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ABSTRACT

We consider a finite-horizon Mean Field Control problem for Markovian models. The objective
function is composed of a sum of convex and Lipschitz functions taking their values on a space of
state-action distributions. We introduce an iterative algorithm which we prove to be a Mirror Descent
associated with a non-standard Bregman divergence, having a convergence rate of order 1/

√
K. It

requires the solution of a simple dynamic programming problem at each iteration. We compare
this algorithm with learning methods for Mean Field Games after providing a reformulation of our
control problem as a game problem. These theoretical contributions are illustrated with numerical
examples applied to a demand-side management problem for power systems aimed at controlling
the average power consumption profile of a population of flexible devices contributing to the power
system balance.

1 Introduction

This paper attempts to solve finite-horizon mean field control (MFC) problems for non-stationary Markovian models
where an infinite number of agents cooperate to optimize a common goal. For a finite set S, we define ∆S to be the
simplex of dimension |S|, the cardinal of S. At each time step n ∈ [1, ..., N ], an agent is in a state xn ∈ X , where X is
a finite state space, and chooses randomly an action an in a finite set A according to a policy πn(·|xn) ∈ ∆A, then
moving to a next state xn+1 according to a transition kernel p(·|xn, an) ∈ ∆X (this probability function could depend
on time, but for now we consider the homogeneous case as restoring the time dependence is a straightforward procedure).
We suppose that all the agents are homogeneous and follow the same policy sequence π := (πn)1≤n≤N ∈ (∆A)X×N .
We denote by µπn ∈ ∆X×A the state-action distribution at time step n common to all agents when they follow the
sequence of policies π. We seek to find π that minimizes a cost of the form

F (µπ) :=

N∑
n=1

fn(µπn) (1)

where the cost functions fn : ∆X×A → R are convex and Lipschitz with respect to some norm ‖ · ‖.
Decision-making problems in mean field models are a popular way to formulate stochastic optimization problems in
many applications, ranging from robotics Shiri et al. [2019], Elamvazhuthi and Berman [2019] to finance Achdou
et al. [2014], Casgrain and Jaimungal [2018], energy management De Paola et al. [2019], Bušić and Meyn [2019],
epidemic modelling Lee et al. [2021] and, more recently, machine learning E et al. [2018], Ruthotto et al. [2020],
Fouque and Zhang [2020], Lin et al. [2021]. In this paper we are especially motivated by demand-side management
(DSM) applications in power systems. How we use energy has never been a more important topic than it is today due
to the challenges of energy transition and geopolitical shifts in supply. These and other challenges cause significant
fluctuations in energy supply, impacting the balance of the energy grid and potentially causing power outages. DSM
is a strategy to manage the portion of demand that is flexible by controlling, for example, thermostatically controlled
loads (TCLs: flexible devices such as water heaters, air conditioning, refrigerators, etc). Its goal is to optimize users’
consumption, thus saving energy and reducing costs. However, efficient exploitation of the large number of TCLs
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requires the development of new algorithmic tools. In this paper, we develop a new iterative mean field algorithm to
control the average consumption of a population of water heaters in order to follow a given target consumption profile.
In this case, an agent is a water heater and its state space consists of its operating state (whether it is on or off) and its
average temperature, with the possible actions being to maintain or change their operating state (turn them on or off).

Finding a minimizer π∗ of (1) is not straightforward because the function π 7→ F (µπ) is generally non-convex in π. In
this paper, we introduce an algorithm whose iterative scheme is similar to a proximal point algorithm over a convex
subset of all the state-action distribution sequences µ := (µn)1≤n≤N ∈ (∆X×A)N ; these are induced by some policy
sequence π which we penalize. We prove that our penalization term is in fact a non-standard Bregman divergence on
the set of state-action distribution sequences µ. Therefore the algorithm is an instance of the mirror descent algorithm
(implying a convergence rate of order 1/

√
K, with K being the number of iterations).

Contributions and outline In Section 3, we provide a convex reformulation of Problem (1). This allows us to propose
an original algorithm in Section 4, which we show to be a mirror descent with a non-standard Bregman divergence. Its
iterations can be easily computed by dynamic programming (DP) Bertsekas [2005], which makes it, to our knowledge,
the first low complexity algorithm with a proof of convergence in discrete iterations for the type of control problem
considered. In addition, we explore connections between learning methods for mean field games and optimization
approaches for mean field control problems such as Problem (1).

Finally, in Sections 5 and 6, we propose an application to the problem of controlling the average consumption of a
population of water heaters modeled by a Markovian model. In Section 5 we give an original modelling for the DSM
problem, and in Section 6 we illustrate and compare our new algorithm with the mean field learning methods discussed
throughout the article.

2 Related Work

Demand-side management Controlling the sum of the consumption of a large number of TCLs started being
investigated around 1980 by Ihara and Schweppe [1981], Malhame and Chong [1985], Mortensen and Haggerty [1988]
establishing the first physically based modeling for a TCL population. In the works of Kizilkale and Malhame [2013,
2014], the difficulty due to the large number of devices is circumvented by a mean field approximation. In Le Floch et al.
[2018], a mean field assumption is also considered to control the charging of a large fleet of electrical vehicles, leading
to optimal control of partial differential equation problems. In the particular setting of stochastic control, Séguret et al.
[2020] proposed an iterative stochastic algorithm providing a decentralized solution where each agent computes locally
its own feedback control.

For water heater control, Cammardella et al. [2019] consider a quadratic objective and a Kullback-Leibler penalty
allowing a Lagrangian approach that learns both the control and the probability transition kernel. However, their
approach does not allow for situations where part of the state is uncontrolled, so that uncertainties induced by consumer
behaviors (such as water withdrawals) must be neglected and modeled as deterministic. More recently, Cammardella
et al. [2021] propose to take into account the uncontrolled stochastic environment in the Kullback-Leibler quadratic
control framework by adding constraints on the probability transition kernel. However, to handle these new constraints,
they need to add new dual variables, which leads to a high-dimensional dual problem, thus significantly increasing the
complexity of their algorithm.

On the other hand, load control can also be done indirectly, with electricity consumers being encouraged to alter their
consumption when necessary, typically by reducing it at peak hours and increasing it at off-peak hours. For example,
Brégère et al. [2019] build dynamic pricing systems using multi-armed bandit methods.

Mean field learning Mean field games (MFG) have been introduced by Lasry and Lions [2007] and Huang et al.
[2006] to tackle the issue of games with a large number of symmetric and anonymous players, by passing to the limit of
an infinite number of players interacting through the population distribution. Although MFG focuses on finding Nash
equilibria (NE), social optima on cooperative setting have also been studied under the term of mean field control (MFC)
[Bensoussan et al., 2013]. Although MFG and MFC problems look similar, they in general have different solutions
[Carmona et al., 2013]. Nevertheless, Lasry and Lions [2007] have pointed out that in some cases a mean field NE is
also the solution to a different optimal control problem, see for example Alasseur et al. [2020] that applies this principle
to energy production.

Lately, there has been interest in combining reinforcement learning [Sutton and Barto, 2018] with MFG and MFC.
Some work has focused on studying stochastic methods based on neural network approximations Carmona and Laurière
[2021a, 2022, 2021b]. These methods are based on the knowledge of the model. Carmona et al. [2019], Guo et al.
[2019], Angiuli et al. [2021] focus on learning solutions without full knowledge of the model. Iterative learning methods
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such as fictitious play and online mirror descent have been adapted to the MFG scenario in Perrin et al. [2020] and
Pérolat et al. [2022]. Geist et al. [2022] show an equivalence between Frank Wolfe’s classical optimization algorithm
[Frank and Wolfe, 1956] and the fictitious play for potential structured games. We compare some of these algorithms
with our new MFC algorithm on the DSM problem.

Learning on Markovian models The finite horizon Markovian model we consider can also be generalized as a
loop-free stochastic shortest path (SSP) by considering a larger state space that includes time steps. There is significant
work in the literature regarding algorithms for the online SSP problem, in particular [Even-Dar et al., 2009, Rosenberg
and Mansour, 2019, Dick et al., 2014, Zimin and Neu, 2013]. Our work is also closely related to the work in [Neu et al.,
2017, Geist et al., 2019] that propose general analysis on regularized Markov decision processes. In particular, Neu et al.
[2017] is the first to explore the non-standard conditional entropy of the state-action distribution as a regularization,
showing that we often arrive at approximate instances of mirror descent. In comparison, an important difference
between these works and ours is that we additionally have to deal with the mean field framework.

