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STATISTICAL INFERENCE FOR ROUGH VOLATILITY: MINIMAX THEORY

CARSTEN CHONG, MARC HOFFMANN, YANGHUI LIU, MATHIEU ROSENBAUM AND GREGOIRE SZYMANSKI

ABSTRACT. Rough volatility models have gained considerable interest in the quantitative finance
community in recent years. In this paradigm, the volatility of the asset price is driven by a fractional
Brownian motion with a small value for the Hurst parameter H. In this work, we provide a rigorous
statistical analysis of these models. To do so, we establish minimax lower bounds for parameter
estimation and design procedures based on wavelets attaining them. We notably obtain an optimal
speed of convergence of n~1/(4H+2) for estimating H based on n sampled data, extending results
known only for the easier case H > 1/2 so far. We therefore establish that the parameters of rough
volatility models can be inferred with optimal accuracy in all regimes.

Mathematics Subject Classification (2020) : 60G22, 62C20, 62F12, 62M09, 62P20.
Keywords: Rough volatility, fractional Brownian motion, wavelets, scaling, minimax optimality,
pre-averaging, iterated estimation procedure

1. INTRODUCTION

Rough volatility models have been introduced in quantitative finance in 2014 in [GJR18]. The
core idea of this new paradigm in financial engineering is to consider that the volatility process
of financial assets exhibits very irregular sample paths. More precisely the prototypical rough
volatility model postulates that the price of a one-dimensional asset S satisfies

(1) dS; = 01dB;, oy = aexp(nW}H)

with B a Brownian motion, W# a fractional motion with Hurst parameter H € (0, 1) and positive
constants ¢ and 7. The key point of rough volatility modelling is to take H very small, of order
10~1. Other rough volatility models involve more complex functionals of the fractional Brownian
motion adapted to various applications, but with the same order of magnitude for H, see for ex-
ample [EER19, |GJR20].

Rough volatility has been uncovered following a data-driven approach. The data sets of inter-
est were time series of daily measurement of historical volatility over many years and thousands
of assets, see [BLP22 |GJR18]. More precisely, volatility was essentially considered constant dur-
ing each dayﬂ and its daily value was estimated from high-frequency price observations. This was
done using various up-to-date inference methods for high-frequency data, all of them leading to
analogous results. Many natural empirical statistics have been computed on these volatility time
series, in a model-agnostic way. Then it was shown in [GJR18] that strikingly similar patterns
were obtained by computing the same statistics in the simple Model (1)) (actually a version of
where one considers a piecewise constant approximation of the volatility).

Date: October 3, 2022.
1A varying volatility does not make much sense in finance over short time intervals where the diffusive nature of the
price is lost due to microstructural effects. Intraday seasonalities of the volatility could be considered though.
1
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For example, among the statistics advocating for rough volatility, empirical means of log-
volatility increments play an important role. They consist in measuring on volatility time series
(0t)t=1,2,..., for given ¢ > 0, the empirical means of the |log(o:+a) — log(o)|9, for A going from
one day to several hundreds of days. On data, as a function of A, this quantity behaves system-
atically as A% with A of order 1071, for the whole range of A. This is obviously reproduced if
the volatility follows Model (1) with H of order 10~!, thanks to the scaling of fractional Brownian
motion. In addition, the fact that this property also holds for large A somehow discards station-
ary models where the moments of the increments no longer depend on A for large A. It also
immediately rules out the idea that the scaling of log-volatility increments in practice could be
due to measurement error in the volatility process.

At first glance, the relevance of the parameters value in Model (1) may be surprising. It is in
strong contrast with the first generation of fractional volatility models where H > 1/2 in a station-
ary environment, see [CR98]. The goal of these models was notably to reproduce long memory
properties of the volatility process and we know that fractional Brownian motion increments ex-
hibit long memory when H > 1/2. However, it turns out that when H is very small, apparent
long memory is also generated in a model such as (1) and that despite its non-stationarity, it re-
mains consistent with the behaviour of financial data even on very long time scales, see [GJR18].

In addition to the very convincing stylized facts obtained from historical volatility, the data
analysis obtained from implied volatility surfaces also support the rough volatility paradigm, see
[ALVO07, BEG16)| [Fuk21} LMPR18]. In other words, rough volatility models are, in financial terms,
compatible with both historical and risk-neutral measures, which paved the way to many new
directions in quantitative finance. Furthermore, it turns out that rough volatility models can be
micro-founded and that in fact, only a rough nature for the volatility can allow financial markets
to operate under no-statistical arbitrage conditions, see [EEFR18} JR20].

Given the multiple empirical evidence from market data towards their direction, rough volatil-
ity models have gained great interest in the quantitative finance community and a vast litera-
ture has been devoted to this new paradigm, both from a theoretical and a practical perspec-
tive. For example, among other contributions risk management of (complex) derivatives is con-
sidered in [AJ22, |ARS22| [EER19, [ER18| [FHT21], |GJR20) HTZ21) JMP21]], numerical issues are ad-
dressed in [[AJEE19, BLP17, I[CGP21, IGas22, MP18| RZ21], asymptotic expansions are provided in
[CT22|[EFGR19| [FFGS20, [FGP22|[FZ17,[JP22] and theoretical considerations about the probabilistic
structure of these models are studied in [AJLP19, BFG™20,/CT19| [FGR22} Gas19, GGP19,IGKR19].

As explained, the popularity of rough volatility models comes from their ability to remarkably
mimic the behaviour of data. Now that these models are well admitted, we can take a step back
and consider a rigorous statistical analysis taking Model (1)) as a postulate. From the point of view
of a statistician, the intriguing question is then obviously that of the inference of the parameter H.
Can we estimate it and with which accuracy? Said differently, we want to know how well we can
distinguish between two values of H and therefore overcome the latent nature of the volatility
and the noise in its estimation.
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Thorough investigations related to these questions can notably be found in [BCPV22,[FT19]. In
[FT19], the following approximation is considered

td

log(e) ~log( [ a%ds) +=:
(t=1)6

where ¢, is an iid Gaussian noise and o7 is the quadratic variation computed from high-frequency
observations of the log price over the interval [(t —1)d, t6). Taking this approximation for granted,
the authors obtain a Whittle estimator of the parameter H and provide its asymptotic theory in a
high-frequency asymptotic framework (fixed time interval of observation). However, the method-
ology is tightly related to this approximation, which is unfortunately not accurate enough in our
Model (I). Another very interesting study is that of [BCPV22]. Here the authors place themselves
in an ergodic framework and make stationary assumptions to build estimating procedures. In
our work, we rather consider a high-frequency setting, which makes the nature of the statistical
problem quite different. Finally, the complementary paper [CHL™22] uses a very similar setting
as ours but over a slightly different class of models. With a practitioner perspective in mind, this
paper focuses on the most useful rough volatility models in practice and associated central limit
theorems for estimating H. We rather stay in the prototypical Model (1) to address our very natu-
ral mathematical statistics question: the optimal rate of convergence for an estimator of the Hurst
parameter in the rough volatility paradigm.

To work first in the spirit of rough volatility models as introduced for financial engineering, we
start our study with a version of Model (1)) where the volatility is piecewise constant. We consider
n regularly sampled observations of the price S from this modified Model (1) with 0 < H < 1
over a fixed time interval. In this setting, squared price increments are down to spot variance
multiplied by noise. Taking the logarithm reduces our problem to the setup of [GHO7] where
the authors study the estimation of the Hurst parameter for a fractional Brownian motion ob-
served with additive measurement error for # > 1/2. Their approach is based on the scaling
properties of wavelet-based energy levels of the fractional Brownian motion @); (the sum of the
squared wavelet coefficients for a given resolution level j). Indeed, we have that 927 H Q; con-
verges to some constant. Therefore H can be obtained from the ratio Q;41/Q;, provided we have
access to a good approximation of it. Furthermore, the multiresolution nature of wavelet coeffi-
cients and their adaptivity properties makes this approach quite tractable compared for example
to using scaling properties of p—variations (sum of increments to some power p), although both
approaches are in essence very similar. To build their estimator, the authors of [GHO7] estimate
energy levels (); from the increments of observations. Unfortunately, their approach cannot be
directly applied in our setting. This is due to the roughness of the volatility path that creates a
large bias error term in the estimation of the energy levels. We mitigate this phenomenon using a
pre-averaging technique similar to that in [Szy22]]. More precisely, we show that the energy levels
computed from the pre-average spot volatility process still have a nice scaling property and de-
rive an estimator from it. This estimator achieves the rate n~/(*#+2) as in [GHO7] for H > 1/2,
which we prove to be minimax optimal for any H € (0,1). In particular, we can conclude that
from a rigorous statistical viewpoint, estimating H in rough volatility models can be done with
very satisfactory accuracy.

Then we consider Model (1) without any piecewise constant assumption on the volatility path.
In this situation, the law of price increments becomes more intricate. The piecewise constant
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volatility is replaced by local average of the spot volatility. Interestingly, the question of the in-
ference of H in this model has already been studied in [Ros08] for H > 1/2. In this work, energy
levels are computed from price increments and are shown to exhibit a scaling property around a
stochastic limit. So one can use use again ratios of estimated energy levels to estimate H when
H > 1/2. However, this approach does not extend to the case H < 1/2. The reason is that
over a short time interval, given the small value of H, the integrated volatility is very badly ap-
proximated by the renormalized spot volatility at the beginning of the interval, which is a crucial
element in [Ros08]. We get inspired by the empirical means used in [GJR18] as well as by the
piecewise constant case. More precisely, we compute energy levels from the logarithm of the
squared price increments and not from price increments. However, as explained above, the loga-
rithm of price increments involves the quantity

(i+1)5 Y
log (% /5 exp(nW; )ds)

which does not enjoy suitable properties when H is small. This is because the roughness of the
trajectories makes this quantity far from nW /. This creates a large bias when computing H from
a ratio of energy levels. We analyze the extent of this bias and show that the scaling of order
27%H is no longer exact. Additional terms of order 272 with ¢ > 1 appear and must be re-
moved with a suitable bias correction procedure. To do so, we start with a first estimator with
no bias correction on the energy levels. Then we re-use this estimator to correct the energy levels
and compute a new estimator with a faster rate of convergence. This procedure is iterated many

times, of the order of H~!, and reaches the minimax optimal speed n~1/(4#+2),

The paper is organized as follows. The model with piecewise constant volatility is considered
in Section [2| while this assumption is removed in Section 3| Discussions are gathered in Section
and the next sections are devoted to the proofs of the results.

2. ROUGH PIECEWISE CONSTANT VOLATILITY

2.1. Model and notation. We start with the version of the prototypical rough volatility model
where the volatility is piecewise constant. In financial terms, it means the volatility is taken con-
stant over the day, which is quite reasonable (up to intraday seasonalities). To do so, we consider
for some H € (0,1) and > 0 a measurable space (2, A, Py ,) on which is defined a process S
such that

dSt =0 tdBt
with B a Brownian motion and the volatility o given by
o} = o exp(Xy) with Xy = nW/5 1 5

where § = §,, > 0, oy > 0, and where W is a fractional Brownian motion with Hurst index H
independent from B. We will write Eg ,, for the expectation under the probability measure Pg ,,.
Without loss of generality, we take oy = 1. We assume that (H,n) lies in a compact subset D of
(0,1) x (0, 00) and we define

H_= min H, n— = min 7,
(H,n)eD (Hn)eD
H, = max H, N4y = min

= i .
(H,n)eD (H,n)E'D,'7
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We suppose that we have access to the trajectory of S via discrete data at times i/n with i =
0,---,nand we write A" for the s-algebra generated by observations
(Si/n)ogign-

For simplicity, we further assume that n = 2%V and that m := nd is an integer. We aim at recovering
the parameters (H, ) from these observations. We define

’Un(H) _ n—l/(4H+2) vV 51/2.

In Section we derive a minimax optimality theory for this model and in Section [2.3| we
focus on the construction of an estimator achieving the minimax rate.

2.2. Minimax optimality. The rate v,, is said to be a lower rate of convergence over D for esti-
mating H if there exists ¢ > 0 such that

liminfinf sup PH_,n(vng;Tn —H|>c¢)>0

"0 Hy (Hm)eD
where the infimum is taken over all A"-measurable random variables ,, (i.e. all estimators).

Theorem 1. The rate v, (H) is a lower rate of convergence for estimating H over D.
Also, w,,(H) = n= Y@+ In(n) v §1/2 is a lower rate of convergence for estimating n over D (with
obvious modification in the definition).

Note that we retrieve here the convergence rate of [GHO07] and [Ros08]. Additional comments
can be found in Section[@ The proof of Theorem I]is relegated to Section 5|

2.3. Construction of an estimator. Recall that that m = né. Notice first that under Py ,,, we have
for0 <i < 2N
N U 2 U 2
2% " (Stmtsy/n = Smti—1y/n)” = 055 Y (Blamtsy/n = Blamtj—1)/n)
=1 '

j=1
so that
Xin :=log <2N > (Stm+sy/m = Stim+j—1y/n) > = Wi, + €inm
j=1

where the (g;,,,,m); are ii.d. random variables with same law as that of ,,, = log (m ™" Z;n:l é?),

where the &; are i.i.d. standard Gaussian variables. Thus nd, exp(e1,,) is a x> random variable
with nd,, degree of freedom and we get by Lemma

Var(z,)) = ¢ (2) < Cm™ and E[&h] < COm™?

for some constant C' and where the function ¢/(!) is explicit and defined in Section

We now introduce the energy levels of the process X. Let j > 2, k < 2/~! and p > 0. We write:

T 27711

dikr = 357270 D Xprizrypi = 2X(s14i2-r)2-s + Xppoqizryps and Qjp = Y iy
1=0 k=0
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Note that this sum stops at index k¥ = 2/~! — 1 and is defined only for j > 2 because our obser-
vations stop at time 1. In view of these definitions, we introduce their empirical counterparts. We
start with d. We define

2P 1

~ 1 - - -

djkpn = 2 E Xno-i(k412-7),n — 2Xn2-i(k+1412-7)n T Xn2—i (k+2412-7),n
=0

which is A™-measurable provided p + j < N. Note that ijpn =djkp + €jkpn Where

2P —1
1

(2) €h,k,pn = 23/2+p Z En((k+12-P)2-3) n,m — 2€7L((k+1+l2*17)2*j),n,m, + En((k+2412-P)2-3),n,m-

However we cannot estimate d2 by d2 because of the noise term e. Following [GH07], we offset

these effects by removing E[e? ;. | = 6 Var(&,,)27777. Thus, we estimate the energy levels by

27711

(3) Qj’p’n = Z d?,k,p,n where d%,k»pfﬂ = ?,k,p,n — 6Var(§m)2_j—l7.
k=0

We fix vy > 0. The estimator of H is given by

Qur+1,N-Jr—1n
2

H, = —}log { } where JF =max{2<j <N —1:Q;n_j1n>1n2n"'}

Qus N—J:—1n

The consistency and convergence rate of this estimator is provided in the following theorem,
discussed in Section[d]and proved in Section [f]

Theorem 2. The rate v,,(H) = n~/(4H+2) v/ §1/2 js achievable for estimating H over D.
More precisely, let ko(H) = 4—2% and suppose that vy < inf (p ;) ed n*K(0, H)22H . Then v ' (H,, —
H) is bounded in P ,,-probability uniformly over D.

3. GENERAL MODEL

3.1. Model and main results. We now consider the very same model and statistical experiment
as in the previous section but with a volatility process o, that is no longer piecewise constant:

o7 = ag exp(nW)

where W# is a fractional Brownian motion with Hurst index H and independent from B. We
will write Eg ,, the expectation under probability Py ,,. Without loss of generality, we takeoy = 1.
We assume that (H,n) lies in a compact subset D of (0,3/4) x (0,00) and we define H_, H, ,n_
and 7. as before. The upper bound H, < 3/4 is artificial here and could be improved to H; < 1
using second-order increments, see Section [f] for more details.

