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STATISTICAL INFERENCE FOR ROUGH VOLATILITY: MINIMAX THEORY

CARSTEN CHONG, MARC HOFFMANN, YANGHUI LIU, MATHIEU ROSENBAUM AND GRÉGOIRE SZYMANSKI

ABSTRACT. Rough volatility models have gained considerable interest in the quantitative finance
community in recent years. In this paradigm, the volatility of the asset price is driven by a fractional
Brownian motion with a small value for the Hurst parameter H . In this work, we provide a rigorous
statistical analysis of these models. To do so, we establish minimax lower bounds for parameter
estimation and design procedures based on wavelets attaining them. We notably obtain an optimal
speed of convergence of n−1/(4H+2) for estimating H based on n sampled data, extending results
known only for the easier case H > 1/2 so far. We therefore establish that the parameters of rough
volatility models can be inferred with optimal accuracy in all regimes.

Mathematics Subject Classification (2020) : 60G22, 62C20, 62F12, 62M09, 62P20.
Keywords: Rough volatility, fractional Brownian motion, wavelets, scaling, minimax optimality,
pre-averaging, iterated estimation procedure

1. INTRODUCTION

Rough volatility models have been introduced in quantitative finance in 2014 in [GJR18]. The
core idea of this new paradigm in financial engineering is to consider that the volatility process
of financial assets exhibits very irregular sample paths. More precisely the prototypical rough
volatility model postulates that the price of a one-dimensional asset S satisfies

(1) dSt = σtdBt, σt = a exp(ηWH
t )

withB a Brownian motion, WH a fractional motion with Hurst parameterH ∈ (0, 1) and positive
constants a and η. The key point of rough volatility modelling is to take H very small, of order
10−1. Other rough volatility models involve more complex functionals of the fractional Brownian
motion adapted to various applications, but with the same order of magnitude for H , see for ex-
ample [EER19, GJR20].

Rough volatility has been uncovered following a data-driven approach. The data sets of inter-
est were time series of daily measurement of historical volatility over many years and thousands
of assets, see [BLP22, GJR18]. More precisely, volatility was essentially considered constant dur-
ing each day1 and its daily value was estimated from high-frequency price observations. This was
done using various up-to-date inference methods for high-frequency data, all of them leading to
analogous results. Many natural empirical statistics have been computed on these volatility time
series, in a model-agnostic way. Then it was shown in [GJR18] that strikingly similar patterns
were obtained by computing the same statistics in the simple Model (1) (actually a version of (1)
where one considers a piecewise constant approximation of the volatility).

Date: October 3, 2022.
1A varying volatility does not make much sense in finance over short time intervals where the diffusive nature of the

price is lost due to microstructural effects. Intraday seasonalities of the volatility could be considered though.
1
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For example, among the statistics advocating for rough volatility, empirical means of log-
volatility increments play an important role. They consist in measuring on volatility time series
(σt)t=1,2,..., for given q > 0, the empirical means of the |log(σt+∆) − log(σt)|q , for ∆ going from
one day to several hundreds of days. On data, as a function of ∆, this quantity behaves system-
atically as ∆Aq with A of order 10−1, for the whole range of ∆. This is obviously reproduced if
the volatility follows Model (1) with H of order 10−1, thanks to the scaling of fractional Brownian
motion. In addition, the fact that this property also holds for large ∆ somehow discards station-
ary models where the moments of the increments no longer depend on ∆ for large ∆. It also
immediately rules out the idea that the scaling of log-volatility increments in practice could be
due to measurement error in the volatility process.

At first glance, the relevance of the parameters value in Model (1) may be surprising. It is in
strong contrast with the first generation of fractional volatility models whereH > 1/2 in a station-
ary environment, see [CR98]. The goal of these models was notably to reproduce long memory
properties of the volatility process and we know that fractional Brownian motion increments ex-
hibit long memory when H > 1/2. However, it turns out that when H is very small, apparent
long memory is also generated in a model such as (1) and that despite its non-stationarity, it re-
mains consistent with the behaviour of financial data even on very long time scales, see [GJR18].

In addition to the very convincing stylized facts obtained from historical volatility, the data
analysis obtained from implied volatility surfaces also support the rough volatility paradigm, see
[ALV07, BFG16, Fuk21, LMPR18]. In other words, rough volatility models are, in financial terms,
compatible with both historical and risk-neutral measures, which paved the way to many new
directions in quantitative finance. Furthermore, it turns out that rough volatility models can be
micro-founded and that in fact, only a rough nature for the volatility can allow financial markets
to operate under no-statistical arbitrage conditions, see [EEFR18, JR20].

Given the multiple empirical evidence from market data towards their direction, rough volatil-
ity models have gained great interest in the quantitative finance community and a vast litera-
ture has been devoted to this new paradigm, both from a theoretical and a practical perspec-
tive. For example, among other contributions risk management of (complex) derivatives is con-
sidered in [AJ22, ARS22, EER19, ER18, FHT21, GJR20, HTŽ21, JMP21], numerical issues are ad-
dressed in [AJEE19, BLP17, CGP21, Gas22, MP18, RZ21], asymptotic expansions are provided in
[CT22, EFGR19, FFGS20, FGP22, FZ17, JP22] and theoretical considerations about the probabilistic
structure of these models are studied in [AJLP19, BFG+20, CT19, FGR22, Gas19, GGP19, GKR19].

As explained, the popularity of rough volatility models comes from their ability to remarkably
mimic the behaviour of data. Now that these models are well admitted, we can take a step back
and consider a rigorous statistical analysis taking Model (1) as a postulate. From the point of view
of a statistician, the intriguing question is then obviously that of the inference of the parameterH .
Can we estimate it and with which accuracy? Said differently, we want to know how well we can
distinguish between two values of H and therefore overcome the latent nature of the volatility
and the noise in its estimation.
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Thorough investigations related to these questions can notably be found in [BCPV22, FT19]. In
[FT19], the following approximation is considered

log(σ̂2
t ) ∼ log

( ∫ tδ

(t−1)δ

σ2
sds
)

+ εt,

where εt is an iid Gaussian noise and σ̂2
t is the quadratic variation computed from high-frequency

observations of the log price over the interval [(t−1)δ, tδ). Taking this approximation for granted,
the authors obtain a Whittle estimator of the parameter H and provide its asymptotic theory in a
high-frequency asymptotic framework (fixed time interval of observation). However, the method-
ology is tightly related to this approximation, which is unfortunately not accurate enough in our
Model (1). Another very interesting study is that of [BCPV22]. Here the authors place themselves
in an ergodic framework and make stationary assumptions to build estimating procedures. In
our work, we rather consider a high-frequency setting, which makes the nature of the statistical
problem quite different. Finally, the complementary paper [CHL+22] uses a very similar setting
as ours but over a slightly different class of models. With a practitioner perspective in mind, this
paper focuses on the most useful rough volatility models in practice and associated central limit
theorems for estimating H . We rather stay in the prototypical Model (1) to address our very natu-
ral mathematical statistics question: the optimal rate of convergence for an estimator of the Hurst
parameter in the rough volatility paradigm.