3 Finite horizon mean field problems

We start by describing the MFG and MFC problems, specifying the difference between them. Then, we propose a
reformulation of the MFC Problem (1) in a convex setting.

3.1 Mean field games and mean field control

MFGs were introduced to tackle decision-making problems involving an infinite number of homogeneous players
interacting through the population distribution. It can be solved by focusing on the optimal policy of a representative
player in response to the behavior of the population. In contrast, the search for a social optimum in a cooperative setting
is known as the MFC problem.

In the MFG framework, at every time step 1 ≤ n ≤ N , the player receives a reward given by a function
rn : X ×A×∆X×A → R. The third argument corresponds to the current population’s state-action distribution
µn ∈ ∆X×A. The goal of a representative player is to find a sequence of policies π that maximises the expected sum of
rewards when the population distributions sequence is given by µ := (µn)1≤n≤N and the initial state-action pair is
sampled from a fixed distribution µ0,

Jµ0
(π, µ) := Eπ

[
N∑
n=1

rn(xn, an, µn)

]
, (2)

where Eπ is the expectation on the trajectories (xn, an)1≤n≤N induced by the policy sequence π and the transition
kernel p, and initialized by (x0, a0) ∼ µ0.

Definition 3.1 (Distribution induced by a policy π). Given an initial distribution µ0 fixed, the state-action distributions
sequence induced by the policy sequence π = (πn)1≤n≤N is denoted µπ = (µπn)1≤n≤N and is defined recursively by

µπ0 (x′, a′) = µ0(x′, a′)

µπn+1(x′, a′) =
∑
x∈X

∑
a∈A

µπn(x, a)p(x′|x, a)πn+1(a′|x′).

A MFG Nash equilibrium (NE) is defined as a pair (π̂, µ̂) such that π̂ := arg maxπ Jµ0(π, µ̂) and µ̂ := µπ̂ is the
distribution induced by the policy π̂. In contrast with the MFG problem, the MFC problem is an optimisation problem
where there is no competition among players, but cooperation. The MFC problem seeks to find the optimal behavior of
a population so as to maximize a reward averaged over the whole population. In mathematical terms, it seeks to solve
π∗ := arg maxπ Jµ0

(π, µπ). In general, MFG and MFC problems have different solutions.

3.2 Reformulation into a convex framework

Consider the set of state-action distributions sequences initialized at µ0 ∈ ∆X×A and satisfying a specific constrained
evolution given by

Mµ0 :=

{
µ ∈ (∆X×A)N

∣∣ ∑
a′∈A

µn+1(x′, a′) =
∑

x∈X ,a∈A
p(x′|x, a)µn(x, a) ,∀x′ ∈ X , ∀n ∈ [0, ..., N ]

}
. (3)
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The set Mµ0 describes the sequences of state-action distribution respecting the dynamics of the Markov model.
Furthermore, this set is convex [Cammardella et al., 2021].

Consider the sequence of convex functions (fn)1≤n≤N , with fn : ∆X×A → R, and recall that F : (∆X×A)N →
R is such that F (µ) :=

∑N
n=1 fn(µn). In our settings we consider the finite-horizon MFC problem given by

minπ∈(∆A)X×N F (µπ). Given the intrinsic dependence of the sequence of distributions µπ and the sequence of policies
π given by Definition 3.1, this minimisation problem is not necessarily convex on π, and in general the gradient
∇πF (µπ) cannot be estimated - for more details on how one could still work with the gradient of∇πF (µπ), see Zhang
et al. [2020]. We therefore seek an efficient reformulation of our optimization framework.
Proposition 3.2. Let µ0 ∈ ∆X×A. The application π 7→ µπ is a bijection from (∆A)X×N toMµ0 .

The proof of Proposition 3.2 is reported to Appendix A. The idea is that one can retrieve the policy sequence π
inducing the state-action distribution sequence µ by taking πn(a|x) = µn(x,a)

ρn(x) , where ρn(x) :=
∑
a∈A µn(x, a). This

proposition provides us with an efficient reformulation of the original control problem , i.e.

min
π∈(∆A)X×N

F (µπ) ≡ min
µ∈Mµ0

F (µ). (4)

4 Algorithmic approaches

We first introduce the new optimization algorithm for the MFC Problem (4) and provide a convergence result. Then, we
formulate the MFC problem as a game and propose other algorithms from the MFG literature to solve it.

4.1 A mirror descent approach for mean field control

Here we propose a new iterative algorithm for MFC problems such as the one in Equation (4). It requires the solution
of a simple dynamic programming problem at each iteration. The analysis shows a convergence rate of order 1/

√
K

where K is the number of iterations, and is given by the mirror descent convergence [Beck and Teboulle, 2003].

We consider the following iterative scheme, where k represents an iteration. At iteration k + 1, we want to find µπ
minimizing a linearization of F around µk, the distribution sequence found at the previous iteration, but penalizing the
distance between π generating µπ and πk generating µk (recall that the uniqueness of a π generating µπ is given by
Proposition 3.2):

µk+1 ∈ arg min
µπ∈Mµ0

{
〈∇F (µk), µπ〉+

1

τk

N∑
n=1

E(x,a)∼µπn(·)

[
log

(
πn(a|x)

πkn(a|x)

)]}
(5)

where 〈∇F (µk), µπ〉 :=
∑N
n=1〈∇fn(µkn), µπn〉. The term 〈∇F (µk), µπ〉 can be interpreted in a MFG setting as the

expected sum of rewards of a representative agent when the population behaves like µk, the agent follows the strategy
π, and the reward at each time step n derives from the potential fn, i.e. for all xn ∈ X , an ∈ A, µn ∈ ∆X×A,

rn(xn, an, µn) := −∇fn(µn)(xn, an). (6)

Then, using the definition in Equation (2), we get

Jµ0(π, µk) =

N∑
n=1

〈
rn(·, ·, µkn), µπn

〉
= −

〈
∇F (µk), µπ

〉
,

which allows us to re-write an iteration as

µk+1 ∈ arg max
µ∈Mµ0

{
Jµ0(π, µk)− 1

τk

N∑
n=1

E(x,a)∼µn(·)

[
log

(
πn(a|x)

πkn(a|x)

)]}
. (7)

The problem in Equation (7) can be solved through dynamic programming Bertsekas [2005]. We build a Bellman
recursion as enunciated by Theorem 4.1 below.

Theorem 4.1. Let k ≥ 0. The solution of Problem (7) is µk+1 = µπ
k+1

(as in Definition 3.1), where for all 1 ≤ n ≤ N ,
and (x, a) ∈ X ×A,

πk+1
n (a|x) :=

πkn(a|x) exp
(
τkQ̃

k
n(x, a)

)
∑
a′∈A π

k
n(a′|x) exp

(
τkQ̃kn(x, a′)

)
4



where Q̃ is a regularized Q-function satisfying the following recursion

Q̃kN (x, a) = rN (x, a, µkN )

Q̃kn(x, a) = max
πn+1∈(∆A)X

{
rn(x, a, µkn) +

∑
x′

p(x′|x, a)

∑
a′

πn+1(a′|x′)
[
− 1

τk
log

(
πn+1(a′|x′)
πkn+1(a′|x′)

)
+ Q̃kn+1(x′, a′)

]}
, ∀1 ≤ n ≤ N.

(8)

Proof. See Appendix B.1.

Notice that the value πn+1 ∈ (∆A)X maximizing the equation to find Q̃kn in the Recursion (8) is given by πk+1
n+1. The

algorithm may thus be summarized as follows.

Algorithm 1 Mirror descent approach to MFC

Input: number of iterations K, initial sequence of policies π0 ∈ (∆A)X×N such that µ0 := µπ0 , initial state-action
distribution µ0 (always fixed), sequence of non-negative learning rates (τk)k≤K .
for k = 0, ...,K − 1 do
µk = µπ

k

as in Definition 3.1.
Q̃kN (x, a) = rN (x, a, µkN ) for all (x, a) ∈ X ×A.
for n = N, ..., 1 do
∀(x, a) ∈ X ×A :

πk+1
n (a|x) =

πkn(a|x) exp(τkQ̃kn(x,a))∑
a′ π

k
n(a′|x) exp(τkQ̃kn(x,a′))

.