The rest of this section is divided into three parts. First, we present a minimax theory for this
model in Section Then we gather in Section [3.3| some results used later in the construction
of an estimator. These results are separated from the actual proof of the estimator since these
results could be of independent interest to the reader. Finally in Section[3.4] we build an estimator
achieving the optimal convergence rate derived in Section 3.2}
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3.2. Minimax optimality. Recall from Section that the rate v, is said to be a lower rate of
convergence over D for estimating H if there exists ¢ > 0 such that

liminfinf sup ]P’H’n(v;1|ﬁn —H|>c¢) >0,
" Hy (Hm)€D

where the infimum is taken over all estimators H. n, and similarly for . We obtain the following
result, as an analog to to Theorem ] Its proof can be found in Section 7}

Theorem 3. The rates v, (H) = n~Y/#1+2) gnd w,, (H) = n~YAH+2) In(n) are lower rate of conver-
gence for estimating H and 1 respectively over D.

3.3. Energy levels of the log integrated volatility. Suppose that j > 0 and p > 0 are fixed. For
0 < k < 27, we introduce the pre-averaged local energy levels of the log-integrated-volatility:

oo2P1 (k+1)279 4+ (1+1)2797P k2794 (141)277 7P
>y ) -t ([ ),
1=0 (k+1)279+i279-P k2—9 4129 =P

Then we define the corresponding energy levels by
QLP = Z d_?,k,p'
k<2i-1
These energy levels differ from those of [Ros08] since they are not defined on the integrated
realise variance of the price but on the logarithm of these quantities. They also scale as 272/ asin
[Ros08], but the logarithm creates two major differences in this scaling. On the one hand, we get

rid of the stochastic limit appearing in [Ros08] but on the other hand, this scaling is not exact and

additional terms appear. More precisely, the following concentration property is proved within
Section[8.3

Proposition 4. There exist explicit functions of H denoted k,, , given in Equation such that if S >
1/(4H_)+1/2and S > H,/(2H_) — 1/2, we have

S
) Eir (@i — Y 022 2Hin, o (H))?] < C2770H41D

a=1

for some constant C depending only on S.

Though these functions x are explicit, their numerical implementation is still to be studied and
will require the use of Isserlis’ Theorem (see Theorem 34).

The following two lemmas control the functions . They will be useful in the construction of
the estimator and are proved in Section [8.4]

Lemma 5. There exist c_ 1 and cy 1 some positive constants such that foranyp > landany H_ < H <
Hy

®) c—1 < kp1(H) < g

Moreover, there exists c. g some positive constant such that for any p > 1, any 2 < a < S and any
H_ <H<H,,

(6) |2@e-DHrg  (H)| < c.s.
Lemma 6. The functions r,, , are differentiable on [H_, H. ] and for any a > 0 there exists c, such that

sup |k, o, (H)| < ¢cq.
p=0
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Next, we prove that the rescaled energy levels 2279 Q; y_;_; are essentially bounded above
and below in probability. This next result is proved in Section[8.5

Proposition 7. Let ¢ > 0. Then there exists 0 < r_(e) < ry(g), Jo(e) > 0and Ny(e) such that for
N > Ny(e), we have

sup P ( inf 2XWHG . <7:5)<5
HE Hn\ 5 v Qjn—j—1<7-(6)) <

and Sup]P’H,n( sup  2¥HQin_jo1 > r+(5)) <e.

H,n Jo<jSN—1

Because of the additional terms appearing in Equation i}, we want to add a bias correction to
the energy levels. Therefore, we define for S > 0,v > 0and I > 0

S
S S S ao—2alj
7) Q53 (1,v) = Qi — BJ} (Iv)  where  BJJ)(1,v) = v 2 %0k, (D).
a=2

Note that unlike in Proposition [} this sum starts at a = 2 so that we have
E[(Qﬁ»i) (n,H) — UQZ*QHij,l(H)ﬂ < 27+

which now has the same behaviour as the term @ in Proposition 3 of [GHO7]. Therefore, we can

derive bounds over 2%/ Q;i&,_ 4 (n, H) similar to that of adapt Proposition@ The proof, being
identical to that of Proposition é] in Section|[8.5]is skipped.

Proposition 8. Let ¢ > 0. Then there exists 0 < r(_s)(e) < rsrs)(s), J§(e) > 0 and N§(e) such that for
N > N§(e), we have:

. 25H (S) ) < (S) )<
%{EPH,n(JOS}I%fN_12 Qjn_ja(n H) <r(e)) <e

; s s
and i}JpPHm(J <S‘1iIJ)V 1223HQ;712,_j_1(n,H) > r(+ )(5)) <e.
m 0<j<N—

We eventually conclude this section by a short lemma giving explicit Lipschitz bounds for

. ()
functions B Hieg

Lemma 9. There exists cg > 0 such that for any n,ne € [n—,n4) and Hy, Hy € [H_, H; ], we have
s s CAM(HAH)j -
B (1, Hy) — B (112, Hy)| < cp2 "N A2 (G Hy — Hy| + | — ).
This lemma is proved in Section 8.6}

3.4. Construction of the estimator. We now aim at building an appropriate estimator for @,
based on the price increments. In this section, we fix an integer S such that § > 1/(4H_) + 1/2
and S > H, /(2H_) — 1/2 so that the conclusion of Proposition 4] holds.

First, notice that for a fixed (j, p) such that j 4+ p < N, the price increment Syo-s 1 (141)2-5-» —
Sko-iti2-i-» is A™-measurable and we have

(8) ((S(l+1)2fjfp - Szzfi*P)Q)l = (/k

k2794 (141)2797P

2 2
. . oy du €j,p,l)
23 4[2—3i—p l
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in distribution, where (&, ,,;); are i.i.d. standard Gaussian variables, independent of o. Therefore,
we can estimate (d; 1)« by (dj p 1)r Where

2P _1
~ e 2
dj,p,k =27P J/2 Z log ((S(k+1)2—j+(l+1)2—.7‘—p — S(;g+1)2—.7‘+12—j—y) )
1=0
21 ,
—27P=i/2 Z log ((Sk2*j+(l+1)2—1—p - Sk2*i+l2*1*p) )
1=0

Using (8), we can see that d; , , = d;,x + €1, Where

2P _1
eihp =272 log (§?,p,(k+1)2p+z) — log (§?,p,k2p+l)-
=0

In view of [GHO07] and [Ros08]], we need to correct the estimation a2 j.p.k from the bias introduced

2
by the termAeM’p.

Qj,p = Zk dzjypyk-

A first estimator of (H, n) is defined by (fIT(LO), @(Lo )) with

Therefore we write d2; , , = J?’p’k, — 2797PT1 Var(log £?) and we estimate ) by

~ 1 9) * —J*—1,n . A j
HY = (( — ~log, {M}) \/H) ANHy with JF =max (j: Qjn—j—1,n > 2Jn_1).
2 Qi N—J:—1n

and then

~ 5 O
Q5 N5, 220N/ L 1
o = (Benin BN Y i m |
'%fon,l(H” ) 2H, +1

()|

Then we define a refinement procedure for this estimator to correct the bias introduced by the
functions k.. Let v > 0and 0 < I < 1. First, let Q;i}’n(l, V) =Qjpn — B](.i))(l, v) where Bj(.i) is
defined in Equation (7). Then we define

A(S)
~. 1 Qe I)+1,N—J*<(I,v —1,n(I’ v)
) He(I,v) = <( 5 logs { P a(lv) VH_|AH,
J;C(I,u),Nf.];C(I,u)fl,n(I’ v)
where
(10) Jr¢(I,v) = max (] : Qg‘i\)/—j—l,n(lv’/) > 2jn71)
and then
QY (I,v)2%nI\ 172
(1) ity = (A ) Vi) An
i 5,a()

We use these functions to build iteratively a sequence (ﬁr(tm),ﬁ,(lm)) of estimators of (H,n).
(fL(LO), ﬁ&o)) is already built and for m > 0, we write
Hm = H (Y, ),
= (H, ).
Choose now myp; such that me, > 1/(4H) —2H — 1forany H_ < H < Hy.
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Theorem 10. The rates v, (H) = n~Y*H+2) and w, (H) = n~Y/*H+2) In(n) are achievable for esti-
mating respectively H and n over the parameter set D.

More precisely, suppose that m,, satisfies mep > m > 1/(4H) —2H — 1forany H_ < H < H,.
Then v, ! |I§',(Lm°”") — H|and w;* |ﬁ7(lm°p”) — 1| are bounded in probability uniformly over D.

The choice of m,,; and other comments are discussed in Section E} while the proof is delayed
until Section [0l

4. DISCUSSION
We now provide some comments about the results given in Section [2]and Section 3]

e About the convergence rates. We obtain in Sections [2| and [3| the same convergence rate
n~1/(4H+2) a5 in [GHO7] and [Ros08]. This unusual rate ensures that retrieving the Hurst
exponent becomes easier when the trajectory is rougher. Therefore estimates of the rough-
ness of the volatility should be quite accurate in rough volatility models. This can seem
counter-intuitive at first glance as one knows that the optimal rate for estimating a /-
Holder continuous function (say for instance in the context of estimating a density from a
sample of n independent random variables) is roughly n~?/(2#+1), Here we can get much
better rates because we do not try to reconstruct the signal itself but only its regularity.
Though volatility remains hidden behind the multiplicative noise and the realised vari-
ance, we can retrieve its roughness with fast convergence rate.

e About the use of wavelets. Our estimation strategy relies on wavelets and quadratic func-
tionals of the underlying volatility, as in [GHO07] and [Ros08]. The multiresolution nature
of wavelets is particularly convenient in our setting from a technical viewpoint, notably
when computing the dependence structure of the coefficients. Also, selecting optimal res-
olution levels can be done in a natural way in this framework. That is why we use this
technique instead of p-variations of increments. However, the spirit of both approaches
would be very close given the strong links between the two objects via Besov spaces, see
for instance [Ros09, [CKR93].

e About second-order increments. The fact that second-order increments may be needed
to estimate with accuracy parameters of fractional signals when H > 3/4 is well known,
see for example [IL97,/Coe01]. That is why we consider such increments in Section 2} For
technical convenience, we restrict ourselves in Sectionto the case H > 3/4. This enables
us to avoid additional issues coming from the asymptotic expansion of

(i+1)6 @
log (% /5 exp(an{)ds) — log (% /( s exp(an)dS)

as developed in Proposition [33]

e About 7. Although these models have two parameters i and H, the parameter of real
interest is obviously H. That is why, in the piecewise constant volatility model of Section
we do not provide an estimator for 5 or any minimax theory. However, in a similar way
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as in Section 3} one could show that the estimator

~ - 0
P Qs N-7, n22jan 1/2 P 1
T = ( Jns Jns /\(0) ) Wlth In = \‘ = logQ(n>J
fn_5, (Hn”) 2Hn +1

where &, is an explicit function defined within Lemma|17} is consistent and achieves con-
vergence rate log(n)n~'/(4#+2) Minor modification of the proof of Theorem [1{enables us
to also show that this rate is minimax-optimal.

e Implementation and feasibility. Optimal estimation rates for estimating H do not de-
pend on the model, however, the construction of the estimators does. In the piecewise
constant volatility model, the estimator is easy to implement and fast to compute, the
only tuning parameter being 1y. From Theorem [2, a suitable choice would be 1, =
302 min(3, (4 — 227+)22H+) where H = supy , e H and - = inf (g yep 0.

The estimators in the general model are more complex. This is first due to the presence
of the function k,, , in the debiasing procedure. A function like for example x,, , (see (33))
involves the computation of (an order of) 2” expectation of 2a correlated Gaussian vari-
ables. Explicit formulas for such products are given by Isserlis’ theorem (see Theorem 34)
but there is a slight computational cost. The second issue is the stopping time of the iter-
ated debiasing procedure. The quantity m,,, must satisfy m,,, > m > 1/(4H)—2H —1 for
any H_ < H < H,. Since it needs to be an integer, a quick study of the function « — m >
1/(4x) — 2z — 1 ensures that one can always take m,y,; = max(|1/(4H_) —2H_]|, 0). This
choice impacts strongly the computation time when H is small. However, in most cases
of interest, this iteration cost remains very reasonable with 5 iterations for H_ = 0.05 and
24 iterations for H_ = 0.01 for instance.

e Model choice. We place ourselves in this paper in the prototypical rough volatility model
(D). This is a probably reasonable choice when studying a fundamental inference question
such as minimax optimality as it enables us to understand the core statistical structure
of rough volatility. However, although rough volatility models were initially presented
under such a simple form, see [GJR18], they have since then been extended and many
models involving various transforms of the fractional Brownian motion or related rough
Gaussian processes have emerged. These extensions were notably driven by practice,
where beyond optimal rates having access to confidence bounds is crucial. Taking this
into account, we build in the companion paper [CHL™22] non-parametric estimators of
the roughness of the volatility path for these extensions of Model (T)), together with a full
central limit theory.

5. PROOF OF THEOREM[I]

5.1. Outline of the proof. Suppose first that we directly observe o;5 for 0 < i < §~!. This would
be equivalent to the observation of (W );<;-1. Optimal estimation in this model is studied in
[Szy22] where the LANproperty holds (See Theorems 4 and 5 in [Szy22] with 7,, = 0) and optimal
rates for the estimation of H and 7 are respectively 6'/2 and 6'/2 log(n). Since the model presented
in Section carries less statistical information than the direct observation of (¢is);<5-1, 0 1/24sa
lower rate of convergence for H and §'/2log(n) is a lower rate of convergence for 7 in the model
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of Section This proves Theoremwhenever § > n Y/ HHD),

For the remaining of this Section, we will suppose that § < n~'/CH+1) g0 that v, (H) =
n~1/(4H+2) We aim at proving Theorem I|by a similar strategy to Theorems 2 and 3 of [GHO7].
However, two major differences that require delicate handling here. First, we must include the
case H < 1/2, which was done in [Szy22]. Secondly, we need to show how our model, somewhat
different to the additive noise model of [GHO7] and [Szy22], can fit in this proof. For complete-
ness, we will go through the main ideas of the proof and emphasize when delicate changes need
to be undertaken.

We need some notation. Write ||/l = supj ;< | [ fdul| for the the total variation of a signed
measure /. For two probability measures ; and v, set

o) = Il = sup | [ i~ [ gan
0<f<1

so that diest(p,v) = %H p—v|py. We denote by P the law of the observations (S;/,,); given
77WtH = f(t).

The following two results are key to the proof of the lower bounds. They replace respectively
Propositions 4 and 5 of [GHO7]. First, we show that the law of the observation is somewhat close
whenever the underlying volatilities are close.

Proposition 11. Let f and g be two bounded functions. Then there exists ¢y > 0 such that

(12) P} =Pyl < covnllf = gllo-

Moreover, there exists ¢; > 0 and a universal nonincreasing positive function R such that
- 2

(13) 1= 3IP} =Pyl > Rinel/=4l= | — g,)

Consider now (Hy, 1) in the interior of the domain D. We pick I > 0 large enough and we set
H =Hy+e, and o = gg2/0
where
en = I7in /A2 and  jo = |log,(n'/(2Ho+1)) ],

The next proposition shows that we can build two processes £%™ and £ that act as approxi-
mations of noW o and n W,

Proposition 12. For I large enough, there exists a sequence of probability (X™,X,,, P™) on which can be

defined two sequences of stochastic processes, (52’”)%[071] and a measurable transformation T" : X" —
X™ such that the following hold:

(D) I PP"() = [yn Pin oy ()P (dw), then | PP =P . — 0

(ii) The sequence n|¢%" (w) — 0™ (T™w)|, is tight under P™,
(iii) If n is large enough, the probability measure P™ and its image T"P"™ are equivalent on (X™,X,,)
and there exists 0 < ¢* < 2 such that |P™ — T"P"| ., <2 — c¢* < 2 for n big enough.