To work first in the spirit of rough volatility models as introduced for financial engineering, we
start our study with a version of Model (1) where the volatility is piecewise constant. We consider
n regularly sampled observations of the price S from this modified Model (1) with 0 < H < 1
over a fixed time interval. In this setting, squared price increments are down to spot variance
multiplied by noise. Taking the logarithm reduces our problem to the setup of [GH07] where
the authors study the estimation of the Hurst parameter for a fractional Brownian motion ob-
served with additive measurement error for H > 1/2. Their approach is based on the scaling
properties of wavelet-based energy levels of the fractional Brownian motion Qj (the sum of the
squared wavelet coefficients for a given resolution level j). Indeed, we have that 22jHQj con-
verges to some constant. Therefore H can be obtained from the ratio Qj+1/Qj , provided we have
access to a good approximation of it. Furthermore, the multiresolution nature of wavelet coeffi-
cients and their adaptivity properties makes this approach quite tractable compared for example
to using scaling properties of p−variations (sum of increments to some power p), although both
approaches are in essence very similar. To build their estimator, the authors of [GH07] estimate
energy levels Qj from the increments of observations. Unfortunately, their approach cannot be
directly applied in our setting. This is due to the roughness of the volatility path that creates a
large bias error term in the estimation of the energy levels. We mitigate this phenomenon using a
pre-averaging technique similar to that in [Szy22]. More precisely, we show that the energy levels
computed from the pre-average spot volatility process still have a nice scaling property and de-
rive an estimator from it. This estimator achieves the rate n−1/(4H+2), as in [GH07] for H > 1/2,
which we prove to be minimax optimal for any H ∈ (0, 1). In particular, we can conclude that
from a rigorous statistical viewpoint, estimating H in rough volatility models can be done with
very satisfactory accuracy.

Then we consider Model (1) without any piecewise constant assumption on the volatility path.
In this situation, the law of price increments becomes more intricate. The piecewise constant
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volatility is replaced by local average of the spot volatility. Interestingly, the question of the in-
ference of H in this model has already been studied in [Ros08] for H > 1/2. In this work, energy
levels are computed from price increments and are shown to exhibit a scaling property around a
stochastic limit. So one can use use again ratios of estimated energy levels to estimate H when
H > 1/2. However, this approach does not extend to the case H < 1/2. The reason is that
over a short time interval, given the small value of H , the integrated volatility is very badly ap-
proximated by the renormalized spot volatility at the beginning of the interval, which is a crucial
element in [Ros08]. We get inspired by the empirical means used in [GJR18] as well as by the
piecewise constant case. More precisely, we compute energy levels from the logarithm of the
squared price increments and not from price increments. However, as explained above, the loga-
rithm of price increments involves the quantity

log
(

1
δ

∫ (i+1)δ

iδ

exp(ηWH
s )ds

)
which does not enjoy suitable properties when H is small. This is because the roughness of the
trajectories makes this quantity far from ηWH

iδ . This creates a large bias when computing H from
a ratio of energy levels. We analyze the extent of this bias and show that the scaling of order
2−2jH is no longer exact. Additional terms of order 2−2ajH with a > 1 appear and must be re-
moved with a suitable bias correction procedure. To do so, we start with a first estimator with
no bias correction on the energy levels. Then we re-use this estimator to correct the energy levels
and compute a new estimator with a faster rate of convergence. This procedure is iterated many
times, of the order of H−1, and reaches the minimax optimal speed n−1/(4H+2).

The paper is organized as follows. The model with piecewise constant volatility is considered
in Section 2 while this assumption is removed in Section 3. Discussions are gathered in Section 4
and the next sections are devoted to the proofs of the results.

2. ROUGH PIECEWISE CONSTANT VOLATILITY

2.1. Model and notation. We start with the version of the prototypical rough volatility model
where the volatility is piecewise constant. In financial terms, it means the volatility is taken con-
stant over the day, which is quite reasonable (up to intraday seasonalities). To do so, we consider
for some H ∈ (0, 1) and η > 0 a measurable space (Ω,A,PH,η) on which is defined a process S
such that

dSt = σtdBt

with B a Brownian motion and the volatility σ given by

σ2
t = σ2

0 exp(Xt) with Xt = ηWH
btδ−1cδ

where δ = δn > 0, σ0 > 0, and where WH is a fractional Brownian motion with Hurst index H
independent from B. We will write EH,η for the expectation under the probability measure PH,η .
Without loss of generality, we take σ0 = 1. We assume that (H, η) lies in a compact subset D of
(0, 1)× (0,∞) and we define

H− = min
(H,η)∈D

H, η− = min
(H,η)∈D

η,

H+ = max
(H,η)∈D

H, η+ = min
(H,η)∈D

η.
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We suppose that we have access to the trajectory of S via discrete data at times i/n with i =
0, · · · , n and we write An for the σ-algebra generated by observations

(Si/n)0≤i≤n.

For simplicity, we further assume that n = 2N and thatm := nδ is an integer. We aim at recovering
the parameters (H, η) from these observations. We define

vn(H) = n−1/(4H+2) ∨ δ1/2.

In Section 2.2, we derive a minimax optimality theory for this model and in Section 2.3 we
focus on the construction of an estimator achieving the minimax rate.

2.2. Minimax optimality. The rate vn is said to be a lower rate of convergence over D for esti-
mating H if there exists c > 0 such that

lim inf
n→∞

inf
Ĥn

sup
(H,η)∈D

PH,η(v−1
n |Ĥn −H| ≥ c) > 0

where the infimum is taken over all An-measurable random variables Ĥn (i.e. all estimators).

Theorem 1. The rate vn(H) is a lower rate of convergence for estimating H over D.
Also, wn(H) = n−1/(4H+1) ln(n) ∨ δ1/2 is a lower rate of convergence for estimating η over D (with

obvious modification in the definition).

Note that we retrieve here the convergence rate of [GH07] and [Ros08]. Additional comments
can be found in Section 4. The proof of Theorem 1 is relegated to Section 5.

2.3. Construction of an estimator. Recall that that m = nδ. Notice first that under PH,η , we have
for 0 ≤ i < 2N

2N
m∑
j=1

(
S(im+j)/n − S(im+j−1)/n

)2
= σ2

iδ

m∑
j=1

(
B(im+j)/n −B(im+j−1)/n

)2
so that

X̂i,n := log

(
2N

m∑
j=1

(
S(im+j)/n − S(im+j−1)/n

)2)
= ηWH

i/n + εi,n,m

where the (εi,n,m)i are i.i.d. random variables with same law as that of ε̄m = log
(
m−1

∑m
j=1 ξ̄

2
j

)
,

where the ξ̄j are i.i.d. standard Gaussian variables. Thus nδn exp(ε1,n) is a χ2 random variable
with nδn degree of freedom and we get by Lemma 36

Var(ε̄m)) = ψ(1)(m2 ) ≤ Cm−1 and E
[
ε̄4
m

]
≤ Cm−2

for some constant C and where the function ψ(1) is explicit and defined in Section C.