Q̃kn−1(x, a) using the recursion in Equation (8).
end for

end for
return πK

4.2 Convergence properties of the algorithm

We now present a result on the convergence rate of Algorithm 1. For ease of notation, for any probability measure
η ∈ ∆E , whatever the (finite) space E, we introduce the neg-entropy function

φ(η) :=
∑
x∈E

η(x) log η(x).

Proposition 4.2. Let µ, µ′ ∈ Mµ0
with marginals given by ρ, ρ′ ∈ (∆X )N , induced by the policy sequences π, π′

respectively. The divergence Γ :Mµ0
×Mµ0

→ R given by

Γ(µ, µ′) :=

N∑
n=1

E(x,a)∼µπn(·)

[
log

(
πn(a|x)

π′n(a|x)

)]
is a Bregman divergence induced by the function

ψ(µ) :=

N∑
n=1

φ(µn)−
N∑
n=1

φ(ρn).

On the proof of Proposition 4.2 in Appendix B.2 we also see that Γ can be written as the difference between the
Kullback-Leibler divergence on the state-action distributions and the Kullback-Leibler divergence on the marginal
state distribution, and also as the Kullback-Leibler divergence on the joint distributions. Proposition 4.2 shows that
the penalization term at each iteration scheme given by Equation (5) is a Bregman divergence. Thus, the iteration
considered is in fact an iteration of the mirror descent algorithm (see Nemirovski and Yudin [1983]). This allows us to
state the following result
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Theorem 4.3. Consider a sequence of functions (fn)1≤n≤N with fn : ∆X×A → R, convex and Lipschitz with respect
to a norm ‖ · ‖, with ln being the Lipschitz constant. Define F : (∆X×A)N → R as F (µ) :=

∑N
n=1 fn(µn). Hence,

F is also convex and Lipschitz with constant L :=
(∑N

n=1 l
2
n

)1/2
. ConsiderMµ0

the convex set on Equation (3).
Applying K iterations of Algorithm 1, such that µ∗ is a minimizer of F inMµ0

, and with, for each 1 ≤ k ≤ K,

τk :=

√
2Γ(µ∗, µ0)

L

1√
k
,

gives the following convergence rate

min
0≤s≤K

F (µs)− F (µ∗) ≤ L
√

2Γ(µ∗, µ0)√
K

.

Proof. See Appendix B.3.

4.3 Potential games

We provide an equivalence between the control Problem (4) and a game problem in order to be able to compare
Algorithm 1 with learning algorithms for MFG in the literature. For that, let us define a game with the same transition
probability p, and with reward defined as in Equation (6). We call this type of game a potential game.

Proposition 4.4. The strategy π∗ is a minimizer of Problem (4) if and only if, (µπ
∗
, π∗) is a NE of the MFG defined

with reward as in Equation (6). Furthermore, this game is monotone (and strictly monotone if fn is strictly convex for
all 1 ≤ n ≤ N . See Definition A.1 in Appendix A).

The proof of Proposition 4.4 is in Appendix A and is similar to the results introduced by Geist et al. [2022]. It connects
the optimality conditions of Problem (4) and a NE, and shows that convexity and monotonicity are equivalent. If the
optimization problem is (strictly) convex, the (unique) existence of an optimizer implies the (unique) existence of a
NE. Thus, the notion of monotonicity when the reward depends on the state-action distribution provides the (unique)
existence of a NE in the case of a potential game. These results are what allows us to use algorithms of learning on
MFGs to solve MFC problems and to compare such game algorithms with optimisation approaches. Here we list some
examples of learning in iterative MFG algorithms that are compared to the Algorithm 1 in Section 6.

Fictitious play vs. Frank-Wolfe The algorithm of fictitious play (FP) adapted to the MFG scenario (see Algorithm 2
in Appendix C) introduced by Perrin et al. [2020] is shown to be analogous to the classical optimisation algorithm of
Frank-Wolfe [Frank and Wolfe, 1956], described by Algorithm 3 in Appendix C, in Geist et al. [2022] when applied
to a potential game. With the additional hypothesis that fn be two times differentiable with Lipschitz gradient for all
1 ≤ n ≤ N , this provides the mean field adaption of fictitious play with a convergence rate of 1/K , the same as for
Frank-Wolfe [Bubeck et al., 2015], where K is the number of iterations.

Online mirror descent for MFG Online mirror descent for MFG (OMD) is an iterative algorithm for computing
the NE of a game first introduced by Pérolat et al. [2022], inspired by the online mirror descent regret minimization
algorithm [Shalev-Shwartz, 2012]. Algorithm 4 in Appendix C describes OMD for MFG. In Pérolat et al. [2022] the
authors provide a proof of convergence for the case of continuous iterations. There is a similarity between OMD for
MFG and Algorithm 1. It can be interpreted that to predict the k + 1-th policy at time step n, OMD for MFG uses
the state-action value function induced by the previous iteration policy πk, whereas Algorithm 1 uses the regularized
state-action value function induced by the current iteration policy πk+1 computed for times n+ 1 through N . A precise
analysis of the difference between both approaches is left to further work.

5 Application: demand-side management

We corroborate our theoretical claims with a numerical simulation applied to the problem of controlling the average
power consumption profile of a population of water heaters.

5.1 Randomized controlled dynamics for one water heater

Let us consider a time window [t0, t0 +T ], and a discretisation of the time such that tn = t0 +nδt for n = 1, ..., N , and
δt = T/N is the time step. At each time step tn (which for convenience will be denoted n), the state of a water heater
is described by a variable xn = (mn, θn) ∈ X := {0, 1} × Θ, where mn indicates the operating state of the heater
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(ON if 1, OFF if 0), and θn represents the average temperature of the water in the tank. For the sake of simplification
we consider only temperatures inside a finite set Θ.

The nominal dynamics [Bušić and Meyn, 2016] follow a cyclic ON/OFF decision rule with a deadband to ensure that
the temperature is between a lower limit Tmin and an upper limit Tmax. Thus, if the water heater is turned on, it heats
water with the maximum power until its temperature exceeds Tmax. Then, the heater turns off and the water temperature
decreases until it reaches Tmin, where the heater turns on again and a new cycle begins. The nominal dynamics at a
discretized time is illustrated in Figure 1. The temperature at each time step is calculated by approximating an ordinary
differential equation (ODE) depending on the current operating state of the heater and the hot water drawn at each time
step (see Appendix D.1). We assume that the event of a water withdrawn is random and independent at each time step
with a known probability distribution.

water draining

heating
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heat loss
(OFF)

50

55

60

65

Time t
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(◦
C

)

Tmax
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Figure 1: Temperature evolution of a water heater following the nominal dynamics.

In order to have a controllable model, we fit the nominal dynamics of a water heater to a Markov decision process. The
finite state space is given by X , and we consider an action space given by A := {0, 1}. At time step n, choosing action
1 means turning the heater on except when θn ≥ Tmax. Conversely, choosing action 0 means turning the heater off
except when θn ≤ Tmin. The nominal dynamics deterministically chooses action 0 if the heater is off and 1 if it is on.
Unlike the nominal dynamics, we want to consider stochastic strategies for choosing actions. If the heater is in state
xn = (mn, θn), the next temperature θn+1 is computed by Equation (22), the action an is sampled with probability
πn(·|xn), and the next operating state is given by

mn+1 = an1θn+1∈[Tmin,Tmax] + 1θn+1<Tmin . (9)

Thus if θn+1 ∈ [Tmin, Tmax], the action an ∼ πn(·|xn) defines the next operating state of the heater. For more details on
the dynamics of a water heater see Appendix D.1.

5.2 Optimisation problem

Consider a population of M water heaters indexed by i and described at time step n by Xi
n = (mi

n, θ
i
n) following

the randomized dynamics described in Subsection 5.1. We suppose all water heaters to be homogeneous, i.e. they
have the same dynamics, and follow the same policy π. Let m̄n := 1

M

∑M
i=1m

i
n denote the average consumption. We

assume for simplicity that the maximum power of each water heater is pmax = 1 so that the average consumption is
equal to the proportion of heaters at state ON. Note that m̄n depends on the policy π that the water heaters follow, thus
we can denote it as m̄n(π). Let γ = (γn)1≤n≤N ∈ [0, 1]N be our target consumption profile (for example, the energy
production at each time step). Our goal is to solve the problem

min
π∈(∆XA)N

E

[
N∑
n=1

(m̄n(π)− γn)2

]
, (10)

where we have chosen to work with a quadratic loss.

