A Mirror Descent Approach for Mean Field Control applied to Demande-Side Management - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

A Mirror Descent Approach for Mean Field Control applied to Demande-Side Management

Résumé

We consider a finite-horizon Mean Field Control problem for Markovian models. The objective function is composed of a sum of convex and Lipschitz functions taking their values on a space of state-action distributions. We introduce an iterative algorithm which we prove to be a Mirror Descent associated with a non-standard Bregman divergence, having a convergence rate of order 1/ √ K. It requires the solution of a simple dynamic programming problem at each iteration. We compare this algorithm with learning methods for Mean Field Games after providing a reformulation of our control problem as a game problem. These theoretical contributions are illustrated with numerical examples applied to a demand-side management problem for power systems aimed at controlling the average power consumption profile of a population of flexible devices contributing to the power system balance.
Fichier principal
Vignette du fichier
MD_approach_for_MFC_ArXiv.pdf (3.04 Mo) Télécharger le fichier
MD_MFC_ArXiv.pdf (3.04 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03972660 , version 1 (15-02-2023)
hal-03972660 , version 2 (24-05-2023)
hal-03972660 , version 3 (02-04-2024)
hal-03972660 , version 4 (07-08-2024)

Identifiants

Citer

Bianca Marin Moreno, Margaux Brégère, Pierre Gaillard, Nadia Oudjane. A Mirror Descent Approach for Mean Field Control applied to Demande-Side Management. 2023. ⟨hal-03972660v1⟩
495 Consultations
267 Téléchargements

Altmetric

Partager

More