We now introduce the energy levels of the process X . Let j ≥ 2 , k < 2j−1 and p ≥ 0. We write:

dj,k,p =
1

2j/2+p

2p−1∑
l=0

X(k+l2−p)2−j − 2X(k+1+l2−p)2−j +X(k+2+l2−p)2−j and Qj,p =

2j−1−1∑
k=0

d2
j,k,p.
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Note that this sum stops at index k = 2j−1 − 1 and is defined only for j ≥ 2 because our obser-
vations stop at time 1. In view of these definitions, we introduce their empirical counterparts. We
start with d. We define

d̃j,k,p,n =
1

2j/2+p

2p−1∑
l=0

X̂n2−j(k+l2−p),n − 2X̂n2−j(k+1+l2−p),n + X̂n2−j(k+2+l2−p),n

which is An-measurable provided p+ j ≤ N . Note that d̃j,k,p,n = dj,k,p + ej,k,p,n where

ej,k,p,n =
1

2j/2+p

2p−1∑
l=0

εn((k+l2−p)2−j),n,m − 2εn((k+1+l2−p)2−j),n,m + εn((k+2+l2−p)2−j),n,m.(2)

However we cannot estimate d2 by d̃2 because of the noise term e. Following [GH07], we offset
these effects by removing E[e2

j,k,p,n] = 6 Var(ε̄m)2−j−p. Thus, we estimate the energy levels by

Q̂j,p,n =

2j−1−1∑
k=0

d̂2
j,k,p,n where d̂2

j,k,p,n = d̃2
j,k,p,n − 6 Var(ε̄m)2−j−p.(3)

We fix ν0 > 0. The estimator of H is given by

Ĥn = − 1
2 log

[
Q̂J∗n+1,N−J∗n−1,n

Q̂J∗n,N−J∗n−1,n

]
where J∗n = max{2 ≤ j ≤ N − 1 : Q̂j,N−j−1,n ≥ ν02jn−1}

The consistency and convergence rate of this estimator is provided in the following theorem,
discussed in Section 4 and proved in Section 6

Theorem 2. The rate vn(H) = n−1/(4H+2) ∨ δ1/2 is achievable for estimating H over D.
More precisely, let κ0(H) = 4−22H and suppose that ν0 < inf(H,η)∈D η2κ(0, H)22H . Then v−1

n (Ĥn−
H) is bounded in PH,η-probability uniformly over D.

3. GENERAL MODEL

3.1. Model and main results. We now consider the very same model and statistical experiment
as in the previous section but with a volatility process σt that is no longer piecewise constant:

σ2
t = σ2

0 exp(ηWH
t )

where WH is a fractional Brownian motion with Hurst index H and independent from B. We
will write EH,η the expectation under probability PH,η . Without loss of generality, we takeσ0 = 1.
We assume that (H, η) lies in a compact subset D of (0, 3/4) × (0,∞) and we define H−, H+, η−
and η+ as before. The upper bound H+ < 3/4 is artificial here and could be improved to H+ < 1
using second-order increments, see Section 4 for more details.

The rest of this section is divided into three parts. First, we present a minimax theory for this
model in Section 3.2. Then we gather in Section 3.3 some results used later in the construction
of an estimator. These results are separated from the actual proof of the estimator since these
results could be of independent interest to the reader. Finally in Section 3.4, we build an estimator
achieving the optimal convergence rate derived in Section 3.2.
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3.2. Minimax optimality. Recall from Section 2.2 that the rate vn is said to be a lower rate of
convergence over D for estimating H if there exists c > 0 such that

lim inf
n→∞

inf
Ĥn

sup
(H,η)∈D

PH,η(v−1
n |Ĥn −H| ≥ c) > 0,

where the infimum is taken over all estimators Ĥn, and similarly for η. We obtain the following
result, as an analog to to Theorem 1. Its proof can be found in Section 7.

Theorem 3. The rates vn(H) = n−1/(4H+2) and wn(H) = n−1/(4H+2) ln(n) are lower rate of conver-
gence for estimating H and η respectively over D.

3.3. Energy levels of the log integrated volatility. Suppose that j ≥ 0 and p ≥ 0 are fixed. For
0 ≤ k < 2p, we introduce the pre-averaged local energy levels of the log-integrated-volatility:

dj,k,p = 2−p−j/2
2p−1∑
l=0

log
(∫ (k+1)2−j+(l+1)2−j−p

(k+1)2−j+l2−j−p
σ2
udu

)
− log

(∫ k2−j+(l+1)2−j−p

k2−j+l2−j−p
σ2
udu

)
.

Then we define the corresponding energy levels by

Qj,p =
∑

k<2j−1

d2
j,k,p.

These energy levels differ from those of [Ros08] since they are not defined on the integrated
realise variance of the price but on the logarithm of these quantities. They also scale as 2−2jH as in
[Ros08], but the logarithm creates two major differences in this scaling. On the one hand, we get
rid of the stochastic limit appearing in [Ros08] but on the other hand, this scaling is not exact and
additional terms appear. More precisely, the following concentration property is proved within
Section 8.3.

Proposition 4. There exist explicit functions of H denoted κp,a given in Equation (33) such that if S ≥
1/(4H−) + 1/2 and S > H+/(2H−)− 1/2, we have

EH,η
[(
Qj,p −

S∑
a=1

η2a2−2aHjκp,a(H)
)2] ≤ C2−j(1+4H)(4)

for some constant C depending only on S.

Though these functions κ are explicit, their numerical implementation is still to be studied and
will require the use of Isserlis’ Theorem (see Theorem 34).

The following two lemmas control the functions κ. They will be useful in the construction of
the estimator and are proved in Section 8.4.

Lemma 5. There exist c−,1 and c+,1 some positive constants such that for any p ≥ 1 and any H− ≤ H ≤
H+

c−,1 ≤ κp,1(H) ≤ c+,1.(5)

Moreover, there exists c·,S some positive constant such that for any p ≥ 1, any 2 ≤ a ≤ S and any
H− ≤ H ≤ H+,

|2(2a−1)Hpκp,a(H)| < c·,S .(6)

Lemma 6. The functions κp,a are differentiable on [H−, H+] and for any a > 0 there exists ca such that

sup
p≥0
|κ′p,a(H)| ≤ ca.
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Next, we prove that the rescaled energy levels 22jHQj,N−j−1 are essentially bounded above
and below in probability. This next result is proved in Section 8.5.

Proposition 7. Let ε > 0. Then there exists 0 < r−(ε) < r+(ε), J0(ε) > 0 and N0(ε) such that for
N ≥ N0(ε), we have

sup
H,η

PH,η
(

inf
J0≤j≤N−1

22jHQj,N−j−1 ≤ r−(ε)
)
≤ ε

and sup
H,η

PH,η
(

sup
J0≤j≤N−1

22jHQj,N−j−1 ≥ r+(ε)
)
≤ ε.

Because of the additional terms appearing in Equation 4, we want to add a bias correction to
the energy levels. Therefore, we define for S > 0, ν > 0 and I > 0

Q
(S)
j,p (I, ν) = Qj,p −B(S)

j,p (I, ν) where B
(S)
j,p (I, ν) =

S∑
a=2

ν2a2−2aIjκp,a(I).(7)

Note that unlike in Proposition 4, this sum starts at a = 2 so that we have

E
[(
Q

(S)
j,p (η,H)− η22−2Hjκp,1(H)

)2] ≤ C2−j(1+4H)

which now has the same behaviour as the term Q in Proposition 3 of [GH07]. Therefore, we can
derive bounds over 22jHQ

(S)
j,N−j−1(η,H) similar to that of adapt Proposition 7. The proof, being

identical to that of Proposition 7 in Section 8.5 is skipped.

