Modelling quantum particles falling into a black hole: the deep interior limit - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Universe Année : 2023

Modelling quantum particles falling into a black hole: the deep interior limit

Résumé

In this paper we construct a solvable toy model of the quantum dynamics of the interior of a spherical black hole with falling spherical scalar field excitations. We first argue about how some aspects of the quantum gravity dynamics of realistic black holes emitting Hawking radiation can be modelled using Kantowski-Sachs solutions with a massless scalar field when one focuses on the deep interior region $r\ll M$ (including the singularity). Further, we show that in the $r\ll M$ regime, and in suitable variables, the KS model becomes exactly solvable at both the classical and quantum levels. The quantum dynamics inspired by loop quantum gravity is revisited. We propose a natural polymer-quantization where the area $a$ of the orbits of the rotation group is quantized. The polymer (or loop) dynamics is closely related with the Schroedinger dynamics away from the singularity with a form of continuum limit naturally emerging from the polymer treatment. The Dirac observable associated to the mass is quantized and shown to have an infinite degeneracy associated to the so-called $\epsilon$-sectors. Suitable continuum superpositions of these are well defined distributions in the fundamental Hilbert space and satisfy the continuum Schroedinger dynamics.
Fichier principal
Vignette du fichier
2301.03951.pdf (802.05 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03952414 , version 1 (31-08-2023)

Identifiants

Citer

Alejandro Perez, Salvatore Ribisi, Sami Viollet. Modelling quantum particles falling into a black hole: the deep interior limit. Universe, 2023, 9 (2), pp.75. ⟨10.3390/universe9020075⟩. ⟨hal-03952414⟩
26 Consultations
6 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More