Mécamat Aussois 2023, Jan 2023, Aussois (FR), France. ⟨hal-03979833⟩

Collections

UTT UTT-FULL-TEXT
29 Consultations
27 Téléchargements

Partager

More