Proposition 8. Let ε > 0. Then there exists 0 < r
(S)
− (ε) < r

(S)
+ (ε), Jc0(ε) > 0 and N c

0 (ε) such that for
N ≥ N c

0 (ε), we have:

sup
H,η

PH,η
(

inf
J0≤j≤N−1

22jHQ
(S)
j,N−j−1(η,H) ≤ r(S)

− (ε)
)
≤ ε

and sup
H,η

PH,η
(

sup
J0≤j≤N−1

22jHQ
(S)
j,N−j−1(η,H) ≥ r(S)

+ (ε)
)
≤ ε.

We eventually conclude this section by a short lemma giving explicit Lipschitz bounds for
functions B(S)

j,p .

Lemma 9. There exists cB > 0 such that for any η1, η2 ∈ [η−, η+] and H1, H2 ∈ [H−, H+], we have

|B(S)
j,p (η1, H1)−B(S)

j,p (η2, H2)| ≤ cB2−4(H1∧H2)j(j|H1 −H2|+ |η1 − η2|).

This lemma is proved in Section 8.6.

3.4. Construction of the estimator. We now aim at building an appropriate estimator for Qj,p
based on the price increments. In this section, we fix an integer S such that S ≥ 1/(4H−) + 1/2
and S > H+/(2H−)− 1/2 so that the conclusion of Proposition 4 holds.

First, notice that for a fixed (j, p) such that j + p ≤ N , the price increment Sk2−j+(l+1)2−j−p −
Sk2−j+l2−j−p is An-measurable and we have((

S(l+1)2−j−p − Sl2−j−p
)2)

l
=
(∫ k2−j+(l+1)2−j−p

k2−j+l2−j−p
σ2
udu ξ

2
j,p,l

)
l

(8)
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in distribution, where (ξj,p,l)l are i.i.d. standard Gaussian variables, independent of σ. Therefore,
we can estimate (dj,p,k)k by (d̃j,p,k)k where

d̃j,p,k =2−p−j/2
2p−1∑
l=0

log
((
S(k+1)2−j+(l+1)2−j−p − S(k+1)2−j+l2−j−p

)2)

− 2−p−j/2
2p−1∑
l=0

log
((
Sk2−j+(l+1)2−j−p − Sk2−j+l2−j−p

)2)
.

Using (8), we can see that d̃j,p,k = dj,p,k + ej,k,p where

ej,k,p = 2−p−j/2
2p−1∑
l=0

log
(
ξ2
j,p,(k+1)2p+l

)
− log

(
ξ2
j,p,k2p+l

)
.

In view of [GH07] and [Ros08], we need to correct the estimation d̂2
j,p,k from the bias introduced

by the term e2
j,k,p. Therefore we write d̂2

j,p,k = d̃2
j,p,k − 2−j−p+1 Var(log ξ2) and we estimate Q by

Q̂j,p =
∑
k d̂

2
j,p,k.

A first estimator of (H, η) is defined by (Ĥ
(0)
n , η̂

(0)
n ) with

Ĥ(0)
n =

((
− 1

2
log2

[
Q̂J∗n+1,N−J∗n−1,n

Q̂J∗n,N−J∗n−1,n

])
∨H−

)
∧H+ with J∗n = max

(
j : Q̂j,N−j−1,n ≥ 2jn−1

)
.

and then

η̂(0)
n =

((
Q̂ĵn,N−ĵn,n22ĵnĤ

(0)
n

κN−ĵn,1(Ĥ
(0)
n )

)1/2

∨ η−
)
∧ η+ with ĵn =

⌊
1

2Ĥ
(0)
n + 1

log2(n)

⌋
.

Then we define a refinement procedure for this estimator to correct the bias introduced by the
functions κp,a. Let ν > 0 and 0 < I < 1. First, let Q̂(S)

j,p,n(I, ν) = Q̂j,p,n − B(S)
j,p (I, ν) where B(S)

j,p is
defined in Equation (7). Then we define

Ĥc
n(I, ν) =

((
− 1

2
log2

[ Q̂(S)
J∗cn (I,ν)+1,N−J∗cn (I,ν)−1,n(I, ν)

Q̂
(S)
J∗cn (I,ν),N−J∗cn (I,ν)−1,n(I, ν)

])
∨H−

)
∧H+(9)

where

J∗cn (I, ν) = max
(
j : Q̂

(S)
j,N−j−1,n(I, ν) ≥ 2jn−1

)
(10)

and then

η̂cn(I, ν) =

(( Q̂(S)

ĵn,N−ĵn,n
(I, ν)22ĵnI

κN−ĵn,1(I)

)1/2

∨ η−
)
∧ η+.(11)

We use these functions to build iteratively a sequence (Ĥ
(m)
n , η̂

(m)
n ) of estimators of (H, η).

(Ĥ
(0)
n , η̂

(0)
n ) is already built and for m > 0, we write

Ĥ(m)
n = Ĥc

n(Ĥ(m−1)
n , η̂(m−1)

n ),

η̂(m)
n = η̂cn(Ĥ(m)

n , η̂(m−1)
n ).

Choose now mopt such that mopt > 1/(4H)− 2H − 1 for any H− < H < H+.
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Theorem 10. The rates vn(H) = n−1/(4H+2) and wn(H) = n−1/(4H+2) ln(n) are achievable for esti-
mating respectively H and η over the parameter set D.

More precisely, suppose that mopt satisfies mopt > m > 1/(4H) − 2H − 1 for any H− < H < H+.
Then v−1

n |Ĥ
(mopt)
n −H| and w−1

n |η̂
(mopt)
n − η| are bounded in probability uniformly over D.

The choice of mopt and other comments are discussed in Section 4; while the proof is delayed
until Section 9.

4. DISCUSSION

We now provide some comments about the results given in Section 2 and Section 3.

• About the convergence rates. We obtain in Sections 2 and 3 the same convergence rate
n−1/(4H+2) as in [GH07] and [Ros08]. This unusual rate ensures that retrieving the Hurst
exponent becomes easier when the trajectory is rougher. Therefore estimates of the rough-
ness of the volatility should be quite accurate in rough volatility models. This can seem
counter-intuitive at first glance as one knows that the optimal rate for estimating a β-
Hölder continuous function (say for instance in the context of estimating a density from a
sample of n independent random variables) is roughly n−β/(2β+1). Here we can get much
better rates because we do not try to reconstruct the signal itself but only its regularity.
Though volatility remains hidden behind the multiplicative noise and the realised vari-
ance, we can retrieve its roughness with fast convergence rate.

• About the use of wavelets. Our estimation strategy relies on wavelets and quadratic func-
tionals of the underlying volatility, as in [GH07] and [Ros08]. The multiresolution nature
of wavelets is particularly convenient in our setting from a technical viewpoint, notably
when computing the dependence structure of the coefficients. Also, selecting optimal res-
olution levels can be done in a natural way in this framework. That is why we use this
technique instead of p-variations of increments. However, the spirit of both approaches
would be very close given the strong links between the two objects via Besov spaces, see
for instance [Ros09, CKR93].