Recall that µ := (µn)n∈[0,...,N ] and µn is the state-action distribution of the entire population of heaters at time n. For
a function ϕ : X → R, we define µn(ϕ) :=

∑
x ϕ(x)µn(x, a) for all 1 ≤ n ≤ N . We are particularly interested in a

function ϕ such that µn(ϕ) gives us the average consumption of our water heater’s population. Thus, we consider from
now on

ϕ : X → R
(m, θ) 7→ m.

(11)
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For such a function ϕ, when M → ∞, the mean field approximation [Jabin and Wang, 2017] of Problem (10) is
given by minπ

∑N
n=1 fn(µπn), where fn(µπn) := (µπn(ϕ)− γn)2. In Proposition 3.2 we proved a bijection between the

setsMµ0
and (∆A)X×N . Let F : (∆X×A)N → R such that µ 7→ F (µ) :=

∑N
n=1 fn(µn). Our main optimisation

problem is then given by Equation (4).

In Appendix D.2 we show that we can apply Theorem 4.3 on the convergence of Algorithm 1 in this specific framework.
In Subsection 4.3 we showed that for a control problem such as in Equation (4), we can define a potential game by
taking a reward as in Equation (6), where here ∇fn(µn)(x, a) = 2(µn(ϕ)− γn)ϕ(x). Hence, we can reframe the
MFC Problem of controlling the average consumption of a population of water heaters as a MFG and apply the FP and
OMD algorithms presented in Subsection 4.3.

6 Experiments

6.1 Simulating the nominal dynamics

To simulate the nominal dynamics, we use the nominal model presented in Appendix D.1 and data from the SMACH
(Simulation Multi-Agents des Comportements Humains) platform [Albouys et al., 2019] to approximate the probability
of having a water withdrawal for each time step. In addition, we take a time frequency δt = 10 minutes, and a
temperature deadband with Tmin = 50◦C and Tmax = 65◦C. For more details on how the simulations are performed,
see Appendix D.3. Figure 2 shows the simulation of the average drain and power consumption of 104 water heaters
following the nominal dynamics over the period of one week day respectively. The states (operating state and
temperature) are randomly initialized for each water heater. During the hours of the day with a peak of hot water
withdrawal we also have a peak on the energy consumption, as all water heaters are turned on to compensate for the
temperature loss.
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Figure 2: Average drain and power consumption for a simulation of 104 water heaters over a period of one day.

The target signal γ = (γn)1≤n≤N is built as a sum of a baseline b = (bn)n≤N and a deviation signal λ = (λn)n,
γ = λ + b(w), where b(w) is the nominal dynamics obtained by simulating the water heaters (as in Figure 2), and
w represents a random initialization of their states. If the deviation is zero, the average consumption is equal to the
baseline. The deviation signal should have zero energy on the time considered for the simulations, i.e.

∑N
n=0 λn = 0,

in order to ensure a stationary process. We consider the two deviation signals illustrated in Figure 3: an one-hour
deviation between 5 and 6 in the morning, as well as an eight-hour gap where we increase consumption during off-peak
hours and decrease it during peak hours.

6.2 Results

For the sake of brevity, we refer to Algorithm 1 as MD (Mirror Descent). For a population of water heaters following
the randomized dynamics we compare the optimal policy sequence obtained after 100 iterations of the three algorithms
considered in the article: MD, OMD for MFG, and Fictitious Play for MFG (FP). At each iteration, we compute a
policy sequence of size 144 (number of time steps equal to one day divided into 10 minute intervals). The heater’s state
space X is of size 2 ∗ 41 (two ON/OFF operating states times 41 possible temperatures - integers from the environment
temperature Tamb = 25 to Tmax = 65), and its action space A is of size 2. We simulate each policy on 104 water heaters
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Figure 3: Deviation signals (λn)n≤N
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Figure 4: Simulation of the power consumption of 104 water heaters comparing the performance of policies obtained
with Algorithm 1 (MD) and algorithms from the literature (FP and OMD), for targets constructed with the deviations of
one hour [left] and eight hours [right]. We compare this with the nominal consumption (without deviation).

and analyze the average consumption curve. The water heater’s initial state distribution is equal to the initial distribution
of the nominal consumption. The distribution of actions is initialized uniformly.

In Figure 4, we compare the average consumption curves obtained. The consumption simulated by the best policies for
all three algorithms appears to track the target better than the nominal consumption. As for the analysis in number of
iterations, Figure 6 shows the logarithm of the objective function per iteration. The slope of the best approximation
lines give us an empirical measure of convergence: we obtain that FP seems to converge empirically with a rate of
∼ 1/K5/2, while MD and OMD seem to converge empirically with a rate of ∼ 1/K2. The empirical convergence rates
are better than the theoretical limits, 1/K for FP and 1/

√
K for MD.

To visualize the policies obtained with FP and MD we plot in Figure 5, at each time step [x axis], the probability of
choosing the action 1 (ON) [colors] for all possible temperatures between Tmin = 50 and Tmax = 65 [y axis], when the
current state is ON [up] or OFF [down]. The policies plots show how the probability of ignition is higher during times
of the day when the target average consumption is higher. In addition, when the heater is in a low temperature state,
the probability of ignition is also higher than when the heater is in a high temperature state. We can also see that MD
returns a more regular policy than FP.

We also noticed that different initialization of MD lead to different policies: one can have several policy sequences
inducing a fixed state distribution sequence ρ. This is further explored in Appendix E where we also focus on the
number of ON/OFF switches that a device performs on average over the course of a day. In the case illustrated here, the
average number of daily switches is 33, while the nominal dynamic (holding ON when ON and OFF when OFF within

9



(a) Policy Fictitious Play. (b) Policy Mirror Descent.

Figure 5: [top] Target, average consumption obtained by the nominal policy and by the policy computed by FP (left)
and MD (right). [middle] Probability of choosing the ON action when in the ON state. [bottom] Probability of choosing
the ON action when in the OFF state. For all temperatures between Tmin = 50 and Tmax = 65 [y axis], over the course
of a day with a time step of 10 minutes [x axis], for a target with a deviation step of eight hours.
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Figure 6: Log-log plot of the objective function per iteration for each method when using a target with an one hour step
[left] and eight hours step [right] deviations.

the temperature deadband [Tmin, Tmax]) averages only 3 switches per day. By initializing the algorithm with a policy
that is a 0.1 deviation from the nominal policy, we find in Appendix E that the number of switches decreases to a daily
average of 9.2 while still following the target curve. This is an important result, as a large number of switches can be
detrimental to devices.

7 Further work:

The main objective for future work is to adapt the existing algorithms to real-time ones. So far, at each iteration, we
optimize over all time steps up to the finite horizon. However, we would like to propose schemes where each iteration
corresponds to a time step. In the context of power consumption control, this approach is interesting because the target
curve we are trying to follow, predicted one day in advance, contains errors, and a real time control would allow a better
system balance.
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A Missing proofs

A.1 Proof of Proposition 3.2

Proof. Consider a fixed initial state-action distribution µ0 ∈ ∆X×A. Let µ ∈Mµ0
and define ρ = (ρn)1≤n≤N such

that for all x ∈ X , ρn(x) =
∑
a µn(x, a) (the associated state distribution). Define a policy sequence π ∈ (∆A)X×N

such that πn(a|x) = µn(x,a)
ρn(x) for all (x, a) ∈ X × A. We want to show that µπ = µ for this policy π. We reason by

induction. For n = 0, µπ0 = µ0 by definition. Suppose µπn = µn, thus for n+ 1 and for all (x′, a′) ∈ X ×A

µπn+1(x′, a′) =
∑
x,a

p(x′|x, a)µπn(x, a)πn+1(a′|x′)

=
∑
x,a

p(x′|x, a)µn(x, a)
µn+1(x′, a′)

ρn+1(x′)

=
∑
a

µn+1(x′, a)
µn+1(x′, a′)

ρn+1(x′)

= ρn+1(x′)
µn+1(x′, a′)

ρn+1(x′)

= µn+1(x′, a′),

where the first equality comes from Definition 3.1, the second equality comes from the induction assumption and the
way we defined the strategy π, and the third comes from the assumption that µ ∈Mµ0

.

A.2 Proof of Proposition 4.4

Proof. The convexity of each fn for 1 ≤ n ≤ N , and the convexity of the setMµ0
ensure the existence of a minimizer

of Problem (4) satisfying the optimality conditions. Also, Proposition 3.2 shows, for a fixed initial state-action
distribution µ0, a bijection between the sets (∆A)X×N andMµ0

.