This proposition replaces Proposition 5 of [GHO7]. Part |(i)|shows that we can asymptotically
replace the fractional Brownian motions 7; Wi by the processes £""(w) in the model presented
in Section However, the processes £#"(w) are defined in such a way that we can pathwise
transform a process into another in the probability space (X", X,,, P™). This property is essential
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to the lower bound proof and shows how one statistical experiment can be transformed into the
other. This is the main goal of point and For sake of completeness, we will cover the
12

main idea of the proof of Proposition[12|in Section

We can now complete the proof of Theorem (I} We follow again the proof of [GHO7]. The
same procedure applies for H and o so we focus on the efficient rate for H. We start with an
arbitrary estimator H, of H and we choose I > 0 large enough so that Proposition holds. Let
M < 1/(2I). Then we have, using Proposition [12]and notations therein

sup P"H’n(vn(H)_HfIn —H|>M)
(H,n)

Y]

(Pt (00 (Ho) ™ [ Hy = Hol = M) + Py, (vq (Hy) ™ | H,y — Hi| > M)

1

2
> (PO (v (Ho) ™ |Hy — Ho| > M) + P (v, (Hy) ™ |[H, — Hy| > M)) +o(1)
=3 /X o) (A7) 4 Pin () (A7) P"(dw) + o(1)

where A’ = {v,(H;)"'|H, — H;| > M}. Taking n large enough, it suffices to bound from below
the integral appearing here. But since P" and 7" P" are equivalent, see Proposition [(iii)} we have

/n ]P)é‘o,n(w)(AO) P (dw) :/ Pgo’"(Tﬂ'w)(Ao)dTnPn (T LU) P (dW)

n

For r > 0, we denote X" is the set of w € X™ such that
n n n 2
"™ (T"w) — " (W)l <

Notice that this definition is slightly different from that of [GHO7] due to the differences in Propo-
sition[T1} We obtain then, for A > 0

/Xn ?(Jn(w)(AO) + Pgln(w) (Al) P"(dw)

P
— 7 0 n n 1 n
_ /X (Pl (ny (A°) s (T7) 4 P (A1) PP ()

= ei)\ /Xn (Pgo’"(T"W)(AO) + ]P)?l’"(w) (Al))]l aPr (Trw)>e—> P"(dw).

dTTP™
s

Notice also that for w € X', we have
Poun () (A%) 4 P (A°)
> P?o,n(T%)(nl/MHO“)|ﬁn — Ho| > M) _,_an(w)(n1/(4H0+2)|ﬁn ~Hy| > M)
> P?l,n(w)(nl/(4H0+2)|I/-\[n — Hy| > M) +P?1,n(w)(nl/(4H0+2)‘ﬁn —Hy| > M)
- dtest (]P)?O,n(an) 5 Pgl,n(w))
1 n n
2 ]. - §||P§0,71(an) - ]P)ELH(W)HTV

since n'/(Ho+2) |y — H,| > 2M by definition of I and M. We apply now Proposition[l1]to get

0 n Om () —eb ™ (w n(mpn n 2
Pgo.n (i) (A%) + Py (A%) = R(nel € T = @l ¢0n (T — 57 (w)]1)

> R(eT/‘/ﬁr2) > R(e"r?)
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since R is non-increasing. Thus, we get

[ B (A7) + Py (A1) PP

ZG_AR(GT'I"2)/ 1_apn (Trw)>e—> Pn(dUJ)

xn arnTpmn
"

- dP™(T"w) _ _
> A r,.2 P X" > A
> e “R(e"r?) ( rm{ dT"Pn =€ )

armpn
> A r,.2 n ny _ qmpn < o
>e R(er)(P (X™) - T"P ( o e))

But Markov inequality and Proposition [12]yield

drmpn dImpm
npn < A < P" < A npn n
mr < dPn —e)‘P ( apr —e>+d““(TP M

<e MR - P py

<er+1-c

so that we infer
/ Fon () (A%) + Piin (o) (A") P™(dw) > e R(e"r?) (P™(X]") —e ™ — 1+ %)_

Moreover,

lim liminf P*(X") = lim liminf P"(n|¢%"(T"w) — 517”(0.))“30 <r)=1

r—00 N—00 T—>00 T—>00
since n||¢®™(T"w) — flvn(w)ﬂzo is tight by Proposition We conclude by taking A and r large
enough.

5.2. Proof of Proposition Let K (p,v) = [log(%) du denote the Kullback-Leibler divergence

between two probability measures p and v. Recall also the Pinsker’s inequality ||y — yHQTV <
2K (p1,v). Under P7%, the increments of the observations S, 1)/, — S;/, are independent Gaussian
variables whose variance is given by

n”texp(f([jn~'67"]9))
so that the Kullback-Leibler divergence between the two measures P’y and Py is given by

2N 1

K(P},Py) =nd Y A((f - 9)(i6))

=0
where A(z) = e® — z — 1. Ais increasing on [0, 00) and A(z) < A(]z|) for z > 0so
(14) K (P}, Py) <nA(lf - gll)-

Note in addition that A(z) < 2% for 0 < z < 1 so0 KP}yPy) <n|f - g||io whenever || f — g .
1. Pinsker’s inequality proves estimate in that case. When ||f —g|. > 1, we write K
Mf—9gloland fi = (kg + (K —k)f)/K forallk =0,..., K so that || f, — frt1]l,, < 1forany k.
Using for functions (fx, fr+1), we get

1B} B2y < STIBY, — Pl < SO0k — fiille < On'20f — gl
k k

I IA
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which proves ([12). We now prove (I3). First, notice that for z > 0, we also have A(z) < z%¢” so
that (14) ylelds

n — 2

and we can conclude since ||t — v||;, remains bounded away from 2 when the divergence K (u, )
and K (v, i) are bounded away from +oco.

5.3. Proof of Proposition[12}

Introduction and notation. Proposition [12|is an adaptation of Proposition 5 in [GHO7]. Indeed,
points (i) and are the same as in [GHO7] and the construction of the approximation processes
&Y™ in our proof is exactly the same as in [GHO7]. Therefore, we will quickly recall the main ar-
guments concerning the construction of the £ while skipping the tedious computations already
done therein. We will also skip the proof of points [(i)|and and focus instead on (i)}

The main idea of the approximation is to decompose the fractional Brownian motions nW#
over a wavelet basis and to keep only low frequencies. Indeed, high frequencies entail local in-
formation of the fractional Brownian motion, such that its Hlder regularity. Thus it should vary
a lot even for small changes of H even if the absolute value of a single coefficient is generally
small. On the other side, low-frequency coefficients should be high to determine the global trends
of the fractional Brownian motions, but their behaviour should be continuous in H. Thus we
will cut our signal corresponding to fractional Brownian motions and keep only low frequencies.
Thus we will get a process close enough to the original fractional Brownian motion. Moreover,
a slight technical modification in the low-frequency process approximating n; W#! ensures this
remains close to n;WH1 while being closer to the low-frequency process approximating 1o W o.
The main choice remaining is the cut-off level in the frequencies and, unsurprisingly, we will see
that log, n'/(1+2H0) is perfectly suitable.

We will now present in more detail the approximation procedure. First, recall from [GHOZ]
that for any H, fractional Brownian motions admit the following series representation

(15) 9—Jjo(H+1/2) Z @mk ng+22*j(H+l/2) Z ( fk(t)—wfk(o))fj,k

k=—o0 J=do k| <2i0+1

where ¢, are independent standard Gaussian variables, (cf); is a Gaussian stationary family
whose spectral density is given by |2sin(v/2)[|' =20 and where the @ and ¢ are defined as
fractional derivatives of wavelet functions. For conciseness, we do not detall the1r construction
which can be found in [GHO07], Section 7.1. In the following, we will need the following property.

Lemma 13 (Lemma 5.(i). in [GHO7]). For any M > 0 there exists ¢ = c¢(M) such that for all j, and all
HelH_ H

L + DM+ k)2 < e(M)2~ Moo,

DD Il

J>jo |k|<2i+1

A very important feature of the representation is that the random variables appearing in
the high-frequency part are independent of the low-frequency terms.
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Construction of the space X™. As in [GHO7], we take

2J+1

Jo+1 n n
X" = (@72 i1 R) ® (®2,, ®r__gynR) = X' ® X
We write X" the Borel product sigma-algebra of X", w = (w®,w?) the elements of X" and
ep(w) =w; and ¢;i(w)= w;-i’k

the projections on the coordinates of w.
In view of (15), we then define

oo
(16) & = o2 U T2y @ (e o D 27T N (@R (8) — iR (0)ej

k| <270+1 J=jo || <2771
To ensure this is a correct approximation of oo W0, we define the probability measure
P" =P ®Py
such that under P?, (i) is a centred Gaussian stationary sequence with spectral density
|2 sin(v/2)|' ~2Ho

and under P}, (¢, ), 1 are independent standard Gaussian variables. Therefore, under P”, the
law of £%7 is close to the law of 1o 0. We want now to define an approximation of 7, W1, As
explained in v, replacing ¢, by a stationary sequence (¢},); with spectral density |2sin(v/2)|'~2H
is not enough and one should incorporate corrective terms corresponding to the development of
©H1 = @Hoten Following [GHO7], a suitable approximation for n; W1 is given by

& =m2 Ry el (el +m Y 27N T (R () — w0 (0)e

k| <290+1 J=jo k| <2+1

202N N (01 () ar kel + (010, (1) — w10 (0)b_ke},)

l1|<2i0+1 [k|<2i0+1

where the sequences a and b are defined in Lemma 5 of [GHO07].

[GHO7] also provides the mapping 1™ of Proposition This transformation is divided into
two parts. The first one acts on X} and transforms the stationary sequence (e ); with spectral
density |2sin(v/2)|!~2H0 into a stationary sequence (g},); with spectral density |2sin(v/2)|'~2H
which can be done since these measures are absolutely continuous. The second one is more tricky
and uses the sequences a and b to transform linearly the ¢; ;. We refer once more to [GHO7] for
the details. The only important result regarding this construction for the proof of point|(ii)| of
is the following development

W) =TT w) =Y Y mPIR QIR () — ¢ (0)eji W)

J>jo |k|<2i+1

+ 30D 2D @I () — 7 (0)es p(w).

J>jo |k|<2i+1

(17)
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Proof of Proposition|12||(ii)l Notice first that it is enough to prove that \/n[|¢""(w) — £°"(T"w)|  is
bounded in L' since Markov inequality for positive random variables will then ensure tightness.
By (17), it is enough to bound the two terms:

Z Z m2 J(H1+1/2)H¢j,]é||oo|€j’k(w)| and Z Z 002 J(Ho+1/2)”1][}j7]2||oo|5j7k(w)|_
J=2jo |k|<29+1 Jj2jo |k|<2i+1

Both these terms are handled similarly so we will focus on the first one here. We now need to use
Lemma 3 of [MST99].

Lemma 14. Let (¢j1);>0,kez be independent standard Gaussian variables. Then there exists C(w) a
random variable having finite moments of all orders such that

. 1/2
lej.x] < C(log(2 + j)log(2 + [K])) />,

Thus there exists a positive random variable C' = C'(w) with finite moments for any order such
that for any j > 0 and |k| < 27*!, we have:
k(@) < Cw)(1+ )21+ [K])1/?

and therefore

Yo > m2 IR k()]

J>jo |k|<2i+1

< O(w)m2 TV N2 N (1 5) AL+ k)Y

J>jo |k|<2d+1
< C(w)c(M)Th2*j0(H1+1/2)7Mj0

by Lemma where M > 0is arbitrary. But C(w) is bounded in L', so for any M > 0 there exists
a constant ¢ = /(M) such that

[l (w) — €M™ (T"w)
where the last inequality is obtained taking M big enough.

. 1
o] < 20D < 1y 12

6. PROOF OF THEOREM [2]

6.1. Preparation for the proof. We start by giving a crucial result on the behaviour of the pre-
averaged energy levels and their empirical counterparts. It relies on a similar strategy as in
[GHO7] and is based on the two following Propositions.

Proposition 15. Let ¢ > 0. Then there exists 0 < r_(g) < exp(—(2H+ + 1)), Jo(e) > 0 and Ny(e)
depending on D only such that for N > Ny(e), we have:

; 2jH . < <
(18) (HS,,I,I)I;@PH’W(JUS}I%folz Qjn—j-1<r_(g)) <e.

Proposition 16.

(19) sup EH,n [(@j,p,n _ Qj7p)2} S C((?’Lé)_QQ_j_Qp + (n(s)—12—j(1+2H)—p)_
(H,m)eD

Their proofs are presented in Sections[6.2]and [6.3] Then notice that

QririN-Ji-1n 2724| < B, 4+ VD VO

Qi N—J:—1,n
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where
QJ,*L+1,N7JT*L71 _QH)
B, = | SNl g-2H |
Qs N-J:—1
O Qi1 N—Jr—1n— Qrsy1,N—Jr -1
n - -~ )
QisN—J:—1n
V@ — QJ;,+1,N7J;51(QJ;;,Nﬂ]:;l,n - QJ;,ij;;fl) ’

Qu;,

N—Jz—1,nQz N—Jx—1

n?

Therefore the proof is completed once we prove that v ! By, v; Vi and v71V;{? are tight. We
deal separately with the cases § < n~1/(2H+1) and § > n~1/(H+1) jn Sectionsand
For € > 0, we introduce

Jyo(e) =max{j>1: r_()27 %" > 2ip7 1} A(N —1)

n

where r_(¢) is defined in Proposition [15}
6.2. Proof of Proposition[15, Our proof is an adaptation of Proposition 1 in [GHOZ].

Lemma 17. For any p, there exists a function k, : (0,1) — (0, co) such that for any (H,n) € D and any
j >0, we have

(20) IEHJ][d?,k,p] = HP(H)W22_j(1+2H)-

Moreover, we have

0< inf kp(H) < sup Ky(H) < o0.
(H,n)€D,p>0 o) (H,n)ED,p>0 o(H)

Proof. We start with the explicit computation of Eg ,[d?

g,k,p]~ By self-similarity and the fact that

WH has stationary increments, this expectation equals

5 2P 1
n
94 (1+2H)+2p Z By [(W&Iﬁ*fzﬂ_p o 2W1[i(£1752)2_p + Wﬁ(flffzﬂ_p)(w;] o 2W1H)]
£1,62=0
nQ

27 Y (L= U2 Em g [(Wh-y = 2W s + Wk gy ) (W — 2]
LeL,|e|<2P

~ 9j(i+2H)

It follows that «,, (H) is well defined for all values of H and p. It is also positive since Eg ,[d7 ;. ] >
0. Moreover, a direct computation of the expectation above yields

kp(H) =277 " (1= [27P)pu (€277),
LET,|e|<2P
with ¢p(z) = 3505 _o(~D* (D] + k — 2>, Since H — ¢p(z) is continuous for any z, we
deduce that H — k,(H) is bounded below and above for fixed p. Moreover, z +— ¢ (z) is
continuous and there exists C > 0 independent of H such that |y (z) — ¢u(y)| < Clz — y|>HMN
for any —1 < z,y < 1. Thus k,(H) converges to ko (H) = fil(l — |z|)¢pm(x)dx as p — co. More
precisely, we have

2P
() — k() < Y /( (1= |27 ) o (0277) — (1 — |a))ora ()| do

tez,|e|<2p Y U=1)277
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1
+/ (1 —|z|)|¢u(x)|d.
1-2-»
The integral in the sum is bounded by C272P + C2~(2HADP=P and the last integral is bounded
by C277 so that
\ip(H) — Koo (H)| < C27PHAD

and the convergence is uniform. Also, notice that

Koo(H) = Egr [(/Ol(wf W+ Wﬁz)du)2] >0,
hence Lemma (17| follows from the continuity of H — koo (H). O
Lemma 18 (Decorrelation of the Wavelet Coefficients). For ki, ko such that |k, — ko| > 3, we have:
B b0 [d s p g ]| < CP27 7 TF20 (1 [y — k)21,
Proof. Suppose k1 > ko + 3. We need to show
B 1.0 [ es pjips ) | < C?27 7 OF2D (1 [y — kg )27,

Since W is self-similar and has stationary increments, we have

2
(21) Bt [djkypdjhsp) = ﬁfp > (=2 ky — ky +£277)

(€Z,0)<2P

where ¢y () = 335 _o(~D)*(})|a + k — 2|7, Notice that for = > 2, the absolute values
appearing in the expression of ¢ (z) can be removed. If F(x,t) = |z + t|*, Taylor’s formula
yields
1 1
24,
1 1
2.4 )

b (z) (1 — )3 (160} F (z,—2t) — 40} F (z, —t) — 40} F(x,t) + 160, F(z,2t))dt

(1—[t])*( — 40, F (z,t) + 160} F (=, 2t))dt.

We infer |¢ g (x)| < C|z — 2|4 for some constant C independent of H € [H_, H,]. Summing

over ¢ in (21) yields the result. O
Using both Lemmas[17|and [18] we have

@) Prin[(Qsp = mp(HyP2 1)) < 270040

for some constant C' independent of H and 7. The proof of is obtained exactly in the same

way as in Proposition 3 of [GHO7] and is thus omitted.