• About second-order increments. The fact that second-order increments may be needed
to estimate with accuracy parameters of fractional signals when H ≥ 3/4 is well known,
see for example [IL97, Coe01]. That is why we consider such increments in Section 2. For
technical convenience, we restrict ourselves in Section 3 to the case H > 3/4. This enables
us to avoid additional issues coming from the asymptotic expansion of

log
(

1
δ

∫ (i+1)δ

iδ

exp(ηWH
s )ds

)
− log

(
1
δ

∫ iδ

(i−1)δ

exp(ηWH
s )ds

)
as developed in Proposition 33.

• About η. Although these models have two parameters η and H , the parameter of real
interest is obviously H . That is why, in the piecewise constant volatility model of Section
2, we do not provide an estimator for η or any minimax theory. However, in a similar way
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as in Section 3, one could show that the estimator

η̂n =

(
Q̂ĵn,N−ĵn,n22ĵnĤ

(0)
n

κN−ĵn(Ĥ
(0)
n )

)1/2

with ĵn =

⌊
1

2Ĥn + 1
log2(n)

⌋
where κp is an explicit function defined within Lemma 17, is consistent and achieves con-
vergence rate log(n)n−1/(4H+2). Minor modification of the proof of Theorem 1 enables us
to also show that this rate is minimax-optimal.

• Implementation and feasibility. Optimal estimation rates for estimating H do not de-
pend on the model, however, the construction of the estimators does. In the piecewise
constant volatility model, the estimator is easy to implement and fast to compute, the
only tuning parameter being ν0. From Theorem 2, a suitable choice would be ν0 =
1
2η

2
−min(3, (4− 22H+)22H+) where H+ = sup(H,η)∈DH and η− = inf(H,η)∈D η.

The estimators in the general model are more complex. This is first due to the presence
of the function κp,a in the debiasing procedure. A function like for example κp,a (see (33))
involves the computation of (an order of) 2p expectation of 2a correlated Gaussian vari-
ables. Explicit formulas for such products are given by Isserlis’ theorem (see Theorem 34)
but there is a slight computational cost. The second issue is the stopping time of the iter-
ated debiasing procedure. The quantitymopt must satisfymopt > m > 1/(4H)−2H−1 for
any H− < H < H+. Since it needs to be an integer, a quick study of the function x 7→ m >
1/(4x)− 2x− 1 ensures that one can always take mopt = max(b1/(4H−)− 2H−c, 0). This
choice impacts strongly the computation time when H is small. However, in most cases
of interest, this iteration cost remains very reasonable with 5 iterations for H− = 0.05 and
24 iterations for H− = 0.01 for instance.

• Model choice. We place ourselves in this paper in the prototypical rough volatility model
(1). This is a probably reasonable choice when studying a fundamental inference question
such as minimax optimality as it enables us to understand the core statistical structure
of rough volatility. However, although rough volatility models were initially presented
under such a simple form, see [GJR18], they have since then been extended and many
models involving various transforms of the fractional Brownian motion or related rough
Gaussian processes have emerged. These extensions were notably driven by practice,
where beyond optimal rates having access to confidence bounds is crucial. Taking this
into account, we build in the companion paper [CHL+22] non-parametric estimators of
the roughness of the volatility path for these extensions of Model (1), together with a full
central limit theory.

5. PROOF OF THEOREM 1

5.1. Outline of the proof. Suppose first that we directly observe σiδ for 0 ≤ i ≤ δ−1. This would
be equivalent to the observation of (ηWH

iδ )i≤δ−1 . Optimal estimation in this model is studied in
[Szy22] where the LANproperty holds (See Theorems 4 and 5 in [Szy22] with τn = 0) and optimal
rates for the estimation ofH and η are respectively δ1/2 and δ1/2 log(n). Since the model presented
in Section 2.1 carries less statistical information than the direct observation of (σiδ)i≤δ−1 , δ1/2 is a
lower rate of convergence for H and δ1/2 log(n) is a lower rate of convergence for η in the model
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of Section 2.1. This proves Theorem 1 whenever δ ≥ n−1/(2H+1).

For the remaining of this Section, we will suppose that δ ≤ n−1/(2H+1) so that vn(H) =

n−1/(4H+2). We aim at proving Theorem 1 by a similar strategy to Theorems 2 and 3 of [GH07].
However, two major differences that require delicate handling here. First, we must include the
case H < 1/2, which was done in [Szy22]. Secondly, we need to show how our model, somewhat
different to the additive noise model of [GH07] and [Szy22], can fit in this proof. For complete-
ness, we will go through the main ideas of the proof and emphasize when delicate changes need
to be undertaken.

We need some notation. Write ||µ||TV = sup||f ||∞≤1 |
∫
fdµ| for the the total variation of a signed

measure µ. For two probability measures µ and ν, set

dtest(µ, ν) = ||µ||TV = sup
0≤f≤1

∣∣∣ ∫ fdµ−
∫
fdν

∣∣∣
so that dtest(µ, ν) = 1

2 ||µ− ν||TV . We denote by Pnf the law of the observations (Si/n)i given
ηWH

t = f(t).

The following two results are key to the proof of the lower bounds. They replace respectively
Propositions 4 and 5 of [GH07]. First, we show that the law of the observation is somewhat close
whenever the underlying volatilities are close.

Proposition 11. Let f and g be two bounded functions. Then there exists c0 > 0 such that

||Pnf − Png ||TV ≤ c0
√
n||f − g||∞.(12)

Moreover, there exists c1 > 0 and a universal nonincreasing positive function R such that

1− 1
2 ||P

n
f − Png ||TV ≥ R(ne||f−g||∞ ||f − g||2∞)(13)

Consider now (H0, ν0) in the interior of the domain D. We pick I > 0 large enough and we set

H1 = H0 + εn and σ1 = σ02j0εn

where

εn = I−1n−1/(4H0+2) and j0 = blog2(n1/(2H0+1))c.

The next proposition shows that we can build two processes ξ0,n and ξ1,n that act as approxi-
mations of η0W

H0 and η1W
H1 .

Proposition 12. For I large enough, there exists a sequence of probability (Xn,Xn,P
n) on which can be

defined two sequences of stochastic processes, (ξi,nt )t∈[0,1] and a measurable transformation Tn : Xn →
Xn such that the following hold:

(i) If P i,n(·) =
∫
Xn

Pnξi,n(ω)(·)P
n(dω), then ||P i,n − PnH,σ||TV → 0

(ii) The sequence n||ξ1,n(ω)− ξ0,n(Tnω)||2∞ is tight under Pn.
(iii) If n is large enough, the probability measure Pn and its image TnPn are equivalent on (Xn,Xn)

and there exists 0 < c∗ < 2 such that ||Pn − TnPn||TV ≤ 2− c∗ < 2 for n big enough.