Let (µ∗, π∗), where µ∗ = µπ
∗
, be a Nash equilibrium.

As introduced in Section 3, a Nash equilibrium (µ∗, π∗) satisfies π∗ = arg maxπ J(π, µ∗) by definition. In other
words,

J(π∗, µπ
∗
) ≥ J(π, µπ

∗
) ∀π ∈ (∆A)X×N . (12)

Expanding the terms of the sum of expected rewards and using the definition of reward in a potential game, we obtain
that

J(π, µπ
∗
) = Eπ

[
N∑
n=1

rn(xn, an, µ
π∗

n )

]

=

N∑
n=1

∑
x∈X ,a∈A

rn(x, a, µπ
∗

n )µπn(x, a)

=

N∑
n=1

−
〈
∇fn(µπ

∗

n ), µπn

〉
.

Similarly,

J(π∗, µπ
∗
) =

N∑
n=1

−
〈
∇fn(µπ

∗

n ), µπ
∗

n

〉
.
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Thus, the Nash equilibrium condition in Inequality (12) entails

N∑
n=1

〈
∇fn(µπ

∗

n ), µπ
∗

n − µπn
〉
≤ 0. (13)

As fn is convex for all n ∈ {1, ..., N}, this yields

N∑
n=1

fn(µπ
∗

n )− fn(µπn) ≤ 0. (14)

Thus, π∗ satisfies the optimality conditions of Problem (4). We then proved that if (π∗, µ∗) is a NE with µ∗ = µπ
∗
,

then π∗ is an optimum of Problem (4).

On the other way around, if π∗ is a minimizer of Problem (4) then it satisfies Inequality (14) for all π ∈ (∆A)X×N .
Again, by convexity of (fn)1≤n≤N , π∗ also satisfies Inequality (13). Following the same calculations backwards, we
obtain that π∗ then satisfies Inequality (12), and by definition is then a NE. This concludes the first part of the proof.

The second part concerns the monotonicity of the game, defined below for the mean field game framework.

Definition A.1 (Monotonicity). According to Lasry and Lions [2007], a game where the reward depends on the
population’s state-action distribution (sometimes called “extended MFG” in the literature, see Gomes and Voskanyan
[2016]) is (strictly) monotone if for any state-action distributions ν, ν′ ∈ ∆X×A with ν 6= ν′,∫

X ,A
[r(x, a, ν)− r(x, a, ν′)]d(ν − ν′)(x, a) ≤ 0, (< 0).

Back to the proof, consider µ, µ′ two distributions over X ×A. As the result should be true to all n, we omit the time
step index for the computations. Recall that the reward is of the form r(x, a, µ) = −∇f(µ)(x, a) for all (x, a) ∈ X ×A,
with f a convex function. Then,∫

X×A
[r(x, a, µ)− r(x, a, µ′)]d(µ− µ′)(x, a) =

∫
X×A

[∇f(µ′)(x, a)−∇f(µ)(x, a)]d(µ− µ′)(x, a)

= 〈∇f(µ′)−∇f(µ), µ− µ′〉 ≤ 0

where the last inequality comes from the convexity of f .

B Missing proofs: algorithm 1 scheme and convergence rate

By abuse of notations, for any probability measure η ∈ ∆E whatever the finite space E on which it is defined we
introduce the neg-entropy function

φ(η) :=
∑
x∈E

η(x) log η(x),

to which we associate the Bregman divergence D, also known as the Kullback-Leibler divergence, such that for any
pair (η, ν) ∈ ∆E ×∆E ,

D(η, ν) := φ(η)− φ(ν)− 〈φ′(ν), η − ν〉.

Observe that to any µ = (µn)1≤n≤N ∈ Mµ0
one can associate a unique probability mass function on (X × A)N

denoted by µ1:N such that µ1:N is generated by the strategy π = (πn)1≤n≤N associated with µ which is determined by

πn(a|x) =
µn(x, a)

ρn(x)
,

where ρn denotes the marginal probability distribution on X associated with µn i.e., for all x ∈ X

ρn(x) :=
∑
a∈A

µn(x, a) .

Before proving Theorems (4.1) and (4.3) we state and prove a Lemma which is key to proving both theorems.
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Lemma B.1. For any probability mass functions µ1:N , µ
′
1:N ∈ P

(
(X ×A)N

)
generated by π, π′ respectively with the

same initial state-action distribution, i.e. µ0 = µ′0, we have

D(µ1:N , µ
′
1:N ) =

N∑
n=1

E(x,a)∼µn(·)

[
log

(
πn(a|x)

π′n(a|x)

)]

=

N∑
n=1

D(µn, µ
′
n)−

N∑
n=0

D(ρn, ρ
′
n)

(15)

Proof. For each 1 ≤ n ≤ N , let us define a transition matrix Pπn for all x, x′ ∈ X and a, a′ ∈ A,

Pπn(x′, a′|x, a) := p(x′|x, a)πn(a′|x′).

Given Definition 3.1, for any randomized policy the state-action distributions evolve according to linear dynamics

µn(x′, a′) = 〈µn−1(·), Pπn(x′, a′|·)〉.

Any randomized policy π gives a probability mass function µ1:N that is Markovian:

µ1:N (~y) = µ0(y0)Pπ1(y1|y0)...PπN (yN |yN−1), (16)

where ~y represents the elements of (X × A)N+1 such that yi = (xi, ai) for all 0 ≤ i ≤ N . Note that µn(yn) is the
marginal probability mass function.

Consider µ, µ′ ∈Mµ0
the state-action distribution sequences induced by π, π′ respectively (i.e, µ = µπ and µ′ = µπ

′
).

Thus, computing the relative entropy between the probability mass functions µ1:N , µ
′
1:N gives

D(µ1:N , µ
′
1:N ) =

∑
~y

µ1:N (~y) log

(
µ1:N (~y)

µ′1:N (~y)

)

=
∑

y0,...,yN

µ1:N (~y) log

(
µ0(y0)Pπ1(y1|y0)...PπN (yN |yN−1)

µ′0(y0)Pπ
′
1(y1|y0)...Pπ

′
N (yN |yN−1)

)

=
∑

y0,...,yN

µ1:N (~y)

N∑
i=1

log

(
Pπi(yi|yi−1)

Pπ
′
i(yi|yi−1)

)
.

Where
N∑
i=1

log

(
Pπi(yi|yi−1)

Pπ
′
i(yi|yi−1)

)
=

N∑
i=1

log

(
p(xi|xi−1, ai−1)πi(ai|xi)
p(xi|xi−1, ai−1)π′i(ai|xi)

)

=

N∑
i=1

log

(
πi(ai|xi)
π′i(ai|xi)

)
.

Thus,

D(µ1:N , µ
′
1:N ) =

∑
~y

µ1:N (~y)

N∑
i=1

log

(
πi(ai|xi)
π′i(ai|xi)

)

=
∑
~y

µ0(y0)Pπ1(y1|y0)...PπN (yN |yN−1)

N∑
i=1

log

(
πi(ai|xi)
π′i(ai|xi)

)

=

N∑
i=1

∑
x∈X

∑
a∈A

µi(x, a) log

(
πi(a|x)

π′i(a|x)

)
.

Where for the last equality we used that∑
y0,...,yi−1

µ0(y0)Pπ1(y1|y0)...Pπi(yi|yi−1) =
∑
yi

µi(yi)
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and for a fixed yi, ∑
yi+1,...,yN

Pπi+1(yi+1|yi)...PπN (yN |yN−1) = 1.

This proves the first equality of the Lemma. We now prove the second. For this, we recall that Proposition 3.2 gives
a unique relation between a state-action distribution sequence µ ∈ Mµ0 and the policy sequence π ∈ (∆A)X×N

inducing it by taking for all 1 ≤ i ≤ N , (x, a) ∈ X ×A,

πi(a|x) =
µi(x, a)

ρi(x)
,

where ρ is the marginal on the states of µ. Using this relation, we have then that

D(µ1:N , µ
′
1:N ) =

N∑
i=1

∑
x∈X

∑
a∈A

µi(x, a) log

(
πi(a|x)

π′i(a|x)

)

=

N∑
i=1

∑
x∈X

∑
a∈A

µi(x, a) log

(
µi(a|x)

ρi(x)

ρ′i(x)

µ′i(a|x)

)

=

N∑
i=1

∑
x∈X

∑
a∈A

µi(x, a) log

(
µi(a|x)

µ′i(a|x)

)
−

N∑
i=1

∑
x∈X

∑
a∈A

µi(x, a) log

(
ρi(x)

ρ′i(x)

)

=

N∑
i=1

∑
x∈X

∑
a∈A

µi(x, a) log

(
µi(a|x)

µ′i(a|x)

)
−

N∑
i=1

∑
x∈X

ρi(x) log

(
ρi(x)

ρ′i(x)

)

=

N∑
i=1

D(µi, µ
′
i)−

i∑
i=1

D(ρi, ρ
′
i)

which concludes the proof.