We are ready to prove the estimate of Proposition Let Jy and N be two arbitrary
integers and r > 0. We have

N-1

; 2jH ) 2jH ) .
PH,n(JOS}I%fN_lz QjN—j-1 < T) < z}: PHW(Q QjN—j—1 < 7")
J=Jo
N—1

< Pug(Qin—jr — mp(H)?2 171 < (v — iy (H)? /2)27 %),
Jj=Jo
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By Lemma we can pick 7 small enough so that r — k,(H)n*/2 < —c for some ¢ > 0 fixed,
uniformly in p > 0 and (H,n) € D. The estimate yields

N-1
IP’H,n< inf 22jHQj7N_j_1 < r) < Z i (+AH) (~294jH < (19=o

Jo<j<N-1 —

J=Jo

and follows.

6.3. Proof of Proposition Recall from Equation (3)) that by @j,p,n = _1 &2 where

P) _ 2
d]7k7107" - dj,k,p,n

position d; k. = dj k,p + €j.k,p,n Wwhere e is defined in Equation (2). Therefore, we get:

7,k,p,m
—Xjpmand A, = 6 Var(e,,,)277 7P, Moreover, recall that we have the decom-

2771 2771

1
Qjpn =Qjp+ Z g kpn — Njpn) 2 Z €jk,pndik.p
k=0

and the estimates

(23) IEH,n[(2 JXI: 1 (€hpm — Jp,n))2:| < C(no) 22792,
(24) and EH,?’]|:<2Z_lej,k,p,7ldj7k,p)2:| < C(né)t2i0+2M) >,
k=0

prove Proposition First, notice that the random variables e? — Ajpn are centred and

J.k,p;n

2
moreover, 5, . — Ajpn and ej ke.pn — Nipn are independent whenever |ky — k2| > 3. Thus
E (e - E R G — Ajpn)]
Hyn Sk~ A, n) ol ] k1,p,n 3,0, I\, ka,p,n Jpyn
k k1,k2

<C Z EH”I(eikmm - /\j7p7n)2
k

4
<C Z EH:Wej&p,n'
k

The noise variable ¢; 1, , is a sum of 2P independent centred random variables with the same
law as €1, — 22,5, + €3, Therefore, its 4-th moment is of order 22p up to a multiplicative factor
bounded above by Ep,, [¢1 ,,], as follows for instance by Rosenthal’s inequality. We derive

Etnl€)rpm] < C2757Eg , (] ,]-

Moreover, ndexp(e1,,) has a x? distribution with né degrees of freedom so that Ep ,, [5‘1%} <
C(nd)~2 by Lemma|[36] Thus

Etty e}k pn] < C272 7% (ng)
so that we have (23).

We now focus on the estimate (24). Notice that the random variables (e;  ,.»)x are centred
and independent of the variables (d;xp)r. Moreover, €;k, »n and e; g, »n are independent if
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|k1 — ka| > 3. Therefore we get

277711

2
EHW |:< Z ej,k,p,ndj,k,p) :| S CZEHW [ei,k,p,nd?,k,p]
k

k=0
< C Z EH,W [6?,k,p,n} EHW [d?,k,p} .
k

We conclude using Lemma [17] and the estimate Eg ,, {e§7k7p7n} = Ajpn = 6Var(ey,,)2797P <
€27 (ng)~1.

6.4. Completion of proof when § < n~'/2H+1)_ Suppose first that § < n~'/2H+1) g0 that n <
§—(2HF1) < 92H+DN Then we define for any £ > 0

J, () =max{j>1: r_(e)27¥H > 2 A (N —1)

n

_ Vogzg—fl)”)J AN = 1)
< {N+IZ§’;(?J A(N = 1).

Since r_(g) < exp(—(2H +1)) by Proposition logr_(e) < —(2H +1) and J,, (¢) = L%J
so that

(25) 10 (e)n) Y/ CHHY) < 9720 < (p_(e)n) Y/ HAD),

The following estimate ensures that with overwhelming probability, .J;} can be controlled by
g (e).

Lemma 19. For any e > 0, there exists L(e) > 0 such that

sup  Py,p,(Jy < J, (€) — L(g)) < e+ pnle).
(H,n)eD

Proof. Let L > 0. For notational simplicity, we set .J,, = J,, (¢) — L. We have:
IP)H,'(](J:; 2 jn) 2 ]P)Hﬂ?(@\ij—j—l,n 2 V()27’I'L_l)

>Pun(@Q7, y7.1-Q7, NT

Jn—1,
_ ]P)H’W(Qj’]\[_jn_l S 2—2HJ71,,’,.7 5))

Since J,, (¢) — oo as n — oo, we have Jy(e) < J, < N — 1 for large enough n (Jy(¢) is defined
in Proposition[I5). This entails by Proposition|15]

]P)H,n(Qij_jn_l < 272H7’L7’—(5)) < ]P)HJI(J (E)E}EN 122Hij,N—j—1 < T—(’f)) <e.
o(e)<j<N—

By definition of .J;; (¢), we also have r_(£)272/n () > 270 () =1 g0 that
Prg (T 2 Tn) 2 Prry(Q7, n—7,-1 = Q7 n—To1n = 27 O (o2 7" = 22H1)) — ¢
>1 - Pry(Qsn_7,-1 — Qrn-TFpo1m S —27 ") —¢

as soon as L is taken sufficiently large so that 1y2~ > — 221 < —1. Using Proposition|16, we derive
then

Prg( Ty < Jn) Se+ PHW(@IN”Jnfl - Q77N,,L77,L71,n| z Q‘I;(E)”fl)
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<et 02277 ()2 (2_2N+7”n_26_2 + n—1§—12—N—2H7n)
<e+ C’(Q—JJ (e) 4 2—2(H+1)JJ(E)TL)

where the constant C’ can depend on ¢ but is independent of the parameters of the model. The
estimate (25) ends the proof. O

We now prove that v, ' B, is tight under the condition §,, < n=Y/ZH+1_ Let n > 1 be suffi-
ciently large so that

J, () = L(e) > Jy(e) and N > Ny(e)

n

simultaneously hold. Let M > 0. We first write
Pyy(v, "By > M) < I+11+1I1,
with

I=Pg, (vngn >M, J:>J;(e)— Lle), inf  22HQ,n iy >r_ (5)),

Jo<j<N—-1
(26) I =Ppy(J; <J,(¢) = L(e)),
III:]P)HJ]( inf 22]'HQ]'7N,J‘,1 S?",(E)).

Jo<j<N—-1

The term /7 is smaller than € + ¢, (¢) by Lemma([19} while /11 is smaller than & by Proposition[15]
For the term I, we apply estimate (25) to obtain

N-1
1< Y Pug(vi'Ba= M, T = Qin-jo1 227 ()
j=J ()~ L(e)
N-1
< Z Py (|Qjs1,nv—j—1 — 2727 Qj n—j—1| = K272 r_(g)vy,)
J=Jn (e)—L(e)
N-1 ‘
< Z 279COM ™ *r_(e) v, ?
j=Jn (e)—L(e)

< 2 TN 2 (2) 20, (H) 2
and we obtain the tightness of v, 'B,, thanks to the fact that 2=/« (£)y;2 is bounded, see (22).
We now consider the tightness v, 1y, Let M > 0. We have
PH,,?(@;W;” > M) <I'+1II
where
I'=Py, (v,;lv,gn > M, JE > Jo(e) — L(a))

and where I7 is defined in (26). Recall that IT < € + ¢, (¢) by Lemma By definition, we also
have

@.];,Nf,lyjfl,n > 127n~! on {Jr>J5(e) = L(e)}.



STATISTICAL INFERENCE FOR ROUGH VOLATILITY: MINIMAX THEORY 23

so that we get using also Proposition
N-1 R
I' < Z Py, (U;1|Qj+1,ijfl,n - Qjt1,N—j—1]| > MV02jn_1)
J=Jn (e)—L(e)
N-1
<C Z M_2u622_2jn2v;2 (n—26—22j—2N n n—16—12—2Hj—N)
Jj=Jrn (e)—L(e)
N-1
< CM_2V521J;2 Z 277 4 p22(H+1)j
J=Jn (e)—L(e)

S C/M72VO_2U;2(27J; (E) 4 n272(H+1)J; (E))

where C’ can depend on e. We conclude noticing that Equation implies that v, 2277« (¢) and
vy 227 2(H+1D) 1 () are bounded.

We eventually prove the tightness of V,®). First, notice that when v, !B, < M’ for some
M’ > 0, necessarily
w < 9—2H + M,
Qs N,—Jri-1

272H _ M/'Un g

For M’ > 0, we have 272 — M'y,, > 0, at least when n is big enough since v,, -+ 0 as n — co. In

that case
Qs N—Jr—1 _ _
n n 2(2 2H+M/Un) 1.
Qrry1,N—J:—1

Let M > 0. It follows that

A~ MQy: N—g1mQus N—J= 1
—1 2 —1 n> n H ns n
Py (Un V75 ) > M) <Py, (vn |Qus N—J:—1n — Quz N—J: 1] = Q) iin g )
~ MQy: N-ys-1m _1
< IP’H,n(|QJ;,N—J;—1,n —Q: N—J:-1] = m) +Pr,y (vn B, > M/)
n

We can then repeat the proof for the tightness of v Ly Y like in Step 3 and we conclude by

noticing that 272y + M’ is of the same order as v, ..

6.5. Completion of proof when § > n~'/2H+1)_ Suppose now that § > n~/2H+1) We quickly
cover this case using the same arguments as in the first case. Note that here v,, = §'/2.

Recall that J? is defined by J; = max{2 < j < N —1: Qjn_j_1.n > 12/n"'}. The following
estimate replaces Lemma [19 from the previous case.

Lemma 20. We have

sup Pgn(J, < N—-1)—=0
(H,m)eD

Proof. Recall that vy < infp, n?ko(H)2*# so there exist a constant ¢ > 0 such that for any H,n,
vo — nPko(H)22H < —2,. We have

Pry(Ji <N =1) =Py (Qn_1.0m < 0627 /2) < T+ 1T
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where
I= PH,n(@Nfl,O,n — Qn-1,0 < (Vo — ko(H)?2* 4 1)6%1 /2)
and II =Py, (Qn-1,0 < (ko(H)n*22H — 1)52H /2).
Then we have by Proposition [16]
I <Pry(Q@n-10m — Qn-1,0 < —16°1/2)
S C(n—26—22—N + n_16_12_N(1+2H))L_26_4H
< C(n7257(1+4H) + n71572H))L72

since § = 27V, We show then that I — 0 uniformly over D as n — oo using that § > n~1/H+1),
Then we have
IT =Py, (Qn-1.0— ko(H)n?2*1 521 j2 < —15%H /2)
< (06,72
by Equation and we can conclude since § — 0 when n — oo. O

We can now prove tightness. We start with v, ! B,,. We have

PH,,,(vngn > M) < ]P’Hm( QQ& - 2_2H‘ > M61/2) +P(JE <N -1)
N—-1,0

so that we can focus on the first probability by Lemma[20] Then by Proposition [15]

P (\Q?Vﬁ — 272 > M3Y2) < Pry(1Qmvo = 272 Quor ol = MOV (2)22H) 4
—1,0

since 2V = §~! by definition. Using also (22) we eventually obtain

Qno
Pri (|5
o Qn-1,0

and therefore we can show that v, ! B,, is tight.

- 2_2H‘ > M61/2> <CM™r_(e) %2 +¢

Concerning the term Vi, for M > 0 we have:
Prr (v VD > M) < Py (@00 — Quol > $Mugs™/2H2H) + Py (T3 < N — 1)
since QN—l,O,n > 11y6%" on {J; = N —1}. By Propositionand using 6, > n~V2HTD we
obtain
Poy (v VI > M) < Crm267 472072 4 4Py (J; < N — 1)
< CM 24Py, (Ji <N -1)
where and the tightness of v, ! Vit follows.
We eventually deal with the tightness of n, 1y, Proceeding as for the case 6 < n
we have for M, M’ > 0 and n big enough that Py ,, (v; W2 > M ) is bounded by

—1/(2H+1)

Ay M@J* N—-Jr—1n -1 ’
PH,n(|QJ;;,N—J;;—1,n —Qu: N—J:-1] > m) +Puy (vn B,>M )
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The first term is similar to V,\") since 2-2# 471 4+ M’ is of the same order as v;!. The second
term can be made as small as we want since v, ! B,, is tight.

7. PROOF OF THEOREM 3]

The proof of Theorem B]is similar to that of Theorem [T} For conciseness, we only provide here
a result similar to Proposition[T1} The same development as in Section[f|would then conclude the
proof of Theorem 3]

Recall that [p] 7y = supjz_<1| J fdp| is the total variation of a signed measure p. We also

denote P} the law of (S;/y,); given nW /T = f(t).

Proposition 21. Let f and g be two bounded functions. Then there exists ¢y > 0 such that

(27) HP}L _ PZ”TV < CO\/ﬁeCO(Hf”ooJng”oo)”f _ g“OO

Moreover, there exists c¢; > 0 and a universal nonincreasing positive function R such that
2

(28) 1_ ,H]}D" PZ”TV > R(HBBHwaHHgHOOHf —4ql2)

Proof. As in the proof of Proposition [11} let K'(y,v) = [log(%) du denote the Kullback-Leibler
divergence between two probability measures i and v. We also recall the Pinsker’s inequality

I = vl7y < 2K (u,v). /
1/2
Notice that (S;/, — S(i—1)/n): has the same law as ( fé/ "1) n Jtzdt) &i.n where the random

variables (¢; ,,); are independent standard Gaussian variables since W# and B are independent.
Therefore we have

ey n(([7 a7 s,

where B(z) = z — In(x) — 1. and Pinsker’s inequality yields

IPs— P2, < QZB(( /(/:/n e/t /(:/:/n €g<t>dt)_1).

Notice then that for z > 0, B(z) < (z — 1)? + (1/2 — 1)? so that we get

i/n ) _ gt i/n _ of(®)

TRyl (Tl Y (VL
TV - i/n i/n :

i=1 f(i—l)/n es(dt f(i—l)/n ef Mt

Moreover,
/ IOt > n-le-190w and / Ot > n-te 1l
(i—-1)/n (i—-1)/n
SO

n i/n 2
B2 —Pr2, < 2n2(el1 4 elol) 3 (/ O eg(ﬁdt)
i1 (i—-1)/n

By Jensen inequality, we obtain
nopiln 2
[ — B2 < 2n(elle + cloll) Z/ (ef(t) _ egm) dt
(i=1)/n

< 2n(elle 4 eldleo)ef — eg”io
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Notice finally that |/ — 9|, < em@*Ifllglc)| f — g so that we obtain

P — PZHQTV < 2n(elflle 4 eldlloc)e2max(ifloc lgloe) | f — g”io
< 2nef o t3llee | f — g||2

which proves 7). For 28), we proceed exactly as for (I3) and the proof is omitted here. O

8. PROOF OF THE RESULTS OF SECTION[3.3]

8.1. Notation and organisation of the proofs. We start by introducing some useful notations. Let
b>1lands > 1. Considerr € {1,...,25}* such that ), r; = b. If b = 1, we write

k277 (141)279 P 1

Hr j+p H 3., — H

W =2 _ _ W, du = Wia—i 4 (14uy2—-i—»dU
k2-7412-i-P 0

and if b > 2, we write
]+p k2™ 7+ l+1)2 i=-pr

Hr _ H H r;
m]j%k,l - / W' — Wk2*a+l2ﬂ'fr) du.
1 T Jke-igae-ioe

H r;
/[01 H sz I (I4ug)2-9—P = Wio-ipia-i-»)" " du.

where r! = [[;_; r;!. Define also QﬂH r =l o0, Since Qﬂijrk L= Qﬁf;mp p1r We get by self-
similarity of the fract10nal Browman motion
(29) (QBH’rO l) = (Z_j 3 ”QHHf> in distribution.