This proposition replaces Proposition 5 of [GH07]. Part (i) shows that we can asymptotically
replace the fractional Brownian motions ηiWHi by the processes ξi,n(ω) in the model presented
in Section 2.1. However, the processes ξi,n(ω) are defined in such a way that we can pathwise
transform a process into another in the probability space (Xn,Xn,P

n). This property is essential
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to the lower bound proof and shows how one statistical experiment can be transformed into the
other. This is the main goal of points (ii) and (iii). For sake of completeness, we will cover the
main idea of the proof of Proposition 12 in Section 5.3.

We can now complete the proof of Theorem 1. We follow again the proof of [GH07]. The
same procedure applies for H and σ so we focus on the efficient rate for H . We start with an
arbitrary estimator Ĥn of H and we choose I > 0 large enough so that Proposition 12 holds. Let
M < 1/(2I). Then we have, using Proposition 12 and notations therein

sup
(H,η)

PnH,η(vn(H)−1|Ĥn −H| ≥M)

≥ 1
2

(
PnH0,η0(vn(H0)−1|Ĥn −H0| ≥M) + PnH1,η1(vn(H1)−1|Ĥn −H1| ≥M)

)
≥ 1

2

(
P 0,n(vn(H0)−1|Ĥn −H0| ≥M) + P 1,n(vn(H1)−1|Ĥn −H1| ≥M)

)
+ o(1)

= 1
2

∫
Xn

Pnξ0,n(ω)(A
0) + Pnξ1,n(ω)(A

1) Pn(dω) + o(1)

where Ai = {vn(Hi)
−1|Ĥn −Hi| ≥ M}. Taking n large enough, it suffices to bound from below

the integral appearing here. But since Pn and TnPn are equivalent, see Proposition (iii), we have∫
Xn

Pnξ0,n(ω)(A
0) Pn(dω) =

∫
Xn

Pnξ0,n(Tnω)(A
0)

dPn

dTnPn
(Tnω) Pn(dω).

For r > 0, we denote Xn
r is the set of ω ∈ Xn such that

n||ξ0,n(Tnω)− ξ1,n(ω)||2∞ ≤ r.

Notice that this definition is slightly different from that of [GH07] due to the differences in Propo-
sition 11. We obtain then, for λ > 0∫

Xn
Pnξ0,n(ω)(A

0) + Pnξ1,n(ω)(A
1) Pn(dω)

=

∫
Xn

(
Pnξ0,n(Tnω)(A

0)
dPn

dTnPn
(Tnω) + Pnξ1,n(ω)(A

1)
)
Pn(dω)

≥ e−λ
∫
Xnr

(
Pnξ0,n(Tnω)(A

0) + Pnξ1,n(ω)(A
1)
)
1 dPn

dTnPn (Tnω)≥e−λ Pn(dω).

Notice also that for ω ∈ Xn
r , we have

Pnξ0,n(Tnω)(A
0) + Pnξ1,n(ω)(A

0)

≥ Pnξ0,n(Tnω)(n
1/(4H0+2)|Ĥn −H0| ≥M) + Pnξ1,n(ω)(n

1/(4H0+2)|Ĥn −H1| ≥M)

≥ Pnξ1,n(ω)(n
1/(4H0+2)|Ĥn −H0| ≥M) + Pnξ1,n(ω)(n

1/(4H0+2)|Ĥn −H1| ≥M)

− dtest
(
Pnξ0,n(Tnω),P

n
ξ1,n(ω)

)
≥ 1− 1

2 ||P
n
ξ0,n(Tnω) − Pnξ1,n(ω)||TV

since n1/(4H0+2)|H0 −H1| ≥ 2M by definition of I and M . We apply now Proposition 11 to get

Pnξ0,n(Tnω)(A
0) + Pnξ1,n(ω)(A

0) ≥ R(ne||ξ
0,n(Tnω)−ξ1,n(ω)||∞ ||ξ0,n(Tnω)− ξ1,n(ω)||2∞)

≥ R(er/
√
nr2) ≥ R(err2)
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since R is non-increasing. Thus, we get∫
Xn

Pnξ0,n(ω)(A
0) + Pnξ1,n(ω)(A

1) Pn(dω)

≥ e−λR(err2)

∫
Xnr

1 dPn

dTnPn (Tnω)≥e−λ Pn(dω)

≥ e−λR(err2)Pn
(
Xn
r ∩

{
dPn(Tnω)

dTnPn
≥ e−λ

})
≥ e−λR(err2)

(
Pn(Xn

r )− TnPn
(
dTnPn

dPn
≤ eλ

))
But Markov inequality and Proposition 12 yield

TnPn
(
dTnPn

dPn
≤ eλ

)
≤ Pn

(
dTnPn

dPn
≤ eλ

)
+ dtest(T

nPn,Pn)

≤ e−λ + 1
2 ||T

nPn −Pn||TV
≤ e−λ + 1− c∗

so that we infer∫
Xn

Pnξ0,n(ω)(A
0) + Pnξ1,n(ω)(A

1) Pn(dω) ≥ e−λR(err2)
(
Pn(Xn

r )− e−λ − 1 +
c∗

2

)
.

Moreover,

lim
r→∞

lim inf
n→∞

Pn(Xn
r ) = lim

r→∞
lim inf
n→∞

Pn(n||ξ0,n(Tnω)− ξ1,n(ω)||2∞ ≤ r) = 1

since n||ξ0,n(Tnω)− ξ1,n(ω)||2∞ is tight by Proposition 12. We conclude by taking λ and r large
enough.

5.2. Proof of Proposition 11. Let K(µ, ν) =
∫

log(dµdν ) dµ denote the Kullback-Leibler divergence
between two probability measures µ and ν. Recall also the Pinsker’s inequality ||µ− ν||2TV ≤
2K(µ, ν). Under Pnf , the increments of the observations S(j+1)/n−Sj/n are independent Gaussian
variables whose variance is given by

n−1 exp(f(bjn−1δ−1cδ))

so that the Kullback-Leibler divergence between the two measures Pnf and Png is given by

K(Pnf ,Png ) = nδ

2N−1∑
i=0

A((f − g)(iδ))

where A(x) = ex − x− 1. A is increasing on [0,∞) and A(x) ≤ A(|x|) for x ≥ 0 so

K(Pnf ,Png ) ≤ nA(||f − g||∞).(14)

Note in addition that A(x) ≤ x2 for 0 ≤ x ≤ 1 so K(Pnf ,Png ) ≤ n||f − g||2∞ whenever ||f − g||∞ ≤
1. Pinsker’s inequality proves estimate (12) in that case. When ||f − g||∞ ≥ 1, we write K =
d||f − g||∞e and fk = (kg + (K − k)f)/K for all k = 0, . . . ,K so that ||fk − fk+1||∞ ≤ 1 for any k.
Using (12) for functions (fk, fk+1), we get

||Pnf − Png ||TV ≤
∑
k

||Pnfk − Pnfk+1
||
TV
≤
∑
k

Cn1/2||fk − fk+1||∞ ≤ Cn
1/2||f − g||∞



STATISTICAL INFERENCE FOR ROUGH VOLATILITY: MINIMAX THEORY 15

which proves (12). We now prove (13). First, notice that for x ≥ 0, we also have A(x) ≤ x2ex so
that (14) yields

K(Pnf ,Png ) ≤ ne||f−g||∞ ||f − g||2∞

and we can conclude since ||µ− ν||TV remains bounded away from 2 when the divergenceK(µ, ν)
and K(ν, µ) are bounded away from +∞.