B.1 Proof of Theorem 4.1: formulation of Algorithm 1

Proof. At each iteration we seek to solve

µk+1 ∈ arg min
µπ∈Mµ0

{
〈∇F (µk), µπ〉+

1

τk

N∑
n=1

E(x,a)∼µn(·)

[
log

(
πn(a|x)

πkn(a|x)

)]}
(17)

where recall that 〈∇F (µk), µπ〉 :=
∑N
n=1〈∇fn(µkn), µπn〉.

Using the definition of the reward in a potential game and the associated expected sum of rewards Jµ0
, we reformulated

this problem in Section 4 of the main paper as follows

µk+1 ∈ arg max
µ∈Mµ0

{
Jµ0

(π, µk)− 1

τk

N∑
n=1

E(x,a)∼µn(·)

[
log

(
πn(a|x)

πkn(a|x)

)]}
. (18)

Now, we use the optimality principle to solve this optimization problem with an algorithm backward in time. Remember
that the initial distribution µ0 is always fixed. The equivalence between solving a minimization problem on sequences
of state-action distributions inMµ0 and on sequences of policies in (∆A)X×N (see Proposition 3.2), allows us to
reformulate Problem (18) onMµ0

into a problem on (∆A)X×N , thus
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(18) = max
π∈(∆A)X×N

N∑
n=0

∑
x,a

µπn(x, a)rn(x, a, µkn)− 1

τk

N∑
n=1

∑
x,a

µπn−1(x, a)
∑
x′,a′

p(x′|x, a)πn(a′|x′) log

(
πn(a′|x′)
πkn(a′|x′)

)

= max
π∈(∆A)X×N

N∑
n=0

∑
x,a

µπn(x, a)

rn(x, a, µkn)− 1

τk

∑
x′,a′

p(x′|x, a)πn+1(a′|x′) log

(
πn+1(a′|x′)
πkn+1(a′|x′)

)
= max
π∈(∆A)X×N

Eπ

rN (xN , aN , µ
k
N ) +

N−1∑
n=0

rn(xn, an, µ
k
n)− 1

τk

∑
x′,a′

p(x′|xn, an)πn+1(a′|x′) log

(
πn+1(a′|x′)
πkn+1(a′|x′)

) .
Let us define a regularized version of the state-action value function that we denote by Q̃k, such that for all 1 ≤ i ≤ N ,
(x, a) ∈ X ×A,

Q̃ki (x, a) = max
πi+1:N∈(∆A)X×N−i

Eπ
[
rN (xN , aN , µ

k
N ) +

N−1∑
n=i

{
rn(xn, an, µ

k
n)

− 1

τk

∑
x′,a′

p(x′|xn, an)πn+1(a′|x′) log

(
πn+1(a′|x′)
πkn+1(a′|x′)

)}∣∣∣∣(xi, ai) = (x, a)

]
,

(19)

where πi+1:N = {πi+1, ..., πN}.

First, note that E(x,a)∼µ0(·)[Q̃
k
0(x, a)] = (18). Moreover, the optimality principle states that this regularized state-action

value function satisfies the following recursion{
Q̃N (x, a) = rN (x, a, µkN )

Q̃i(x, a) = maxπi+1∈(∆A)X

{
ri(x, a, µ

k
i ) +

∑
x′ p(x

′|x, a)
∑
a′ πi+1(a′|x′)

[
− 1
τk

log
(
πi+1(a′|x′)
πki+1(a′|x′)

)
+ Q̃i+1(x′, a′)

]}
.

Thus, to solve (18) we compute backwards in time, i.e. for i = N − 1, ..., 0, for all x ∈ X ,

πk+1
i+1 (·|x) ∈ arg max

π(·|x)∈∆A

{〈
π(·|x), Q̃ki+1(x, ·)

〉
− 1

τk
D
(
π(·|x), πki+1(·|x)

)}
,

where D is the Kullback-Leibler divergence.

The solution of this optimisation problem for each time step i can be found by writing the Lagrangian function L
associated. Let λ be the Lagrangian multiplier associated to the simplex constraint. For simplicity, let πx := π(·|x),
πkx := πki+1(·|x) and Q̃kx := Q̃ki+1(x, ·). Thus,

L(πx, λ) = 〈πx, Q̃kx〉 −
1

τk
D(πx, π

k
x)− λ

(∑
a∈A

πx(a)− 1

)
.

Taking the gradient of the Lagrangian with respect to πx(a) for each a ∈ A gives

∂L
∂πx(a)

= Q̃kx(a)− 1

τk
log

(
πx(a)

πkx(a)

)
− 1

τk
− λ,

and thus
∂L

∂πx(a)
= 0 =⇒ πx(a) = πkx(a) exp

(
τkQ̃

k
x(a)− 1− τkλ

)
.

Applying the simplex constraint,
∑
a∈A πx(a) = 1, we find the value of the Lagrangian multipler λ, and we get for all

a ∈ A

πx(a) =
πkx(a) exp

(
τkQ̃

k
x(a)

)
∑
a′∈A π

k
x(a′) exp

(
τkQ̃kx(a′)

)
,

which proves the theorem.
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B.2 Proof of Proposition 4.2: Γ is a Bregman divergence

Proof. Lemma B.1 states that

Γ(µ, µ′) :=

N∑
n=1

E(x,a)∼µn(·)

[
log

(
πn(a′|x′)
πkn(a′|x′)

)]
=

n∑
t=0

D(µ′t, µt)−
n∑
t=0

D(ρ′t, ρt).

Recall that φ is the negentropy and that D is the Bregman divergence induced by the negentropy. Define the function
ψ : (∆X×A)N → R such that

ψ(µ) :=

N∑
n=0

φ(µn)−
N∑
n=0

φ(ρn).

Note that for µ, µ′ ∈ (∆X×A)N with marginals given by ρ, ρ′ ∈ (∆X )N , using the second equality of Lemma B.1,

ψ(µ)− ψ(µ′)− 〈∇ψ(µ′), µ− µ′〉 = Γ(µ, µ′).

Thus, for Γ to be a Bregman divergence it is sufficient to show that ψ is a convex function. Recall that the marginal ρ is
such that for each 1 ≤ n ≤ N , and for all x ∈ X , ρn(x) =

∑
a∈A µn(x, a). Thus,

ψ(µ) =
∑
n

[∑
x,a

µn(x, a) log(µn(x, a))−
∑
x

ρn(x) log(ρn(x))

]

=
∑
n

∑
x,a

µn(x, a) log

(
µn(x, a)∑
a′ µn(x, a′)

)
.

Computing the first order partial derivative of ψ with respect to µn(x, a) for any (x, a) ∈ X ×A and 1 ≤ n ≤ N , we
get

∂ψ

∂µn(x, a)
(µ) = log

(
µn(x, a)∑
a′ µn(x, a′)

)
+ µn(x, a)

1

µn(x, a)
−
∑
a′

µn(x, a′)
1∑

a′ µn(x, a′)

= log

(
µn(x, a)∑
a′ µn(x, a′)

)
= log

(
µn(x, a)

ρn(x)

)
.