2,P,Y; r,l p; r,l

We fix 0 < H* < H_ such that (25 + 1)H* > H,. Then using Proposition 33|and notations
introduced within this proposition, we can decompose d; .., = gjk.p + 2j,p,x Where

21258 28 (—1)s1

I D DD DI

H,r Hr
Z QH] pk+1,1 QnJ‘Jn,lc,l’

=0 b=1  s=1 refl,...,25}°
Zj r;=b
2P —1
B1)  zjpp =277 2T UIIESEOIT Y T Z((h+ 1)2° +1,27777) — Z(k2 +1,27777).
1=0

Then we write G;, = >, g7, - The proofs of the results of Section [3.3| follow from similar
results on G together with an appropriate control of the error terms arising from z. Therefore the
proofs will be split as follows. First, in Section [8.2} will be gathered useful computational lemmas
used throughout the proofs. Then in Section e present the proof of Proposition[d] In Section
are gathered the proofs of the results concerning the functions ~ and finally, in Section 8.5 we
prove Proposition [7}

In the following, we will also use the notation f to indicate a sum over all indexes 2 <
bi,bs < 25,1 < 51,89 < 2§ and multi-indexes r; € {1,.#,5}""1 and rp € {1,...,5}°2 such
that > i1 = by and > ;T2 = by. Additional subscripts to ) will denote additional constraints
over the indexes.
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8.2. Computational lemmas.
Lemma 22.
s
(32) E {gip,k} =277 Z nPro-2el g (H) + O(279(2S+DH—j)

a=1

where the O is uniform over H, j,k and p and where k,, ., are explicit functions of H given by

(33) Fpa(H)=2"% Z i ﬂ@l) _ |l|)E[(Qﬁ£{’2‘;} _ me,rl) (QﬂH,!‘z mHmz)}.

5189 p,0 p,2P+l1 p,l
|l|<2P b1 +ba=2a

Proof. Using (29), we have

2P _1
1 — (,1)51+52
2 _ b1+bo Hrq _ H,rq H,ro _ Hro
]E[gj,p7k}_22p+j 2. 5159 E{(m}j,p,kﬂ,zl W, k) (Wi, — W0k
l1,12=0

2P —1

J— by +b

_ 1 Z Z (71 Sl+52n 1+ 2E (QDH,h _ QBH,Id)(QHHJz 7QDHJ‘2)

T 92p+j 51822j(b1+b2)H P,2P+11 p,l1 p,2P+l2 p,l2 :
0

l1,la=

By stationarity of the fractional Brownian motion, we also have

H, H, H,yr H, _ H,r H,r H, H,
]E[(wp,z?ﬂl - W) (W5, — ‘mp,z?)} =E {(wpzpl — W) (W, — Qﬂp,lzill)} :
Thus writing [ = Iy — [, we get
1 —_— (_1)51+S2nb1+b2
2 _ H,r H,r H,r H,r
]E|:gj,p,k:| - 22p+j Z Z 51522j(b1+b2)H7(2p — |l|)E[(wp’2pl — an’o 1) (an’sz'H —_ an,l 2)i| .

l1]<2v

We can expanding the expectation E [(Qﬂf gt — i) (Qﬁf oy — QU;{ 2”2)} by linearity. Since

the expectation of the product of an odd number of (centred) Gaussian variables is null, we have

E| (20}l — 2yl (52, - wi) | = 0

if by + by is odd. Hlder’s inequality also ensures that when b; + b; is even, this expectation is
bounded uniformly over p, H, [, r1 and ra. O

Lemma 23. Forany j,p > 0and k < 27, we have
E[g! ] < C9—i(4H+2)
Proof. Recall that g is defined in Equation [32]so that

2P—1 28 28

94 1 4
Gy SC2TTH Y S0y o D (W W)

1=0 b=1  s=1°" re{l,.25}*

We conclude using Lemma O

Lemma 24. Forany j,p >0,k <2/,1<2P,1<s<25,1<b<2Sandr € {1,...,S}* such that
Zj r; = b, we have

Hr Hyr \4 C24H Zfb =1
]E@nj’p’l”l’l _wj’p’k’l) = {0240“’)5”’ otherwise
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Proof. Remark that since only there are only finitely many indexes s,b and multi-index r satisfying
the conditions of Lemma we can supposed these index fixed and show the result for some
constant C' uniform in j, p and k. Suppose first that b = 1, then

1
H,;r H,r 4 4
B[00 00— 2050 =E|( /O Wikivass@raz s =~ Wibssgpayss-rdn)']

1
4
< [/0 E(W(i s 1251 (ruyz—i-—» — Wit (4uya-i-») du}

— 274jH

Suppose now that b > 1. Then we have ]E(QB kL Qﬁf;;k,l)zl < 1E[(ﬂﬁf,;fkﬂ,l)“+(Qﬁfj;‘fk,l)4]-

We only show the bound for E [(QB okd) 4], the other term is treated similarly. Then by Hlder and
Jensen’s inequalities

H,r H r; 4
E{(wj,p,k,l - I" /0 A o H Wk2 J+(l4u;)2-i—p WkZ*J'+l2*J'*P) du) :|

1

—rl4

[0,1] E[H(Wg_jﬁ-(lﬁ-ui)?—j—p - ng__j+l2_j_p)4ri:| du
’ s Z’ 1

" 1/s
= /[01 H]E (Wizs +rue-i—» = Wiz az-s-0) " } du

<C/ Hu2 J=pyArifl gy,
[0,1)* 32

<02” (]+P)4Hb.

Lemma 25.
COV(Q?,kl,pvgjz,kz,p)‘ < C27/CH ((1 + kg — k)Y 4272 (1 4 [y — k2|)2(H71))

Proof. By Lemma 23| we can suppose without loss of generality that |k; — k2| > 4. By symmetry,
we also assume ko > k1. Then recall that we have

2P —1
— s1+s2
2 o—2p—j bytby ( Hry _ gyHr1 H,ra oy Hors
ikp =2 DI arse Wipkern ~ Wi k) Wik~ Wipki)
l1,l2=0

so that we can develop Cov {g]?% k1 95 p. kz} as

_1)S1+s2+s3+sa
—4p—2; b1 +ba+bs+bs (—1) Hrs oy Hyra _ gyHra
2 D1 51525354 Cov | (Wjp i1 ~ Wiptn 1) Wpr vty ~ Wiy 1)
H,I‘3 _ H,I‘s H,I‘4 _ H,I‘4
(mjvpyk'ﬁ-l,l:s mj,Pykz-,ls)(wj»P,M-‘rlyM wj7p7k21l4)

where the sum is taken over all indexes [y, 1,153,104, b1, b2, b3, by, and multi-indexes rq,rs,r3, 1y
such that ). rq; = by, ra; = by, ), r3; = b3, Y, ra; = bs. Note that the proof is completed once
we can show that the covariance appearing inside this sum is dominated by C2=%#(1 + |k; —
k2|)2H=1, with C uniform in all indexes. We consider separately the cases b. = 1 and b. > 1.
For conciseness, we will only deal with the following two cases: b; = by = bs = by = 1 and
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b1,b2,b3,b4 > 1. The other cases should be treated similarly. Let’s start with the first case. Then
by definition we have

1
Hr H,r _ H H
Wi pkr1a = Wip s = /0 Wiktn2-s w2+ = Wiaspauya-—s-»dt-

Autosimilarity and stationarity of the fractional Brownian motion (increments), we get

H,rq _ H,rq H,ro _ H,ro
Cov [(mj,p,kﬁl,ll W50 (W k1, = Wik 1)
H,rg _ H,rg H,ryg _ H,ry
(Qﬁjﬁmk‘z-‘rLlS mj7p7k27l3)(wj7p7k2+1,l4 mj7p7k2»l4):|

—45H H H H H
=27 /[0 e [V symr = W ome) OV ayae = Wik nyor).

H H H H
Wity runz—s ~ Wrkastunz—) (W) 1 atug)zr — Wr+(z4+u4)2fv)} du

where 7 = ks — k1. We use then so that the covariance in the integral reduces to
E(ly, U3, w1, uz) E(le, Ly, uz, ua) + E(ly, Ly, wy, ua) E(lg, I3, u2, us)
where

E(l,m,u,v) = E[(Wﬁr(wu)zw - W(IlLI+u)2*P) (W(I7{-+1)+(m+v)2fp - W‘Er(erv)Q*P)}

H (i H H
= ]E|:Wl (W(T+1)+(7n—l+v—u)2*1’ - WT+(m—l+v—u)2*P)i|
=Dy(t+(m—1+v—u)27P)
and Dy (z) = 5(|z+1|2" —2|z|*# +|z—1|*#). By Taylor’s formula, we get: |Dg (z)| < Clz—1|*2

provided z > 1. For x > 3, we have even |Dy(z)| < Clz + 1?72, for another constant C,
independent of H. Since (m —{ + v — u)27P > —1 and since 7 > 4, we have

E(l,m,u,v) < C|r|*72
Therefore,
\E(l1, 13, u1, u3) E(la, la, uz, ug) + E(l1, la, ur, us) E(l2, I3, uz, uz)| < C|7 =4
which yields to

H,I‘l _ H,I‘l H,l‘z _ H,!‘g
’ Cov {(wjylhkl-‘rl,ll anapakhll)(mi%kl-ﬁ-l,lz anﬁlhkhlz)’
H,rg _ H,rg H,ra _ Hra 4H—4
(QHJ,P,/C2+1,13 wj;ﬁxkzylS)(wjﬁp7k2+1,l4 QHJ,P7’€2,14):| ‘ < Clr| :

We now suppose that by,b2,b3,04 > 2. In that case, we develop linearly each difference

an;}rk. I Qﬁfz’f,'c. , in the covariance. This let us with 16 covariances of the form

Cov [QBH"“ T2 gpttrs  gyfira }

30,k T 4o, kY ) T g, kG 3 g kY s

with kg, k€ {kg, kg + 1}. By definition, this covariance equals

1
—_— COV|:/
I‘1!I‘2!I‘3!I‘4! [0,1]51

1=

S1

H H ri;
Wiio-i i runyz-i-» = Wija-igp0-5-»)"du
1

D
H H ra;
/[ | I |(Wk’1’2*j+(l2+ui)2*j*1} - Wkg’zfubrm) du,
0,1]°2

i=1



30 C. CHONG, M. HOFFMANN, Y. LIU, M. ROSENBAUM AND G. SZYMANSKI

s3
H H rs,
/[ ] H(Wk§27j+(ls+ui)2’jfp_Wk’22*j+1327j—p) ‘du
0,1]%3

i=1
S4
H H rg;
/[O m H(Wkngmr(l(ﬁui)zfjfp - Wk/212,j+l42,j,p) du|.
’ i=1

Therefore, it is enough to show that the covariance between

81 82

H _WH T H _WH T2
H(Wk/12_j+(ll+u1,i)2_j_p Wk£2_3+l12_-7_p) H(Wkﬁ'Q_J+(12+u2,i)2_]_p Wki’Q_]-‘rlz?_]_p)
i=1 =1

and

S3 Sq

H H r3; H H ra;
LIV sz -0 = Witk i o i)™ TTOVE 25 4 s yz-i-» = Wilhos gri0-5-0)™
=1 =1

is bounded by C274H (1 4 |ky — ko|)*—Y uniformly for (uy,...,us) € [0,1]51F 54, We aim at
applying Proposition [35/to prove this result. Notice that

H _wH 2 —2(j+p)H
EWiio-iryturnz-—i-» = Wita-ig2-5-0)" <2

and
E(ngru(lﬁul,i)fﬁp - W£27j+1127j7P)(Wkg27j+(13+u3,i)27j7p o WkIZHHs%M)
=27 W (R — Ry + 277l — L+ ) PT = (R — K+ 27P (I — 1)
+ |k‘é - k‘ll + 27:0([3 - ll — ul)\QH — |k’/2 - k’ll + 271)(13 - l1 + ug — ul)\QH).

In addition, we have k}, — k{ > 3and also I3 — 1 +us, I3—11, I3—11 —uy and I3 — 11 +uz —u; > 2P.
Thus we can apply Taylor’s formula and we develop | - |?# around kf — k| +27P (I3 — ;). The last
expression reduces to

1
2~ WH=P (9 — 1) (ug/ (1 —t)|ky — Ky +27P (I3 — 1y + tus)|? T~ 2dt
0
1
+ uf/ (1 —t)|kh — Ky +27P(I3 — Iy — tuy) | —2dt
0

1
— (us — U1)2/ (L —t)|ky — Ky +277(l3 — 1 + t(uz — Ul))|2H72dt)~
0

Since ki — k} > 3, this is bounded in absolute value by C2-%H=2P |k} — /|21 =2 All other
variances and covariances of interest to apply Proposition 35 are controled similarly and we can
apply this Proposition. Therefore, the covariance between

S1 52

H H ry; H H ro;
H<Wk'127j+(ll+“w)2’j*” = Wiia-ss1,2--0)™ H(Wki/27j+(lz+u2,i)27j’l’ = Wira-iti0-5-0)"™
i=1 i=1

and

53 S4

H _ H . r3; H . . _ H . . rg;
H(Wkéz—i+(lg+u3,i)2—ﬂ‘—z“ Wk’22—i+132—.7—p> H(Wk§/2—-7+(l4+u4yi)2—J—P Wké’Q—J+l42—J—P)
i=1 i=1

isbounded by < C2720=H)p|jy —f, |2H =29~ (bi+ba+bs+b4)(+P)H g0 we can conclude this proof. [
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Lemma 26. Forany j,p > 0and k < 27, we have
E[d2, ] < C277CH+D),

Proof. Recall z is defined in Equation (3T). We have
ortl_q
B[, 4] < 2702 20ES IV S7 {7k 11,2790 < €29 @S
1=0

by Proposition Moreover, E[g? ] < 02711+ by Lemmaso that we get

E[d?,p,k] < E[gj%p,k] + E[Z327P7k]

< O(279CHFD) 4 9=i=2QSHDH") £ 09-i(2H+1)
since (25 + 1)H* > Hy > H. O
8.3. Asymptotic behaviour of ). We now prove Propositiond} The proof is split in two parts. In
the first one, we will show a result similar to Proposition [ directly on G. In the second, we will

show how this result extends to Q.

First, summing Equation (32) over k gives
s
a=1

where the O is uniform over H, j, k and p. Moreover, by Lemma 25, we have

Var {Gj,p] = Var [Zgip’k} = Z Cov [gip,kl,gj%p’b}
k

1,h2
< C2ICHHNN (1 4 [y — ko) 4 2725 (1 [y — k)2
k1,k2
< C2ICHHN N (T — [r|) (14 [r) "D 427 H (1 4 |7])2¢H )
|7 <27
i
< O i(+4H) Z FAH=1) | o—2jH 2(H-1)
T=1

< CQ*J'(1+4H)(1 + 272jH2j(2H—1)) < ¢-i(+aH),
Thus, bias-variance decomposition ensures that

S S
E[(Gj’p - Z n2a2_2aHj’€p,a(H))2} = Var [Gj’p} + (E[Gjm] - Z ’72a2_2aHj’€p,a(H))2
a=1 a=1

< O9—i(+4H) | (9-2(2S+1)H))

since 2(25+ 1)H > 1+4H (as S > 1/(4H_) + 1/2), we obtain

s
]E[(Gj,p - Z”QaQiQaHj“na(H))Z} < G270,

a=1
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2
We focus now on the difference E KQ ip— G j,p) } . By Hlder and Jensen’s inequalities, we have

E [(QLP - Gj4>> 2} =E [( Z 2j,pk(Zjp,e + 29j,p,k))2}
k
< c2 (E [ Z Z;{p,k} f [ Z (zj,p,k + 291}10716)4} ) 1/2'
k k

Recall z is defined in Equation (3I). By Hlder’s inequality and by the bound obtained on the
variables Z in Proposition 33, we have

E[Z]p ]<02 2j2 4_](25+1)H*

Moreover, E[g; , ] < C277(4H+2) by Lemmaso that we get
EKQM _ Gm,)j < 02i .9 ig-2@S+H" (272j274j(25+1)H* 4 2q(4H+2))1/2
< C2_j(1+4H),
since (25 + 1)H* > Hy > H.
8.4. Behaviour of the function x,, ;.

Bounds on k1. We first deal with the functions r,, ;. From (33), we get that

opih1 H,1 H,1 H,1
Rpa(H) =272 3" (27 — [I|)E { W, o — Wi ) (W54 — W, )}
[l]<2P
o S @) [ [ [V W) (W~ W) dude
u|<2p

—o % Y (27 1) / (1 ol (L + )2 P)duw

|l <2P

where g (z) = 5 (|lz + 1127 — 22> + |z — 1]*/T). Notice that ¢ is continuous and there exists
C independent of H such that |px(z) — ¢u(y)| < C22H N and |p(x)| < C forany —1 < z,y < 1.

