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Introduction
Several approaches are possible to construct a model for elastic materials undergoing finite transformations:

• Rate type, hypo-elastic models with the use of objective transports: does not guarantee a reversible behavior.

• Thermodynamics of irreversible processes with an intrinsic dissipation rate equal to zero. For adiabatic or isothermal reversible transformations
the first principle of thermodynamics leads to:

σ : d − ρψ̇ = 0 (1)

where ψ is the specific internal energy (an energy per unit mass), σ is the Cauchy stress tensor, d is the rate of deformation and ρ is the mass
density. The dot over the quantity indicates a total derivative with respect to time.

Small perturbations
Under the hypothesis of small perturbations, one can make the following
approximation:

d ≈ ε̇ (2)

where ε is the infinitesimal strain tensor. The mass density ρ is considered
as constant.
Define a strain energy density function W (ε) (energy per unit volume) that
depends on the strain tensor alone. Equation 1 becomes:(

σ − ∂W

∂ε

)
: ε̇ = 0. (3)

If there is no constraint on ε̇, it comes:

σ = ∂W

∂ε
(4)

and an adequate choice for the expression of W as a function of ε eventually
leads to the classical Hooke model.

Finite transformations
In the context of finite transformations, the density can no more be consid-
ered as a constant, an equivalent of d ≈ ε̇ has to be proposed, the invariance
with respect to superposition of rigid body rotation has to be enforced. To
derive the model, one uses objective quantities and a derivation on the ref-
erence configuration.
Define W0 = ρ0ψ a strain energy per unit undeformed volume (ρ0 is the
density in the reference configuration considered constant in space and
time) and choose W0(E) where E is the Lagrangian strain tensor, then:

Σ : D − Ẇ0(E) = 0 with D = Ė and Σ = ∂W0

∂E
(5)

where Σ is the second Piola-Kirschhoff tensor and D is the lagrangian rate
of deformation. Eulerian models limited to the isotropic case may then be
derived :

σ = 2 ρ
ρ0

B
∂W0

∂B
σ = 2 ρ

ρ0

∂W0

∂g
(6)

where B is the left Cauchy-Green deformation tensor and is the right equa-
tion known as Doyle-Ericksen formula; g is the ambiant metric.

Questions
Why is it necessary to derive the model in the reference configuration? One could wonder how to treat the derivation with respect to time in the reference
configuration: is it possible to take into account the variation of the density ρ0 in space? Is it possible to write such an equation with an energy that is
not per unit of undeformed volume? Equation D = Ė is written for the reference configuration, does it have a counterpart in an Eulerian description?
This raises the question of the geometric nature of Ė and thus D. Is it then possible to derive the equivalent of Equation 5 without resorting to the
reference configuration?

The Lie derivative
The Lie derivative in the velocity field Lv(.) of a scalar a, a scalar density α, a second order contravariant tensor A or covariant tensor B is:

Lva = ȧ Lvα = α̇+ α∇.v LvA = Ȧ − (∇v)A − A(∇v)T LvB = Ḃ + (∇v)B + B(∇v)T (7)

Interesting relations:
Lvρ = 0, Lvg = 2d, Lve = d Lvb = 0 with b = (FT )−1F−1 (8)

where F is the deformation gradient and e = 1
2 (g − b) is the Euler-Almansi strain tensor. The first equation is the mass conservation.

Eulerian anisotropic hyper elasticity
Rewrite Equation 1 (σ : d − ρψ̇ = 0) as:

1
2σ : d − ρLvψ = 0 → 1

2σ : d − Lv(ρψ) = 0 1
2σ : d − LvW = 0 with W = ρψ (9)

Choose the energy density such that W (ρ,C, e) where C is a fourth order tensor containing material parameters and verifying LvC = 0 (or for the
isotropic case, W (ρ, Ci, Ii(e)) where Ii(e) corresponds to a number i of invariants of the strain tensor e and Ci are material parameters), then:

∂W

∂ρ

=0︷︸︸︷
Lvρ+∂W

∂C

=0︷ ︸︸ ︷
LvC +

(
2∂W
∂g

− σ

)
: d = 0 then σ = 2∂W

∂g
(10)

Conclusion
It is possible to derive an elastic model in the Eulerian configuration for anisotropic materials in the context of finite deformations.

• The Lie derivative is used.

• The mass conservation is used to treat properly the variation of the mass density.

• The relation Lve = d is geometrically sound and is the Eulerian counterpart of D = Ė.


