STATISTICAL INFERENCE FOR ROUGH VOLATILITY: MINIMAX THEORY - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

STATISTICAL INFERENCE FOR ROUGH VOLATILITY: MINIMAX THEORY

Résumé

Rough volatility models have gained considerable interest in the quantitative finance community in recent years. In this paradigm, the volatility of the asset price is driven by a fractional Brownian motion with a small value for the Hurst parameter H. In this work, we provide a rigorous statistical analysis of these models. To do so, we establish minimax lower bounds for parameter estimation and design procedures based on wavelets attaining them. We notably obtain an optimal speed of convergence of n −1/(4H+2) for estimating H based on n sampled data, extending results known only for the easier case H > 1/2 so far. We therefore establish that the parameters of rough volatility models can be inferred with optimal accuracy in all regimes.
Fichier principal
Vignette du fichier
CHLRS_031022_submitted.pdf (684.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03949577 , version 1 (20-01-2023)

Identifiants

  • HAL Id : hal-03949577 , version 1

Citer

Carsten Chong, Marc Hoffmann, Yanghui Liu, Grégoire Szymanski, Mathieu Rosenbaum. STATISTICAL INFERENCE FOR ROUGH VOLATILITY: MINIMAX THEORY. 2023. ⟨hal-03949577⟩
81 Consultations
164 Téléchargements

Partager

More