5.3. Proof of Proposition 12.

Introduction and notation. Proposition 12 is an adaptation of Proposition 5 in [GH07]. Indeed,
points (i) and (iii) are the same as in [GH07] and the construction of the approximation processes
ξi,n in our proof is exactly the same as in [GH07]. Therefore, we will quickly recall the main ar-
guments concerning the construction of the ξi,n while skipping the tedious computations already
done therein. We will also skip the proof of points (i) and (iii) and focus instead on (ii).

The main idea of the approximation is to decompose the fractional Brownian motions ηWH

over a wavelet basis and to keep only low frequencies. Indeed, high frequencies entail local in-
formation of the fractional Brownian motion, such that its Hlder regularity. Thus it should vary
a lot even for small changes of H even if the absolute value of a single coefficient is generally
small. On the other side, low-frequency coefficients should be high to determine the global trends
of the fractional Brownian motions, but their behaviour should be continuous in H . Thus we
will cut our signal corresponding to fractional Brownian motions and keep only low frequencies.
Thus we will get a process close enough to the original fractional Brownian motion. Moreover,
a slight technical modification in the low-frequency process approximating η1W

H1 ensures this
remains close to η1W

H1 while being closer to the low-frequency process approximating η0W
H0 .

The main choice remaining is the cut-off level in the frequencies and, unsurprisingly, we will see
that log2 n

1/(1+2H0) is perfectly suitable.

We will now present in more detail the approximation procedure. First, recall from [GH07]
that for any H , fractional Brownian motions admit the following series representation

2−j0(H+1/2)
∞∑

k=−∞

ΘH
j0,k(t)εHk +

∞∑
j=j0

2−j(H+1/2)
∑

|k|≤2j0+1

(ψHj,k(t)− ψHj,k(0))εj,k(15)

where εj,k are independent standard Gaussian variables, (εHk )k is a Gaussian stationary family
whose spectral density is given by |2 sin(v/2)|1−2H0 and where the ΘH

j,k and ψHj,k are defined as
fractional derivatives of wavelet functions. For conciseness, we do not detail their construction
which can be found in [GH07], Section 7.1. In the following, we will need the following property.

Lemma 13 (Lemma 5.(i). in [GH07]). For any M > 0 there exists c = c(M) such that for all j0 and all
H ∈ [H−, H+] ∑

j≥j0

∑
|k|≤2j+1

||ψHj,k||∞(1 + j)1/2(1 + |k|)1/2 ≤ c(M)2−Mj0 .

A very important feature of the representation (15) is that the random variables appearing in
the high-frequency part are independent of the low-frequency terms.
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Construction of the space Xn. As in [GH07], we take

Xn =
(
⊗2j0+1

k=−2j0+1 R
)
⊗
(
⊗∞j=j0 ⊗

2j+1

k=−2j+1R
)

=: Xn
e ⊗Xn

d .

We write Xn the Borel product sigma-algebra of Xn, ω = (ωe, ωd) the elements of Xn and

εk(ω) = ωek and εj,k(ω) = ωdj,k

the projections on the coordinates of ω.
In view of (15), we then define

ξ0,n
t = η02−j0(H0+1/2)

∑
|k|≤2j0+1

ΘH0

j0,k
(t)εk + η0

∞∑
j=j0

2−j(H0+1/2)
∑

|k|≤2j+1

(ψH0

j,k (t)− ψH0

j,k (0))εj,k.(16)

To ensure this is a correct approximation of σ0W
H0 , we define the probability measure

Pn := Pne ⊗Pnd

such that under Pne , (εk)k is a centred Gaussian stationary sequence with spectral density

|2 sin(v/2)|1−2H0

and under Pnd , (εj,k)j,k are independent standard Gaussian variables. Therefore, under Pn, the
law of ξ0,n is close to the law of η0W

H0 . We want now to define an approximation of η1W
H1 . As

explained in v, replacing εk by a stationary sequence (ε′k)k with spectral density |2 sin(v/2)|1−2H1

is not enough and one should incorporate corrective terms corresponding to the development of
ΘH1 = ΘH0+εn . Following [GH07], a suitable approximation for η1W

H1 is given by

ξ1,n
t = η12−j0(H1+1/2)

∑
|k|≤2j0+1

ΘH0

j0,k
(t)ε′k + η1

∞∑
j=j0

2−j(H1+1/2)
∑

|k|≤2j+1

(ψH1

j,k (t)− ψH1

j,k (0))εj,k

+ η12j0(H1+1/2)
∑

|l|≤2j0+1

∑
|k|≤2j0+1

(ΘH0

j0,l
(t)al−kε

′
k + (ψH0

j0,l
(t)− ψH0

j0,l
(0))bl−kε

′
k)

where the sequences a and b are defined in Lemma 5 of [GH07].

[GH07] also provides the mapping Tn of Proposition 12. This transformation is divided into
two parts. The first one acts on Xn

d and transforms the stationary sequence (εk)k with spectral
density |2 sin(v/2)|1−2H0 into a stationary sequence (ε′k)k with spectral density |2 sin(v/2)|1−2H1

which can be done since these measures are absolutely continuous. The second one is more tricky
and uses the sequences a and b to transform linearly the εj,k. We refer once more to [GH07] for
the details. The only important result regarding this construction for the proof of point (ii) of 12
is the following development

ξ1,n
t (ω)− ξ0,n

t (Tnω) =
∑
j≥j0

∑
|k|≤2j+1

η12j(H1+1/2)(ψH1

j,k (t)− ψH1

j,k (0))εj,k(ω)

+
∑
j≥j0

∑
|k|≤2j+1

η02j(H0+1/2)(ψH0

j,k (t)− ψH0

j,k (0))εj,k(ω).
(17)
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Proof of Proposition 12.(ii). Notice first that it is enough to prove that
√
n||ξ1,n(ω)− ξ0,n(Tnω)||∞ is

bounded in L1 since Markov inequality for positive random variables will then ensure tightness.
By (17), it is enough to bound the two terms:∑

j≥j0

∑
|k|≤2j+1

η12−j(H1+1/2)||ψH1

j,k ||∞ |εj,k(ω)| and
∑
j≥j0

∑
|k|≤2j+1

σ02−j(H0+1/2)||ψH0

j,k ||∞ |εj,k(ω)| .

Both these terms are handled similarly so we will focus on the first one here. We now need to use
Lemma 3 of [MST99].

Lemma 14. Let (εj,k)j≥0,k∈Z be independent standard Gaussian variables. Then there exists C(ω) a
random variable having finite moments of all orders such that

|εj,k| ≤ C
(
log(2 + j) log(2 + |k|)

)1/2
.