We define k,, 1 (H) = fil(l — |z|)¢u (x)dr and we will show that k, 1 converges towards k1 as
p — oo uniformly on H. First, we rewrite ko 1 as

rpa(H) =277 % (1= 1277 )ppu(i277)
lij<2v

1
+27  @—l) [ (- (@ + )2 7) - paliz Mo
| <27 -1
and we study both sums separately. For the first one, we have

Foca (H) =277 37 (1= 1277 Ppn(127)

l1]<2?

2? (1+1)
e S [ - lebents) - 02 PDeutz 7)ds
I—_9p 12—r
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2P—1  .(141)27P
<20 Y [T - fab]en(e) - pnlt27)| + on2 |0 ~ fal) - (1~ i27)[as
I=—2p 1277
2P-1 L(1+1)277 2HAL
<(C27? Z / (1- \x|)’x —27? +op(127P)|x —127P|dx
e 127

< C2—p(2H/\1) )

For the second sum,

21" Z P / (1= Jw)(pu((l+w)27") —pu(1277) dw‘

|i]<2P

1
<2 S0 @ i) [ (- lebfen(+w)2) — etz )|
lij<2? -t
1
<o Y (27— 1) / (1 — [w))[w2? PHM du
|1]<2? 1

< 2 PRHAL),

Thus, kp,1(H) = Kp,oo(H) uniformly. But &, o is continuous from its definition and we easily

check that ko1 (H) = E[( fol Wi, — Wquu)Q] > 080 Koo,1(H) is bounded below and above by
positive constants. Since each «, ; is also a positive continuous function, it is also bounded below
and above by positive constants. The uniform convergence ensures we can conclude.

Bounds on k.. Suppose a > 2. By (83), we have

H, H, H, H,
RnalDlC e [l ) (5, - 2|
S1 ,572711'171?271

>oir1=b1,>7, r2;=bs
for some constant C' independent of a, p and H. We also have
971/2 971/2
‘E[(Qﬂﬁ’z‘i} — ) (e, —anltre) ” < ]E[ (i —aull) } E[(aﬂ;{;@ — W) }
<C(2” P + ]lblzl)(2_pr2 + ]lb2:1)
by Lemma But since by + by = 2a > 4 and by, by > 1, we obtain the result.

Bounds on kj, ,. Recall that is defined in Equation (33) by

) (=1)%1t=2
) = 27 > CU o )5 g0
|l\<2p,b1+b2:2a,51,52,r1,r2, 122

>oir1;=bi, >, r2;=bs
where

Er1,7'2 ,P,Z(H) =E {(Qﬂiéﬂl _ mgbm) (an){,;;’i% _ Qﬂiirz)} )

Therefore Lemma [6[ is proven once we can prove that the functions ] » exist and are
bounded on [H_, H,] by a constant independent of p and {. (The dependence is r; and 7, does
not matter since there are finitely many possible indexes r; and ry appearing in the sum).
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We consider separately the cases b; = 1 and b; > 1 and the cases b = 1 and b, > 1. In the
following, we only deal with b; = by = 1 and b1, b, > 1. The two others cases, by = 1,b> > 1 and
b1 > 1,by = 1 are treated with the same methods.

Suppose first that by = by = 1. Then r; = 7, = 1 and we get
By, vy pa(H) = B /Olwgu” ~WH_du / s~ Wikays o]
1
= /0 /0 E[(Wﬁuzw - Wﬁ—p)(WH(m)z » W(Ilq+v)27p)}dUdU
S Al
= /11F(w,H)dw

where F(w, H) = (1—|w|)(|(l+w)27P|* — |1+ (I+w)27P|*H). We now prove that E’
f_ll O F(w, H)dw. Note that
e Forany H, w — F(w, H) is integrable since |F(w, H)| is bounded uniformly on [—1,1] x
[H*a H+] :
e Foranyw, H — F(w, H) is differentiable since x — |a|” is always differentiable, whenever
= 0 (this function is constant) or a # 0 (this function is e*™19l). In both cases, the

derivative of x — |a|® is  — |a|* In|a|, with the convention that 0 x In(0) = 0. Therefore
we get

H) =

r1 szl(

l+w

aHF<w,H>=<1—|w|>(\”w2H = e )

op 1+ op

Hw| <2so |H2?H < 4and |1 4+ H2 27 < 4. Moreover, z — zIn(z) is
bounded by a constant C' on [0, 4] so that

(34) 0 F(w, H)| < 20(1 — |w|)/(2H) < C/H_

7=l

l

which is integrable on [—1, 1].

Therefore we can differentiate under the integral sign and we obtain
1
E’ll"l,Tz,p,l(H) = / X O F(w, H)dw
1
l+w2H I+ w l+w2H 4w
= [t ([ [ - e S e e

Using (34), | £, .., ,.(H)] < 2C/H_ where C does not depend on p or / so we can conclude.

We now consider the case b; > 1 and b, > 1. In that case, we decompose E,, ,, ,:(H) as

(1) 2 3 (4 .
Erl)r27p7l(H) o E7(’1,)T27:DJ(H) o Eil?rz,P,l(H) + Erl?"'2 \Ds l( ) with
1 H,r H,r 2 H,r H,r
E”(,lv)r2up7l<H) =E [Qn 1m] 2} ? E’Igl?’l"27p,l<H) =E [Qn 1mp 2p2+l]

T1,72,p,1 71,72, p,2P ~p, 2P+l

E® (H):E[Qﬁﬁ{ﬁﬁnﬁﬂ, B, pa(H) =E | 5anltes .
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Each of these four functions should be studied separately. For conciseness, we only detail the
proof for ET1 ra.p. (1) By definition, we have

E(l) (H) = E[ij rlmH r2:|

T1,72,p,l
WH 1”hdu/ (Wi v:)2—p — WH_p)r?idU}
/0 1 };I [0,1]°2 1;[ (I+v;)2 12
S2

- /[0,1]51 /[0,1]52 E[H(Wf)m H(W(Ilivj)?p B Wg,p)ma}dudv.

i=1 j=1

We aim at applying Theorem [34| to compute E[H‘?l (WhH)rs Hjil(W(’;’ﬂj)Tp Wi p)‘”%}.
Note that this expectation can be rewritten as E [ Hb1+b2 X k} with either X;, = X (w) = WH

if k < b and X, = XH(w) = W(z wR)2-r WH_ otherwise, where w is the vector obtained

2-p
concatenating
(ula"' s ULy Uy mr Uy ot s Ugyy " 7u51)
—_———— ——— ~———
ri; times ri, times ri,, times

and the corresponding vector with v. Thus Theorem 34]yields

51

E[H(Wf)rh H(W(?"!‘Ujﬂ » Wl2 » r21:| Z H ]E ))

i=1 j=1 P (i,j)eP

Since there a finitely many 2-partitions P, it is enough to prove that for a given partition of
{1,-++,b1 + b}, the application Ep defined by

E = H w H w w
Bmy= [ T B

is differentiable and its derivative is bounded uniformly over p and I. Notice that each term
E(X (w) X[ (w)) is bounded and has a derivative with respect to H uniformly bounded over
w € [0,1]%1+b2 (using explicit computations similar to the case b; = by = 1). Therefore (H, w)
[1ii jyep E(X{ (w) X[ (w)) is differentiable with respect to [ and its derivative is given by

[T onEX (w)x (w) I  EXwxHw)
(%0,50)EP (4,5)€P\{(%0,50)}

which is also uniformly bounded over w € [0, 1]** 7?2 and we can conclude.

8.5. Proof of Proposition[7] Let.Jy and N be two arbitrary integers and let 7 > 0. We have
: 2jH 2jH
PHW(JUS}%fN_lQ QjN-j-1 < 7“) < z; Prn(277Qjn—j1 <7)
J=Jo

S

< Z PHW(Q],N —j—1 - 2772(12_2(1}“'%1\7 —j—1 a(H) S r2_2jH - ZnQaZ_QaHjHN—j—laa(H))'
j=Jo a=1
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Notice then that
> 25
ro—2H _ ZnQaQ—ZaHjﬁNijiLa(H) <27 %H (2 A1)272Hie_ | 4 C.,s2 o—4Hj
a=1
by Equations (5) and (). Since N — j — 1 > py, we can take r < ro small enough and Jy > big
enough so that r2=%# — (n2 A 1)272Hic_ | + ¢ g2 3HWN=3=1) < ;27275 for some absolute
constant ¢y > 0. Proposition 4] and Markov inequality finally gives

N-1

Py, inf, 27Qn <) <C Y 27 <C2 P <e
Ji=Jo
provided Jj is big enough.
Similarly, we have
5
ro—2H _ Zn2a2—2aHjK/N7jiLa(H) > 2 2H _ (2 v 1)272Hic, | — #2—4%

a=1

so we can conclude following the same reasoning that

IP)H,n( sup  22MQ N j1 > 7’) <e
Jo<j<N—-1

provided r is large enough and .J; is large enough.

8.6. Proof of Lemma@ By definition,|B](.§)) (m, Hy) — B](-i) (n2, H2)| is bounded by

S
D 2R N ey o (Hy) = 272 ey o (Ha)| + 2724 ey o (Ho) i — 3.
a=2

Moreover, ¢ — t2¢ is differentiable with derivative ¢ — 2at?**~! which is uniformly bounded
on [n_,n]. Similarly, ¢ — 272%% , ,(¢) is differentiable with derivative

t s 27294 (—2q log(2)fip,a(t) + /{;m(t)).
Its absolute value is bounded by 27294 by Lemmalf} Since 2 < a < S, we get
(B (Hy,m) = By (Ha,mo)| < C(27 0N Hy — Hy| 427459y — ).

71,p
9. PROOF OF THEOREM 10

9.1. Outline and completion of proof. Our estimator is heavily based on the estimation of the
energy levels through the quantities );,. We quantify the error Q);, — @;, in the following
Proposition

Proposition 27. We have
~ ) o B} )
EH’” [(Qj’p - Qj,p) } < 0(2 =3 4 9 F(2H+1) p)

The proof of Theorem [10]is then an application of the following four propositions, proved in
dedicated Sections.

Proposition 28. Define v’ = v\ (H) = n=2H v =Y/ GH+2) Then (o)~ H) — H| is bounded in
probability uniformly over D.
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Recall that this first estimator is used to derive a new adaptive level choice 3n Indeed, we have

Corollary 29.

Piry (7 € {Lzrr lo8a(m)] = 1, | 7ty loga(m) | }) — 1

uniformly over D.

Proof. Since (vn )~ 1|H O _ g | is bounded in probability uniformly over D, (vn ) Lz 7 +1J -

is also bounded in probability uniformly over D. Therefore, we have
Py (3" € {[amrr1082(n)] — 1. | gy logs(n)] }>

> PH,n(ﬁ logy(n) —1 < H(o) 10%2( ) < 2Hl+1 logy(n) + 1)

Ere=dik

> Prry (o | gy — mre] < (0 loga(n) ') = 1
since v\ log,(n) — 0 and the convergence is uniform on D. O

Proposition 30. Define w? = (H) = s )log( ). Then ( ) Y#, — nl is bounded in probability

uniformly over D.

Proposition 31. Suppose that we have estimators H,, and W, such that v;*|H, — H| and w; |7, — |
are bounded in probability uniformly over D, with wy, = vy, log(n ) — 0. Suppose also that 7, € [n—,n4]

and H, € [H_,H,). We write H¢ = HS(H,,, ) as defined in Equation () Define also v& = v&(H) =

(v log(n)n=2H/CHF1)Y v n‘l/(4H+2) Then (v<)~|H,, — H| is bounded in probability uniformly over
D.

Proposition 32. Suppose that we have estimators H,, and 5, such that v;'|H, — H| and w; |7, —n| are
bounded in probability uniformly over D. Suppose also that 7, € 1,14 and H,, € [H_, H]. We write
n = 7¢ (Hyp, M) and we = max (log(n)v,, n=YEH+D Jog(n), w,n=2H/CH+D) Then we 1|7, — |
is bounded in probability uniformly over D.

We are now ready to conclude the proof of Theorem 10} We define by induction the sequences
o™ and w(™ by

v = 72y TV EEF2) gnd o © = (O log(n)
exactly as in Propositions[28/and B0} and then for m > 0
0™ = (v, log(n)n =2/ CHFD)  n=t/(H+2) and (™) = 4™ log(n).
By induction, we can see that
V™) — (log™ (n)n~2H(Hm/QHF1)Y =1/ (4H+2)

and provided m > 1/(4H) — 2H — 1, we can see that v = n~1/4H+2) for , large enough.

Propositionsand show that (1;,(10))*1 \I;TT(LO) —H|and (w%o) )~ \A(O) n| are bounded in prob-
ability uniformly over D; while Propositions|31|and[32|ensure that for any m > 0, (vi™) =1 H™ —
H|and ( ) ! \77 — 1| are bounded in probability uniformly over D.

Since mepr > m > 1/(4H) — 2H — 1 for any H_ < H < H,, we can conclude the proof of
Theorem 10l
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9.2. Proof of Proposition[27, By definition,
Qj,p = Qj,p +2 Z dj,p,kej,kz,p + Z (e?’k}p _9=J-p+l Var(log 52))
k k

Moreover, the random variables ¢; ;. , are centred and e; 1, ;, is independent of e; 1, , if [k —
ka| > 2. We deduce that

Ex,y [( % eik’p — 27977 Vary  (log 52)>2] < CEg,, [; (e?’km — 2797 Varg , (log 52))2}

< CZEHv"[e?,k,p} + 27222 Varg ,(log {2).
k

But e, = 27P3/23 22 4 og (gf.’p’mm) and the 7 ,,,,, are independent. Thus BDG in-
equality yields

2.2P 1
o) 4 < 9—4p-2j ] 2 22 < 0922
H,n[ej,k,p] = H,n Z og fj,p,kzrurl > .
1=0

We obtain finally

2 —j—p+1 20\ 2 —2p—j
EH777|:(Zej,k,p_2 I7PT Vary , (log & )) } < 27°P7J
k

We now focus on the other term Eg ,, [( >k dip, ;gej’k,p)ﬂ . Note that d and e are independent.

Moreover, the random variables e; ;. ,, are centred and e; i, ,, is independent of e; x, ,, if |k1 — k2| >
2. Therefore, working first conditionally on d, we get that

By [( > dj,p,kej,k,pﬂ <CY EBuyld 1€ h,)
k k

<C Z Er .y [d?,p,k] By, [eik,p]
k

< 02j2*j(2H+1)2*j*p) < 9~ i(2H+1)—p
using Lemma@

9.3. Proof of Proposition[28} Since H € [H_, H,]and ¢ —~ 272 is invertible on (0, 1) with inverse
Quiti,N—Jf—1n 9—2H
Qux ,N—Jx—1,n

uniformly Lipschitz on the compact sets of (0, 1), it is enough to prove that
is bounded in probability uniformly over D.
First, notice that
Qi1 N-Jr~1n

J 272 < BO 4 VO 4 V)
Qrs N—J: -1

where
Qurt1,N-Ji-1 _
Bl = |2t 9 ZH’7
Qs N—J: -1
v _ Qrrt1,N—Jr—1n — Qury1,N—J:—1
n b

Qi N—J:—1n
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v _ Qrrvi, N7 —1(Qrs N—y: 10 — Qyx N—J: 1)

n =
Qu;

n?

N-J;—1nQus N=Jz -1
We now aim at proving that (UT(LO))*lB,(ll), (u,(lo))*lv,,“) and (vﬁl‘”)flv,iz) are bounded in proba-
bility uniformly over D.
Preliminary: Behaviour of J;. For any ¢ > 0, let
Jy () =max (j : r_()272H > 27n 7).

Notice that J;; () = max (j : r_(e)n > 20H+1) 50 that

(35) %(7“, (g)n)l/(2H+1) < 2J;(5) < (7“, (€)TL)1/(2H+1).
We will show that for € > 0 fixed, there exists L(e) > 0 and ¢,,(¢) — 0 such that
(36) sup Pp (T, < Jy () — L(€)) < e+ ¢nle)
Hn

Let L to be chosen later. We write r = r_(g) and p = N — j — 1 when the context is clear. We
also write J,, = J,, (¢) for conciseness.