Now we apply the following convexity property [Boyd and Vandenberghe, 2004]: ψ is convex if and only if for all
µ, µ′ ∈ (∆X×A)N , 〈ψ′(µ)− ψ′(µ′), µ− µ′〉 ≥ 0. Indeed,

〈ψ′(µ)− ψ′(µ′), µ− µ′〉 =
∑
n

∑
x,a

[
∂ψ

∂µn(x, a)
(µ)− ∂ψ

∂µn(x, a)
(µ′)

] (
µn(x, a)− µ′n(x, a)

)
=
∑
n

∑
x,a

[
log

(
µn(x, a)

ρn(x)

)
− log

(
µ′n(x, a)

ρ′n(x)

)] (
µn(x, a)− µ′n(x, a)

)
=
∑
n

∑
x,a

log

(
µn(x, a)

µ′n(x, a)

)(
µn(x, a)− µ′n(x, a)

)
−
∑
n

∑
x

log

(
ρn(x)

ρ′n(x)

)(
ρn(x)− ρ′n(x)

)
(a)
=
∑
n

D(µn, µ
′
n) +D(µn, µ

′
n)−D(ρn, ρ

′
n)−D(ρ′n, ρn)

(b)
= Γ(µ, µ′) + Γ(µ′, µ)

(c)
= D(µ1:N , µ

′
1:N ) +D(µ′1:N , µ1:N )

(d)

≥ 0,

where (a) comes from the definition of the Kullback-Leibler divergence D, (b) comes from the definition of Γ, (c)
comes from Lemma B.1 and (d) comes from a property of Bregman divergences that they are always positive. As ψ
is convex and induces the divergence Γ then Γ is a Bregman divergence. After writing this proof, we came across a
different strategy to prove that Γ is a Bregman divergence that is presented in Appendix A of Neu et al. [2017].
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B.3 Proof of Theorem 4.3

We just need to prove that if (fn)1≤n≤N are convex and Lipschitz then so is F , which places our optimization problem
under the convergence hypothesis of mirror descent. The rest of the proof follows from the fact that each iteration
of Algorithm 1 is an iteration of mirror descent, so it benefits from the same convergence result whose proof can be
verified in Beck and Teboulle [2003].

Convexity: F is convex as the sum of convex functions.

Lipschitz: First, with some abuse of notation, we consider that for all µ ∈ (∆X×A)N such that µ = (µn)1≤n≤N and
that for any norm ‖ · ‖,

‖∇F (µ)‖2 = 〈∇F (µ),∇F (µ)〉 :=

N∑
n=1

〈∇fn(µn),∇fn(µn)〉 =

N∑
n=1

‖∇fn(µn)‖2.

As fn is convex and Lipschitz with respect to ‖ · ‖ with constant ln, then from Lemma 2.6 of [Shalev-Shwartz, 2012],
for all µn ∈ ∆X×A, ‖∇fn(µn)‖∗ ≤ ln, where ‖ · ‖∗ denotes the dual norm of ‖ · ‖.
Thus,

‖∇F (µ)‖2∗ =

N∑
n=1

‖∇fn(µn)‖2∗ ≤
( N∑
n=1

l2n

)
.

Therefore, F is Lipschitz with constant L :=
(∑N

n=1 l
2
n)1/2.

C Algorithms

Algorithm 2 Fictitious play for MFG (FP)

Input: number of iterations K, initial policy π0.
Initialization: µ̄0 = µπ

0

as in Definition 3.1.
for k = 0, ...,K do
πk+1 ∈ arg maxπ J(π, µ̄k), best response against µ̄k.
µ̄k+1 = 1

k+1µ
πk+1

+ k
k+1 µ̄

k.
end for
Return: µ̄K and π̄K s.t. π̄Kn (a|x) :=

∑K
k=0

ρπ
k

n (x)πkn(a|x)∑K
k=0 ρ

πk
n (x)

,
(
ρπ

k

n (x) :=
∑
a∈A µ

πk

n (x, a) for all k ≤ K
)
.

Algorithm 3 Frank Wolfe

Input: number of iterations K, initial distribution µ0, sequence (ηk)k.
for k = 0, ...,K do
µk ∈ arg minµ∈M

〈
µ,∇F (µ̄k)

〉
|X×A|.

µ̄k+1 = (1− ηk+1)µ̄k + ηk+1µ
k.

end for
Return: µ̄K

The Online Mirror Descent for MFG algorithm uses the regular state-value function (or Q-function) at each iteration.
It’s definition is given by

Qπ,µn (x, a) := Eπ

[
N∑
i=n

ri(xi, ai, µi)

∣∣∣∣xn = x, an = a

]
. (20)

Note that, considering an initial state-action distribution µ0, Jµ0
(π, µ) = E(x,a)∼µ0

[Qπ,µ0 (x, a)]. Furthermore, Qπ,µ is
the solution of the backward equation, for all n < N , (x, a) ∈ X ×A:Q

π,µ
N (x, a) = rN (x, a, µN )

Qπ,µn (x, a) = rn(x, a, µn) +
∑
x′

p(x′|x, a)
∑
a′

πn+1(a′|x′)Qπ,µn+1(x′, a′). (21)
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Algorithm 4 OMD for MFG

Input: number of iterations K, π0 ∈ (∆A)X×N .
for k = 0, ...,K do
µk := µπ

k

, as in Definition 3.1.
Qk := Qπ

k,µk as in Equation (21).
πk+1
n (·|x) := arg maxπ(·|x)∈∆A〈Q

k
n(x, ·), π(·|x)〉+ τD

(
π(·|x), πkn(·|x)

)
, ∀x ∈ X ,∀n ≤ N .

end for
Return: µK , πK

D Water heater application

D.1 Standard cycling behavior of one water heater

Let us consider a time window [t0, t0 + T ], and consider a discretisation of the time such that tn = t0 + nδt for
n = 0, ..., N , and δt = T/N the time step. At each time step tn (that for short we call n), the state of a water heater is
described by a variable Xn = (mn, θn) ∈ {0, 1} × R+, where mn indicates the operating state of the heater (ON if 1,
OFF if 0), and θn represents the average temperature of the water in the tank.

The evolution of the temperature in the next time step tn+1 is given by θn+1 = T̄ tn,mn,θntn+1
, where t 7→ T̄ tn,mn,θnt is the

solution of the ordinary differential equation (ODE) in Equation (22) on the interval [tn, tn+1]. This ODE models the
impact of the heat loss to the environment temperature (Tamb), the Joule effect (heating) and water drains (hot water
being withdrawn from the tanks for showers, taps, etc),

dT (t)
dt = − ρ(T (t)− Tamb)︸ ︷︷ ︸

heat loss

+σmnpmax︸ ︷︷ ︸
Joule effect

− τ(T (t)− Tin)f(t)︸ ︷︷ ︸
water drain

T (tn) = θn.

(22)

The parameters ρ, σ, τ are technical parameters of the water heater, pmax is the maximum power, Tin denotes the
temperature of the cold water entering the tank, and f(t) denotes the drain function.

The dynamics follow a cyclic ON/OFF decision rule with a deadband to ensure that the temperature is between a lower
limit Tmin and an upper limit Tmax. Thus, if the water heater is turned on, it heats water with the maximum capacity
until its temperature exceeds Tmax. Then, the heater turns off. The water temperature then decreases until it reaches
Tmin, then the heater turns on again and a new cycle begins. Therefore, the nominal dynamics at a discretized time is
given by Equation (23) and is illustrated at Figure 1.

θn+1 = T̄ tn,mn,θntn+1

mn+1 =


mn, if θn+1 ∈ [Tmin, Tmax]

0, if θn+1 ≥ Tmax

1, if θn+1 ≤ Tmin.

(23)

Note that assuming the temperature set is finite prevents us from using the ODE on Equation (22) to compute the
evolution of the mean temperature. In addition, we also have trouble computing the drain function f(t), which in
practice is not deterministic. Instead, we adapt this ODE to simplify our system. We start by making an Euler
discretization of the ODE. We define a sequence (dn)n denoting the amount of draining in liters at each time step.
To decide whether hot water is drawn at each time step, we also consider a sequence (εn)n of independent random
variables following Bernoulli’s laws of parameters (qn)n respectively. The interest of having different parameters for
each time step is to take into account the moments of the day when people are more inclined to use hot water (for taking
a shower, doing the dishes, etc.). Assuming the existence of an independent water discharge at each time step is justified
by assuming that the time frequency δt is large enough to contain all the time when hot water will be drawn from the
water heater tank for a single use. In the interest of more realistic dynamics, we intend to weaken this assumption in
future work. Therefore, we define

θ′n+1 = θn + δt
(
− ρ (θn − Tamb) + σmnpmax − εnτ (θn − Tin) dn

)
. (24)

To tackle the finite-temperature state space problem, we assume that the space of possible temperatures Θ contains only
integers from Tamb (the room temperature) up to Tmax, assuming that Tamb < Tmin (it is reasonable to assume that the
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ambient temperature is below the minimum temperature accepted for the heater). Given the dynamics of the operating
state, θn+1 never exceeds Tmax (the heater turns off when it reaches Tmax and when it is turned off, its temperature only
decreases). On the other hand, drain may allow a temperature to be lower than Tmin, but we assume that Tamb is small
enough that the mean temperature is never lower than it. Therefore, we can take θn+1 = Round(θ′n+1), where

Round(θ) =

{
bθc, if B(θ) = 0

dθe, if B(θ) = 1,

and B(θ) is a random variable following a Bernoulli of parameter θ − bθc. Thus, the closer θ is to its smallest nearest
integer, the greater the probability that we approximate θ by it, and vice-versa. We perform stochastic rounding instead
of deterministic to have an unbiased temperature estimator, i.e. E[θn+1] = θ′n+1.

