Chow motives associated to certain algebraic Hecke characters - Archive ouverte HAL
Article Dans Une Revue Transactions of the American Mathematical Society, Series B Année : 2018

Chow motives associated to certain algebraic Hecke characters

Résumé

Shimura and Taniyama proved that if A is a potentially CM abelian variety over a number field F with CM by a field K linearly disjoint from F, then there is an algebraic Hecke character λ A of F K such that L(A/F, s) = L(λ A , s). We consider a certain converse to their result. Namely, let A be a potentially CM abelian variety appearing as a factor of the Jacobian of a curve of the form y e = γx f + δ. Fix positive integers a and n such that n/2 < a ≤ n. Under mild conditions on e, f, γ, δ, we construct a Chow motive M , defined over F = Q(γ, δ), such that L(M/F, s) and L(λ a A λ n−a A , s) have the same Euler factors outside finitely many primes.
Fichier principal
Vignette du fichier
S2330-0000-2018-00027-9.pdf (330.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03965642 , version 1 (31-01-2023)

Licence

Identifiants

Citer

Laure Flapan, Jaclyn Lang. Chow motives associated to certain algebraic Hecke characters. Transactions of the American Mathematical Society, Series B, 2018, 5, pp.102-124. ⟨10.1090/btran/27⟩. ⟨hal-03965642⟩
16 Consultations
30 Téléchargements

Altmetric

Partager

More