Py, (Jy < J, =L)< PH,n(@Jg,L < 2%i—Ip)
< PHW(@J,IfL Q- <277 - Qo )
< PH,n(@J;_L Q- < 2 ~hp=t g2 DY 4 o
since Py (inf 7, <j<n—12%" Q) n—j—1 < 1) < e by Proposition[f] Moreover, note that (35) yields
9t ~Lp=1 _ po=2(Jy —LH < (ri(g)n)l/(QH-i-l)Q—Ln—l o (6)22(L+1)H(T7 (g)n)—2H/(2H+1)
= r_(g)/ GHAD) =20/ (H+1) (9=L _ 92(L+1H)

For L large enough, 2~ — 22(l+DH < _1 50 that we get by Proposition 27, Markov inequality
and Equation (35)

Prin(Q,-_p — Q- <27 ~En7t - p2720 =1
< O(n~227% 4 9 2HIT =1y ()2 QH+D)p4H/(2H+1) (9=L _ 92(L+1)H =2
< C(n—z/(2H+1)2J; + 2—2HJ;n(2H—1)/(2H+1))
< C(nfl/(2H+1) + n*l/(2H+1))
which proves (36).
Term BY: By and Propositionﬂ P, ((1}510))—137(11) > M) is bounded by

Prty (o) B 2 M, T 2 ;7 (2) = L(e)) + Py < Jy () = (=)
N-—-1
< > PHW((U”O))*B,QU > M, J;=5,QjN—j1> 2—2er,(s)) +2e + pn(e).
J=Jn (e)—L(e)

Using the definition of B, the probability appearing in the sum is bounded by

P(’Qj+1,zv—j—1 — 27 Qi nja| = M2 (E)vﬁo))
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. 2
< M_224HJ7“—(5)_2(vﬁo))_zE‘Qg‘H,Nﬂ—l - TzHQj,ijfl‘ :

2
ButEp , ’Qj{»l,ijfl —272HQ n_ja ‘ is bounded by a constant times

s
an—2a 1 2
]EH,n[(Qﬂ»l,ijfl - 2772 2 20U gy 1 o(H)) }
a=1
s ‘ ,
+ 27 gy, [(Qj,ijfl - ZUQW*QGHJFEijfLa(H)) }
a=1

s s 5
T (Z pRag=2eHG+D g0 () — 272H Z pRag—2at] HN—j—l,a(H)) '

a=1 a=1
The two first terms are bounded by C277(1+4H) by Proposition@ and the last term equals
s

, 2
( Z nZaHN_j_La(H)QanH](2720,H _ 272H))

a=2

which is bounded by C2~6#N=2iH by Equation (). Thus Py, ((v,(lo))_lBT(zl) > M ) is bounded by

N-1

CM72T_(€)72(,U ()))72 Z 24Hj(2fj(1+4H) _|_276HN72]'H) +25+Sﬁn(5)
j=Jn (e)=L(e)
< CeIM2 ()72 (277 () 4 274N ) 4 9 4 )
where the notation C/(¢) is used to precise explicitly that the constant C' may depend on . But
2775 (&) < C(e)n~Y/CH+D) g0 we can conclude since n~Y/CH+D (,(")=2 and n—4# (u\")~2 are
bounded sequences by definition of o).
Term Vél): We now deal with V,fl). By definition, recall that @ JEN—Ji—1n = 27nn~1, at least
-1
when J} > J, (¢) — L(e). Therefore Pg (USLO) Vél) > M) is bounded by
N-1

1 ~ .
Y. Puy (U%O) Qj+1,N—j—1.n — Qi1 N—j-1] 2 M2”n‘1) + e+ on(e)
j=J5 (£)-L(e)

by Equation By Proposition 27] the probability in the sum is bounded from beyond by a
constant times

M*22*2jn2v§i0)_2 (nfzzj +n—12—2jH) < ]\4721}&0)—2 (2,j " n272j(H+1)).
Since L(¢) is fixed, we deduce that
Prry (0 VD > M) < M200 7 (2700 42 2O et (e).
But recall from Equation that 2= 7/» (&) < O'p~1/(2H+1) g5 that
Prty (o0 VD 2 M) < OM7200 0 CHID Lo 4, ()

-2
and we conclude with tightness using that v\ n~1/(H+1) js bounded.
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2 -
Term V,\): By definition, we have

V) =

Q.I;+1,N7J;;71 % ’(QJ;*L,NfJgfl,n - Q.};,Nﬁl;fl)
Quz N-Jz:-1 Qe

n?

N—J:—1,n

We show that v is bounded in probability uniformly over D

1‘ (Qrz N—gr—1,n—Qux N—Jz—1)

Qux N—Jx—1,n
QJ;‘L#»I,N—J;‘L—I
Qux . N—Jz-1

by applying readily the same proof as for V. Therefore, it is enough to show that
is bounded in probability uniformly over D. Indeed, we have
Qi y1,N—Jr—
Pr,y (M > M) =Puy (QJ;+1,N7J;71 > MQJ;‘”NfJ:Lfl)
Qux N—J:-1

S ]PH,n( sup 22jHQj+1’N,j,1 Z MT,(E)) +2€+Q0n(€)
Jo<j<N-1
by Proposition [7]and Equation (36). We can conclude since whenever Mr_(e) > r(¢), we have
Py, ( sup y <jen—1 277 Q1 N_j1 > Mr_ (s)) <eby Propositionﬂ
9.4. Proof of Proposition Since n € [n_,n.] and t + 2 is invertible on (0, c0) with inverse

uniformly Lipschitz on the compact sets of (0, cc), it is enough to prove that 2 — n? is bounded
in probability uniformly over D.

First, notice that

7 =’ < wts () (BY + B+ V0 4 V@) 22t

—Jn;

where
—~ S o~
BS) — 22jnH| Zﬁ2a2_2aHjn“N7}n,a(H)|’
a=2
o~ S o~
B’SLQ) — 22jnH|Q'j\n,N7/fn _ Z n20«2_2‘1Hjn HN,}'\TL,G(HH?
a=1

VD = 2 2 ey () = P2 sy (),

v

n

2) _ o2nH|A_ O -
)= 2% |Qij—jn7n QjTMN_jn

The term 5;[177 1(I;fn) disappears because «,,; is a continuous function bounded away from
0 on [H_,H,], see Equation (). We now prove that 92in(Ho=H) 1y =1BM  (p{0)-1B(?),
(waO ))_1V,§1) and (wﬁlo))_lVTSQ) are bounded in Py ,,-probability uniformly over D.

Term 2%»(An=H): We want to prove that 227+(H2=H) js bounded in probability uniformly over
D. 1t is enough to prove this for j,(H, — H). But with probability converging to 1, j, >
| 577571 1082(n) | — 1 by Equation (36) so that

Pi1 (Jul Hy — H| > M) < Ppy (| 357 loga(n)| — 1/ H, — H| > M) +e.

1~
But v |H,, — H| is bounded in probability and [ﬁ log2(n)Jv,(L0 ) 5 0 (and 0O 0)
deterministically so we can conclude.
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Term BS): By Equation @, we know that

S
22jnH| Z ,,72(12—20Hjn Ko (H)l < 02—2Hjn—3H(N—jn)

p Jnsa
so we need to prove that (w{))~12H3»n~3H is uniformly tight. Recall from Corollary that
Prin (3 € {Lzrtrr loa(m)] — 1. [ty logy(m)] }) = 1
uniformly on D. Moreover
(wgo))—12Hlﬁlog2(n)Jn—3H < C(wgo))—12%10gg(n)n—3H — C(wﬁlo)n?’H_?l‘?ﬁ)_l
L . (0) 3H- A (0) SH +2H . . (0)
which is bounded since wy 'n”"  2H+1 = vy’'n 2H+1 log(n) is bounded below (since v, >
n=2H), and thus it proves that (w\)~12%7»n=3H js uniformly tight.

Term BP: By Corollary Py, ((w,(lo))_lBy(f) > M) is bounded by

s
PH’"(lQ%vN—% - Zn2a272aHj"’€N_A (H)l > MwSLO)2’2j"H)
a=1

Jn,a
S
< > Prn(|Qin—j = Y _n*2 2k, o(H)| 2 Mw?277) + o(1)
= e ot . =
re{0,1}

where the o is uniform over D. Moreover, by Proposition[d) it is bounded by

CY M2 (w)72277 4 o(1) < OM 2 (w(?) 720~V B 4 o(1)
J

and we conclude with tightness using that (w{”)~2n=1/2H+1 is bounded.

Term V": For each j,p, t — 22k, | (t) is differentiable with derivative
t > 2727 (=2j1og(2)kp1 (1) + K7, 1 (1))

By Lemma @ its absolute value is bounded by C(j + 1)272% for some constant C. Therefore,
Taylor’s formula yields that

VO < CGo+ DB, — H < Clog(n)|H, — H].

1~ —1
Moreover, v\ |H,, — H| is bounded in probability uniformly over D so log(n)_lv,(L0 v s
also bounded in probability uniformly over D.
Term Vn(z): By Corollary
-1 —~ .
Pry (wgo) Vi > M) < > lP’H,n(|Qj,N—j,n - QjN-j| > MZ*QJHwT(LO)) +0(1)
i=| zr1 toma(m)] .
re{0,1}

where the o is uniform over D and by Proposition[27] the probability in the sum is bounded from
beyond by a constant times

M—2w7(10)*2(n_22j(1+4H) _|_n—122jH) < CM—zwy(lo)72(n_2n(1+4H)/(2H+1) +n—1n2H/(2H+1))
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= OM 2 2p V) g

9.5. Proof of Proposition Proceeding as for Proposition 28, we only need to show that

@(S*)C —J*c_1.n ﬁnv/\n
(v;(H))_l‘ i?S)H,N Jre—1, ( M) _Q_QH‘

) e (Ho )

is bounded in Py ,-probability uniformly over D. We will use the same scheme of proof though
additional care needs to be taken since we cannot use the same Markov estimates because of
the use of the first-hand estimator H, to finetune the procedure. In the following, we will write

Jre=J *C( ns 7). Note that we have the following decomposition

A(S) 5o~

Q.];C-i-l,N—J;;C—l,n(Hn? nn)
(S 5o~
Q-(]:Ll,NfJ;;Cfl,n(Hnﬂ M)

- 2*2H‘ <B,+VM +vy®

where
B — QCJ;L‘H,N—J;CA(HW) _Q_QH’
Q(CJ:VC7N—J;C—1(H77))

. QCJ;CH,N—J;C—l,n(Hmﬁn) - Q(CI;;CH,NfJ;;Cfl(H? 1)

174 — -
Q?]$C7N7J;C71,n(Hn?nn)
v QCJ,;c+1,N_J;c_1(H7 n)(QCJ;c,N_J;c_l,n(Hmﬁn) - QCJ;C,N_J,:CA(H» 1))

Qi‘*c N—Jze—1, n(Hnaﬁn)Qi'*c N7J;c71(Ha 77)

and we want to prove that v¢ ™' B,,, v~ V.Y and ve V;{*) are bounded in probability uniformly
over D.

Preliminary: Behaviour of J;°. We fix ¢ > 0 and we define

J ¢(e) = J, (e) = max (] r(s)( )22 H > 2jn_1)

n n

where r(s)( ) is defined in Proposition Notice that J,, () is independent of n and H since in
Prop051t10n s )( ) is defined uniformly for all  and H. As for Equation (35),

(37) 3 (@ )m) VI < 27O < (7 ()n)/ GHED.
We will show that there exists L¢(g) > 0 and ¢ (¢) — 0 such that
(38) sup Py (J;° < J,%(e) = L%(e)) < e+ ¢ (e)
H,n

Let L to be chosen later. We write r = r* )( )and p = N — j — 1 when the context is clear. We
also write J;, ¢ = J, ¢(¢) for conciseness. By definition, Py ,(J;:¢ < J,, ¢ — L) is bounded by

n

2J;C7L

A(s 5o~ s s
Pra(@ ey Hafi) = QY. (Hon) < — QW e (L),
But Py, (inf jy<j<n—1 22jHQ§SJ\),7j71 (H,n) <r) <eby Proposition so it is also bounded by

S —c__ _ —c__
Prinl @y grespn i) = QL ey (Hon) < 2700 p2 20200 e
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Moreover, note that (37) yields
9T L=l _ po=2(J, =D)H < (T(_S) (g)n)l/(2H+1)27Ln71 — ) (6)22(L+1)H(T(_S) (E)n)72H/(2H+1)
_ T(_S) (6)1/(2H+1)n72H/(2H+1)(27L . 22(L+1)H).

For L large enough, 2~ % — 22(:4DH < 2 50 that we only need to prove that the probabilities

0 2 (8) [ \1/(2H+1), —2H/(2H+1
Prn(Qyzc_p noyresrm — QurempN—droirn < T2 (€) ) I ))

S ~ S S —
and PH#?(857:)67L’N7JJC+L(HW,7 nn) - B‘(];)ciL7N7J;C+L(H7 77) < *’I"(_ )(6)1/(2H+1)n 2H/<2H+1))

converge to 0 uniformly on D. The first convergence is proven as in the preliminary of the proof of
Proposition[28} We deal with the second convergence using Lemma(9} The probability considered
is bounded by

PHW(CBQ%(I?AH)(J;C*L)((J;c - L)|ﬁ —H|+|5-n|) > 7n(_S) (6)1/(2H+1)n72H/(2H+1))
< P (2 FNDIS (log(n) | H — H| + [ — nf) > 2/ G0 g5

where ¢ = r'®)(g)"1/@H+D 24 H+ L But for any & > 0, we have Py, (v, |H, — H| > M) < &
for M large enough, so the last probability is bounded by
Py, (27 M0 T log ()| H — H]| + [ = ) > n=2#/CH0G5 1) 4 2

We conclude here using first that v,,.J;;¢ < v, log(n) — 0, then 2747." is of the same order as
n~41/2H+1) and finally that log(n)n=2H/CH+D| I — H| and n=2#/CH+D |5 — p| converge to 0.

Term B,,: We rewrite B,, as
_ S _ S
Quzert,N—sze—1 =27 Qe N—yze1 — B‘(I,*,/ngl,NfJ;C—l(Hv 1) +2 2HB‘(];Z,N7J5671(H7 n)

Qf]:e,N—J,”:C—l (H7 77)

Notice that fora =1,

772a2_2aH(J:LC+1)HN—J:C—l,a (H) — 2—2H772a2—2aHJ

*C
n

KN—Jze—1,a(H)

so by definition of BY B, < BY 4+ 920 B®) where

Jp 7
S 2a9—2aH(J +1
Qrrett,N-gre—1 — Sy n?027 20 U A Dy e g o(H)

BS) =
ch];;c,]vf,];cfﬂH» 77)
d B® ‘QJz“,NfJ:Ll -y 772“2_2‘1HJ’§C“N7J3071@(H)‘
and B}? :=

Q?];C,N—J;c—l (H,n)

Both terms are controlled identically so we only prove here that vfl_lBr(Ll) is bounded in probabil-
ity uniformly over D.

By Equation and Proposition Py .y (vfley(Ll) >M ) is bounded by

Prv (v B 2 M, 2 J79(0) = L9(E) ) + Bl (F < J(e) = L(e))
N-1
< Y Pug(v T BO 2 M = Qo (Hon) 2 272 (0)) 422 4 o0 e),
j=Jn “(e)—Le(e)
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Using the definition of BSY, the probability in the sum is bounded by

S
_ ;i — i (S
PH’”(‘QHLij*l =Y 2 U ey G(H)| = M2 2H]T£)(5)”5)'

a=1

¢ 2 and sum-

By Markov inequality and Proposition @ this is bounded by CM~22-1r9) (£)=2y
ming over j yields

Py (vfl_lBT(Ll) > M) < OM 22T (OFL (), (5) (6) 20872 + 26 + o (e).
We conclude using that v¢ ~2277=“(¥) is bounded (by Equation (37)).

Term Vn(l). By definition of V,gl), we have

~(S ~ .

V(l) - Q,(I;Z%»LN*.];cfl,n(Hnann) - QJ:LC_‘_LN_J;C_l(H, 77) ‘

n - (S 5o~
Q(J;L)c,N_J;Lc_Ln(HmWn)

< |Quzev1,N—gre—1;(Hn,Mn) — Qrreq1,N—gre—1(H,n)|

=

fI:C,NfJ:Can(anﬁn)

S ISP S
BG o gea (Bl ) = BY2L 4y ey (Ho )
(j;;c,NfJ;;Cfl,n (Hn7 ﬁn)

Moreover, @f’,*’ij*an(ﬁn, fin) > 272n~1, at least when J° > J-¢(¢) — L¢(¢). It happens at
least with probability 1 — e — ¢ (¢) by Equation so it is enough to prove that

._1 _ *C oy
(39) nvs 27 Q et N gz 10 — Qure 1, N—Jze—1,n]
and
1ot =
(40) nvs 27 [ Byreqa N—gs—1 (Hny ) = Byreg1,n—gx—1(H, 1)

are bounded in probability uniformly over D, conditionally to J;:° > J¢(e) — L°(¢).