D.2 Proof of convergence of Algorithm 1 applied to the water heater optimisation problem

Corollary D.1. Consider the mean field problem of controlling the average power consumption profile of a population
of water heaters in order to track a reference signal defined in the main paper as

min
µ∈Mµ0

F (µ)

where F (µ) :=
∑N
n=1 fn(µn) with fn(µn) := (µn(ϕ)− γn)2, ϕ is the function defined in Equation (11),Mµ0

is the
set defined in Equation (3), and (γn)1≤n≤N is the target (recall that γn ∈ [0, 1] for all 1 ≤ n ≤ N ).

Algorithm 1 applied for K iterations to this minimisation problem with

τk =

√
2Γ(µ∗, µ0)

2

1√
k
,

converges with rate

min
0≤s≤K

F (µs)− F (µ∗) ≤ 2

√
2Γ(µ∗, µ0)√

K
.

Proof. The proof is a consequence of Theorem 4.3 applied to this problem. For that, we need to show that F is convex
and Lipschitz with respect to the L1 norm ‖ · ‖1.

Convexity for all n ≤ N , each fn is given by

fn(µn) =

(∑
x,a

µn(x, a)ϕ(x)− γn

)2

.

Let g be a real function such that g(x) = (x− γn)2. The function g is convex and non-decreasing on R+.

Let h : R|X×A| → R, such that h(µn) =
∑
x,a µn(x, a)ϕ(x). Note that ∂h

∂µn(x,a) (µn) = ϕ(x). Thus, for any
µn, µ

′
n ∈ ∆X×A,

h(µn)− h(µ′n) =

(∑
x,a

(
µn(x, a)− µ′n(x, a)

)
ϕ(x)

)
= 〈∇h(µ′n), µn − µ′n〉,

therefore, the function h is also convex. As fn(µn) = g(h(µn)), then fn is convex as g and h are convex, and g is non
decreasing in a univariate domain [Boyd and Vandenberghe, 2004]. Finally, as F is the sum of convex functions, then
F is also convex.

Lipschitz As we already showed that F is convex, to show that F is Lipschitz with respect to the ‖ · ‖1 norm, it
suffices to show that the sup-norm ‖ · ‖∞ of F ′ is bounded (the sup-norm is the dual norm of the L1 norm). This result
can be found in Lemma 2.6 of Shalev-Shwartz [2012].
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For any µ ∈ (∆X×A)N ,

‖F ′(µ)‖ = sup
n≤N,(x,a)∈X×A

|f ′n(µn)(x, a)|

= 2 sup
n≤N,(x,a)∈X×A

|µn(ϕ)− γn||ϕ(x)|

= 2 sup
n≤N,(x,a)∈X×A

∣∣∣∣ ∑
x′,a′

µn(x′, a′)ϕ(x′)− γn
∣∣∣∣|ϕ(x)|

= 2 sup
n≤N,x∈X

|〈ρn, ϕ〉||ϕ(x)|

≤ 2‖ϕ‖2∞.

Thus, F is Lipschitz with respect to the L1 norm with Lipschitz constant L = 2‖ϕ‖2∞. In our particular case ϕ is
bounded by 1 (see its definition in Equation (11)), hence L = 2.

We apply Theorem 4.3 with L = 2 to conclude.

D.3 Simulation of the nominal behavior of a water heater

Here we explain in details how the nominal dynamics are simulated in order to obtain the results in Section 6.

To simulate the nominal dynamics we use the nominal model presented in Equation (23) with the average temperature
evolution introduced in Equation (24). To compute the sequences (dn)n and (qn)n regarding the amount of draining
in liters and the probability of having a water withdrawal for each time step, respectively, we use data from the
SMACH (Simulation Multi-Agents des Comportements Humains) platform [Albouys et al., 2019], which simulates
power consumption of people in their homes separated by appliance. The data we use simulates the consumption of
5132 water heaters at a time step of one minute over a week in the summer of 2018.

Since we want a time step large enough to contain all the time that hot water will be drawn from the water heater
tank for a single use, we take δt = 10 minutes instead of one minute (as initially provided by the data). Therefore we
transform the data to contain for each water heater the average discharge over each 10 minute interval. To compute dn,
we take the average discharge in liters over all water heaters with a water withdrawal during this time step. To calculate
(qn)n, we calculate the percentage of water heaters with a water withdrawal over the entire population for each time
step. The values of the parameters ρ, σ, τ and pmax are computed in Equation (25) using the variables introduced in
Tables 1 and 2. We take Tmin = 50◦C, Tmax = 65◦C, Tamb = 25◦C and Tin = 18◦C.

Table 1: Water heater intrinsic parameters.

Volume 0.2m3

Height 1.37m
EI (thickness of isolation) 0.035

4
m

pmax 3600 ∗ 2200W (in one hour)

Table 2: Other parameters specifications to compute Equation 25.

denWater (water density) 1000 kg m−3

capWater (water capacity) 4185 J kg−1 K−1

CI (heat conductivity) 0.033 W/(m K)

coefLoss (loss coeff.) CI
EI ∗ 2 ∗ 3.14

√
vol∗3.14

height

ρ =
coefLoss ∗ 3600

capWater ∗ denWater ∗ vol/height
(fraction of heat loss by hour)

σ = (vol ∗ denWater ∗ capWater)−1

τ = (vol ∗ denWater)−1.

(25)
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Figure 7: Initial policy sequence π0 with a difference of 0.1 from the nominal policy.

E Discussion on different initialisation

We argue that given a state distribution sequence ρ, the policy generating this distribution is not necessarily unique.
Moreover, as ρn(x) =

∑
a∈A µn(x, a) for all 1 ≤ n ≤ N and for all x ∈ X , the state-action distribution sequence µ

with marginal ρ is not unique.

Recall that in the water heater application the iterative algorithms explored seek to find a policy sequence π inducing a
population flow µπ such that the distribution of heaters at state ON would be as close as possible to a reference signal
(γn)1≤n≤N at each time step:

fn(µn) :=

(∑
x∈X

∑
a∈A

µn(x, a)ϕ(x)− γn

)2

with ϕ defined in Equation (11). The non-uniqueness of the state distribution ρ given a policy π and a state-action
distribution µπ is particularly interesting when controlling the average consumption of a population of water heaters.
In our model, we do not make any assumption on the number of ON/OFF switches that a water heater should have.
However, this is an important constraint because a large number of switches can be detrimental to the device. The
non-uniqueness of a policy allows us to formulate the problem of decreasing the number of switches as that of finding a
policy that induces the right consumption while performing the smallest number of switches.

For example, suppose that at some time step n, half of the water heaters are ON and the other half are OFF. Suppose
that at the next time step n+ 1, the target indicates that we would like to still have half of the heaters to be ON and the
other half to be OFF. A policy inducing this behavior could be constructed in several ways: we could have a probability
1 of keeping the heaters in the same state, or a probability 1 of turning ON the heaters that were OFF and turning OFF
the heaters that were ON. Both policies result in the same proportion of heaters ON/OFF at the end. However, in the
first case, no switching is done, while in the second case, all heaters must be switched.

In particular, different policy initialization on Algorithm 1 lead to different best policies. In the main body, results are
computed by initializing each algorithm with the uniform policy over the action space for each state and time step.
The average daily switch count is 33 in this case, while that the nominal dynamics (to keep ON when ON and to keep
OFF when OFF within the temperature deadband [Tmin, Tmax]) only do in average 3 switches in a day. Figure 8 plots
the probability of turning ON while in state ON/OFF for the policy computed by Algorithm 1 when the initial policy,
illustrated at Figure 7, is a deviation of 0.1 of the nominal policy. In this case the number of switches decrease to a daily
average of 9.2 and still seems to track the target curve. Further work involves continuing to explore how to find a policy
that leads to the smallest number of switches while following the reference target.
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Figure 8: Output policy sequence of Algorithm 1 initialized with the policy at Figure 7
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