The term is similar to V;{") appearing in the proof of Proposition Indeed, by Proposition
we have

P o (nvﬁ_lTJ:C Q\J;;CJrLNfJ;fl,n — Qe 1, N—Jr—1m| > M, J > J “(e) — LC(E))
N-1 R
< Z ]P’H,nOQjH,N—j—Ln — Qj+1,N—j—-1,n] = Mnflvfﬂj)
j=Jn “(e)—Le(e)
N-1
<C Z (2902 4 272 Hin=n?(MvS)=2272%
J=Jn (e)=Le(e)
< Ce)M~20E 722770 () 4 o 2(HFD I ()

and we conclude using Equation and the definition of v,.
We now focus on the term (@0). By Lemma [9|and using J;;¢ < log(n), it is bounded by

*C

e 2 MR =N 08(n) s e o= WH NI (1o ()| H,, — H] + [, — n)).
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First, notice that 2~4((F»—H)A0) lo&(n) js bounded in probability uniformly over D because v;; * | H,,—
H| is uniformly tight and log(n)v,, — 0. Therefore we can focus on nvg ~ 2~ AH+D 2" (log(n)|H,, —

H| + |9, — nl]). Conditionally to J;:* > J°(e) — L°(¢), it is bounded by
Cnlog(n)vyvg 2~ WHHDLTE) (4, = H, — H| + (log(n)v,) i — 1))
and we conclude using Equation , hypotheses on v, H » and 7,, and the definition of v¢.

Term Vi\®): We deal with this term using the same method as the corresponding term in the proof
of Proposition 28] using Proposition [§|and Equation instead of Proposition [7]and Equation

(36).

9.6. Proof of Proposition As for Proposition it is enough to prove that w¢ ~*|(7%)? — n?| is
bounded in probability uniformly over D.
First, notice that
~c\2 2 -1 5 1 2 1 2\ 027 (Hn—H

(G757 = 0P| < wgls (Ha) (B + B2 4 Vi 4 V() 220 (D

where
B =22 H| Y qpeam2alling o (H) = (@) 272 iy S (Ho),
a=2 a=2

s
B =25 H|Qs o o =N et o (H)),
a=1

VD = 22 Py ey () = P2 ey (),

VTEZ) = 22j"H|Q\¢ 7 o Q}nvN_;n

JnsN—=Jn,mn

The term n;[l ~ (H,) disappears because k) is a continuous function bounded away from
G ;

1 N
0on [H_, H,], see Equation (§). We prove that 22/»(Hn=H) (4¢)=1 BV ()1 BY, (we) V()
and (wg)™! V;,{?) are bounded in probability uniformly over D. Indeed, all these terms except BV
are the same as in the proof of Proposition[30] The same proofs readily apply here for these terms

and we conclude using that w¢ > log(n)v, and wg ~?n~'/2H+1) _ (. Therefore, we only need to

n

focus on B,(LI).

By Lemma 9] we have

~

(1, Hp)
< 03227,LH274(H/\PAI”)7” (3n|ﬁn — H| + [fin — 1)
< 632*4(%(1%7H))57L272H3n (;n‘ﬁn — H| + |7 — 1]).

(1) — 23\77,H /_(\S) N _ /(\S) N
By =2 By "y, o) — By s

But v, !|H, — H| is bounded in probability uniformly on D and v,j, < v, log(n) — 0, so
9~ 4(ONHn=H))in is uniformly tight. Thus it is enough to show that (w¢)~2~2Hi» (5| H, — H| +
|7, — n|) is bounded in probability uniformly on D. Recall that

it (3 € {Lrter loBa(m)] — L. [ ey loga(m)]}) =1
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s0 it is enough to prove that (w¢) = n=2H/CH+1) log(n)|H, — H| and (wg)~tn=2H/CHF) |5 _ p|
are uniformly tight. It is the case since v, (w%) 'n=2H/H+ log(n) and w,, (wg)~tn=2H/CH+1)
are bounded and v, '|H,, — H| and w;, !|7,, — n| are uniformly tight.
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APPENDIX A. ASYMPTOTIC EXPANSION OF THE INTEGRATED VOLATILITY
This Section is of independent interest from the rest of this paper and therefore we shall rede-

fine a few notations defined in Section[3.1]

Let D be a compact subset of (0,1) x (0,00) and let ' > 0. We also fix some arbitrary integer
constant S > 0 and some constant 0 < H* < ming,,)cp H. We consider a measurable space
(€, .A) on which is defined a process (o;):<7 such that under probability Py , with (H,n) € D, ¢
is given by

o7 = exp(nW")

where W# is a fractional Brownian motion with Hurst index H. We will write Ej ,, the expecta-
tion under probability P ,,.

For any o > 0 we also define the best a-Hlder constant of function f : [0,7] — R by

Sl sy T

o<sti<T [t — 8|
and we will write 3 := H, (W) to shorten expressions.

Proposition 33. There exists random variable Zy bounded in L* (P ,,) uniformly on D such that for any
d > 0and i such that (i + 1)d < T, then

(i+1)8 25 28 s—1 77r7 1 (i+1)8
log <5_1/5 o2du) = yy eVt v H (Wl = W)™ du

b=2 s=1 ref{l,...,S}° j=1

(i+1)8 X
+5 / nWHdu+ Z(i,8) - 67 (5D
)

where the random variables Z (i, 6) satisfy | Z(i,0)| < Zo.

Proof. Recall that for any reals « and a, we have the Taylor expansion

25 1
T (l’ — a)'rea (‘I: — a)SJrl atz(z—a
ef = EO I + < ; (1—z)2%ertz(@=a) g,

2S5 1
_a (‘T B a)r (‘T B a)S+1 25 z(z—a)
=e (1 + TE:1 o + < /0 (1—-2)*e dz).

Applying this equality with z = nW /[ and a = nW}], we get

WH _ awH (Wl —wihr Sl —wihseot 25 nz(WH-WH)
et = e (1+Z 7l + (S+1)! 0 (1=2)7e" ’ dz)'

Notice that since H > H*, J{II}* is almost surely finite. Then

S+1yH H\S+1 ' 28 nz(W -W) S+1parH \S+1 - H*(S+1)€2n”WHH°°
R L e R B e e e T
0
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Therefore, for id < u < (i 4+ 1)d, we have
(41) e = Wi (14 Z ul W L riS(y o (540)

20| WH || oo

- . 2l WH o H.S
where |RH’S(1L)| < nS+1(g_CH)S+1|u/5 B Z‘H (S+1)w < (ng{g*)SJrlw _ R sa

random variable independent of § and w.

Then we integrate both sides of (41) and we take the logarithm. This yields to

| pGHDs - .
(42) log (5/ agdu) — g WH +log (1 + Z T qptr 4 BHS (5, 5)51 <S+1>)
i6 !
where
H,r 1 (+1) H H\r
Qﬁi,é = s 5 (Wu - Wié) du
and where R™:5(i,8) = 1 [ 19 RH.S (y)du is still dominated by RE. Note that this notation

differs from 20 mtroduced in Sectlonl We will now expand the logarithm on the right-hand side
of (42). Taylor’s expansion of the logarithm writes

25 _1)s—1 T (e S
1og(1+x):27( D ocsju(—l)s/0 (fﬂ)ts)ﬂdt.

S
s=1
L Qﬁf{;r + RH5(i,6)6H"(S+1)_ Notice that this quantity is
indeed independent of S and we also have z = ZS, uls Qﬁ " 4+ RES(, 5)55 *1 for any S’. In

r=1 r!

We want to apply this with z = >2%

particular, with §” = 0, z = R*-0(i, §)3. Moreover, we have 1 + r=3 Z(;H)& Lt d We obtain

(43)

log (% /(i+1)5 Uzdu) —
i6

where T (i,6) = (—1)° fRH 2@ Mdt Notice in addition that

—1 25 4 _ . s
(Z Tanly + RIS (i, 0)6 S+0) 4 71 (i, )
]

0 (1+¢)S+1T
P [
o [t (B
k+1 T 1
o (141 T2) 5715 forz <0
which translates here in
|RH0(0.6)5] 5+

‘TH(Z' 5)‘ < Sj;llo i S+1 forlt+s2 0
e R (1.8)d] 25 for 142 <.

(3 [5TD% o2du)sti(s+1)
Since exp(—7|[IW#|s) < 02 < exp(n||[W||x) and [RH(i,0)| < Rg™ = nH.e2nW =, we
deduce that
RHO(j, §)§|5+1 " 1 " S+1
TH -’5‘ < BTG s iymw e e )
‘ o))< =% S+1\"

Recall that 3£, has moments of all orders bounded independently of H and ||[W# |, has ex-
ponential moments of all orders bounded independently of H so T (i, §) satisfies the condition



STATISTICAL INFERENCE FOR ROUGH VOLATILITY: MINIMAX THEORY 51

required for Z in Proposition [33]

r=1 7!

We now focus on the expression ( 2w QUH T RES (5, 6)0H" (S H)) " We expand the power

s and remove all the terms of order smaller than 67 (5*1) or smaller. Remark that |QIT "l <
SH™T(3¢H.)". Thus

(Zﬁ QU;I5T+RHS(’L 5)5H S+1) ZHXl‘y

r=1"" r j=1
where the sum is taken over all r = (rq,...,r;) with 1 < r; < S + 1 and where we write X, =
1 for r < Sand Xgy 1 = R75(i,6)01 (5+1), By the preceding remark, we have

r!

H er < 5H* 2573 (:Hfl*)zj .
j=1
Proceeding as for 7% (i, §), we can show that szl X, can be incorporated in the rest of Propo-

sitionwhenever >_;rj = S+ 1. Therefore we can restrict the sum Hj'=1 X,, to indexes r
satisfying » . r; < S. In that case, r; < S and we get:

25 _ .
(Z "—,mf{;" + R™5 (i, 8)61 (S‘H)) => H 77 - ;" + remainder of order 67" (5+1),
r
=1

r j=1

Plugging this into and using the symbol ~ to indicate implicitly the rest of order 57 (5+1)
incorporated in the term Z of Proposition 33} we obtain:

1 [ete 25 (1)t L. r
g (5 [ o) mawg + 3 E S T Ll
s=1 j J

@0

Z;JSSJ:1
25 28
Hr
s+ZZ -y Hr, ’
=1 s=1 E rj—bj 1
1 [G+Ds . 25 28 s N Hor
~5 [ eSS v T,
b=2 s=1

r i—1
Zj rj=b']

APPENDIX B. SOME CORRELATION ESTIMATES FOR GAUSSIAN VECTORS

First, we recall the Isserlis’ theorem (see [Iss18]) allowing us to compute the expectation of a
product of zero-mean correlated normal random variables.

Theorem 34. Suppose that (X, ..., Xs,) is a centred Gaussian vector. Then we have
E(J[x)=> ] EX:X;)
i P (i,j)€P

where the sum is over all the partitions P of {1,--- ,2n} into subsets of exactly two elements.
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In particular, we have:
(44) Cov(X1 X2, X3Xy) = E(X1 X3)E(X2Xy) + E(X Xy)E(X2X3).

Proposition 35. Suppose that (X1, ..., X, 1.m,) is a centred Gaussian vector, where n and m are two
integers such that n 4+ m is even. Suppose in addition that for any i < nand j > n + 1, we have

IE(X;X;)| < po?,

for some 0 < p < 1and o > 0 and suppose that EX? < o for any i > 1. Then

n n+m
’COV(H i H X;)| < Cp*o™t™
=1 Jj=n+1

where o = 1 if nis odd and o = 2 if n is even, and C'is a constant depending only on n and m.

Proof. Denote P3(E) the set of all partitions of the set E in subsets of exactly 2 elements. Then we
have by Theorem 34]

n+m
Cov( HX,, H X,) Z H E(X;X;)
j=n+1 Pe?P>({1,...,n+m}) (i,j)EP
- Y I Exxy) > II Exx)).
PEP>({1,...,n}) (i,§)EP PeP2({n+1,....,n+m}) (i.j)eP

Moreover, the application

Pa({l,...,n+1}) xPo({n+1,...,n+m}) = P2({1,...,n+m})

(P,Q)—PUQ
is injective and its image Q(n, m) is exactly the set of the partitions P of {1,...,n + m} such that
if (4, j) € P with i < n, then j < n as well. Thus
n+m
Cov( HX7, H X;) Z H E(X;X;).
j=n+1 PeP2({1,...,n+m})\Q(n,m) (¢,7)€EP
Since there are finitely many partitions of {1,...,n + m}, the proof is completed once we can

prove that for any P € P3({1,...,n+ m})\Q(n,m), there exists a constant C' depending only on
n and m such that

‘ H ]E XX ’ a n+m
(i.5)eP

Consider such a partition P. Then there is at least one pair (g, jo) € P such that ig < n and
jo > n+ 1. thus

11 E(Xin)‘ < ‘E(Xioon) 11 E(Xin)‘ < po® 11 o’
(i,5)epP (4,5)€P\{(40,j0)} (4,5)€P\{(40,j0)}
which conclude the case n odd since # (P\{ (i, jo)}) = (n +m — 2)/2.

Suppose in addition that n is even. Then there must be another pair (i1,j1) € P such that
i1 <mandj; >n+1, (i1, j1) # (o, jo) because there is no partition of {1, ..., n}\{io} into subsets
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of 2 elements. Then

11 E(Xin)’ < ‘E(Xz‘oon)E(Xanl) 11 E(Xin)‘ < pPottm.
(i,j)epP (4,5)€P\{(40,J0),(i1,51)}

APPENDIX C. LOG MOMENTS OF X2 VARIABLES

We first define a few notations. We write I' the usual Gamma function, defined by
(o]
(45) I'(t) = / t* e tdt.
0

We also introduce the polygamma function (*), which is the k-th logarithmic derivative of the
Gamma function. Thus, ¢(*) = 1% and explicit computations also give

w(l) = FTH - (¢(0)>2»
w@) — ¥ _ (1/,(0))3 _ 3¢(0)¢(1)»
1p(3) — ¥ _ (1/,(0))4 _ 6(¢(0))2¢(1) _ 41/](0)1/)(2) _ 3(w(1))2_

Note that we can express explicitly ratios @ with k£ < 4 in terms of poly-gammas functions from
these equations.

Lemma 36. Suppose that for m > 1, X, is a random variable following a x? distribution with m degree
of freedom. We write Y,,, = log(m~'X,,,). Then there exists C' > 0 such that for any m > 1,

Var(Vy,) = M (%) < Cm™,
E[Y,,] < Cm™.
Proof. We know that
r(%+1)
I'(m)

Moments of Y;,, can be derived through the classical formula

E[exp(tY,)] = (%)t

4 dk 5 T2 +1)
]E[Yj’] :ﬁ‘t:()«E) I'(m) )
Thus we get
E[Y,] =~ n(§) + 1
E[V2] =In*(Z) - 21n(gl)rr((:5:)) + FF((,?)),
1(m 1"(m 3)(m 4)(m
E[Y,:] = In*(%) 41113(”21)F((T§)) +61n*("2) r((g?)) 41n(“;)rr<f§2) + FF(,(;Q))

I
We then rewrite Var(Y;,) and E[Y,1 ]
Var(Yy,) = M (%),

E[Y] = ' () — 4’ (2)¢O (%) + 6 In*(3) (M (3) + v (3)?)

in terms of these polygamma functions
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—4mn(3)@?(3) + 00 () + 30O (3)p (%))
+ 0@ (3) + 00 (3) + 60 (3) 0 () + 4w ()0 () + 30 ()
Asymptotic expansion of the polygamma functions (¥)(z) is given when x — co by Equation
5.15.9 in the internet appendix of [OLBC10]
Y O(z) =In(z) - g2~ = a2 + 0@ ?),
M () =2+ %x—Q +O(z73),
Y@ (2) = 272+ 0(7?),
v (x) = O(«~?).
Plugging these asymptotic development into the explicit expression of Var(Y;,) and E[Y,1], we
get
Var(¥,,) = 6 0(3) = £ +0(m?),
E[Y;] =12m™2 + o(m™?)
which concludes the proof. O
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