Thus there exists a positive random variable C = C(ω) with finite moments for any order such
that for any j ≥ 0 and |k| ≤ 2j+1, we have:

|εj,k(ω)| ≤ C(ω)(1 + j)1/2(1 + |k|)1/2

and therefore ∑
j≥j0

∑
|k|≤2j+1

η12−j(H1+1/2)||ψH1

j,k ||∞ |εj,k(ω)|

≤ C(ω)η12−j0(H1+1/2)
∑
j≥j0

∑
|k|≤2j+1

||ψH1

j,k ||∞(1 + j)1/2(1 + |k|)1/2

≤ C(ω)c(M)η12−j0(H1+1/2)−Mj0

by Lemma 13, where M > 0 is arbitrary. But C(ω) is bounded in L1, so for any M > 0 there exists
a constant c′ = c′(M) such that

E[||ξ1,n(ω)− ξ0,n(Tnω)||∞] ≤ c′η12−j0(M+H1+ 1
2 ) ≤ c′′n−1/2

where the last inequality is obtained taking M big enough.

6. PROOF OF THEOREM 2

6.1. Preparation for the proof. We start by giving a crucial result on the behaviour of the pre-
averaged energy levels and their empirical counterparts. It relies on a similar strategy as in
[GH07] and is based on the two following Propositions.

Proposition 15. Let ε > 0. Then there exists 0 < r−(ε) < exp(−(2H+ + 1)), J0(ε) > 0 and N0(ε)
depending on D only such that for N ≥ N0(ε), we have:

sup
(H,η)∈D

PH,η
(

inf
J0≤j≤N−1

22jHQj,N−j−1 ≤ r−(ε)
)
≤ ε.(18)

Proposition 16.

sup
(H,η)∈D

EH,η
[(
Q̂j,p,n −Qj,p

)2] ≤ C((nδ)−22−j−2p + (nδ)−12−j(1+2H)−p).(19)

Their proofs are presented in Sections 6.2 and 6.3. Then notice that∣∣∣ Q̂J∗n+1,N−J∗n−1,n

Q̂J∗n,N−J∗n−1,n

− 2−2H
∣∣∣ ≤ Bn + V (1)

n + V (2)
n
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where

Bn =
∣∣∣QJ∗n+1,N−J∗n−1

QJ∗n,N−J∗n−1
− 2−2H

∣∣∣,
V (1)
n =

∣∣∣ Q̂J∗n+1,N−J∗n−1,n −QJ∗n+1,N−J∗n−1

Q̂J∗n,N−J∗n−1,n

∣∣∣,
V (2)
n =

∣∣∣QJ∗n+1,N−J∗n−1(Q̂J∗n,N−J∗n−1,n −QJ∗n,N−J∗n−1)

Q̂J∗n,N−J∗n−1,nQJ∗n,N−J∗n−1

∣∣∣.
Therefore the proof is completed once we prove that v−1

n Bn, v−1
n V

(1)
n and v−1

n V
(2)
n are tight. We

deal separately with the cases δ ≤ n−1/(2H+1) and δ ≥ n−1/(2H+1) in Sections 6.4 and 6.5.
For ε > 0, we introduce

J−n (ε) = max
{
j ≥ 1 : r−(ε)2−2jH ≥ 2jn−1

}
∧ (N − 1)

where r−(ε) is defined in Proposition 15.

6.2. Proof of Proposition 15. Our proof is an adaptation of Proposition 1 in [GH07].

Lemma 17. For any p, there exists a function κp : (0, 1)→ (0,∞) such that for any (H, η) ∈ D and any
j ≥ 0, we have

EH,η[d2
j,k,p] = κp(H)η22−j(1+2H).(20)

Moreover, we have

0 < inf
(H,η)∈D,p≥0

κp(H) ≤ sup
(H,η)∈D,p≥0

κp(H) <∞.

Proof. We start with the explicit computation of EH,η[d2
j,k,p]. By self-similarity and the fact that

WH has stationary increments, this expectation equals

η2

2j(1+2H)+2p

2p−1∑
`1,`2=0

EH,η
[
(WH

(`1−`2)2−p − 2WH
1+(`1−`2)2−p +WH

2+(`1−`2)2−p)(WH
2 − 2WH

1 )
]

=
η2

2j(1+2H)
2−p

∑
`∈Z,|`|<2p

(1− |`|2−p)EH,η
[
(WH

`2−p − 2WH
1+`2−p +WH

2+`2−p)(WH
2 − 2WH

1 )
]
.

It follows that κp(H) is well defined for all values ofH and p. It is also positive since EH,η[d2
j,k,p] >

0. Moreover, a direct computation of the expectation above yields

κp(H) = 2−p
∑

`∈Z,|`|<2p

(1− |`|2−p)φH(`2−p),

with φH(x) = 1
2

∑4
k=0(−1)k+1

(
4
k

)
|x + k − 2|2H . Since H 7→ φH(x) is continuous for any x, we

deduce that H 7→ κp(H) is bounded below and above for fixed p. Moreover, x 7→ φH(x) is
continuous and there exists C > 0 independent of H such that |φH(x) − φH(y)| ≤ C|x − y|2H∧1

for any −1 ≤ x, y ≤ 1. Thus κp(H) converges to κ∞(H) =
∫ 1

−1
(1 − |x|)φH(x)dx as p → ∞. More

precisely, we have

|κp(H)− κ∞(H)| ≤
∑

`∈Z,|`|<2p

∫ `2−p

(`−1)2−p

∣∣∣∣(1− |`|2−p)φH(`2−p)− (1− |x|)φH(x)

∣∣∣∣dx
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+

∫ 1

1−2−p
(1− |x|)|φH(x)|dx.

The integral in the sum is bounded by C2−2p + C2−(2H∧1)p−p and the last integral is bounded
by C2−p so that

|κp(H)− κ∞(H)| ≤ C2−p(2H∧1)

and the convergence is uniform. Also, notice that

κ∞(H) = EH,η
[( ∫ 1

0

(WH
u − 2WH

u+1 +WH
u+2)du

)2]
> 0,

hence Lemma 17 follows from the continuity of H 7→ κ∞(H). �

Lemma 18 (Decorrelation of the Wavelet Coefficients). For k1, k2 such that |k1 − k2| ≥ 3, we have:

|EH,η[dj,k1,pdj,k2,p]| ≤ Cη22−j(1+2H)(1 + |k1 − k2|)2H−4.

Proof. Suppose k1 ≥ k2 + 3. We need to show

|EH,η
[
dj,k1,pdj,k2,p

]
| ≤ Cη22−j(1+2H)(1 + |k1 − k2|)2H−4.

Since WH is self-similar and has stationary increments, we have

EH,η
[
dj,k1,pdj,k2,p

]
=

η2

2j(1+2H)
2−p

∑
`∈Z,|`|<2p

(1− `2−p)φH(k1 − k2 + `2−p)(21)

where φH(x) = 1
2

∑4
k=0(−1)k+1

(
4
k

)
|x + k − 2|2H . Notice that for x > 2, the absolute values

appearing in the expression of φH(x) can be removed. If F (x, t) = |x + t|2H , Taylor’s formula
yields

φH(x) =
1

2 · 4!

∫ 1

0

(1− t)3
(
16∂4

t F (x,−2t)− 4∂4
t F (x,−t)− 4∂4

t F (x, t) + 16∂4
t F (x, 2t)

)
dt

=
1

2 · 4!

∫ 1

−1

(1− |t|)3
(
− 4∂4

t F (x, t) + 16∂4
t F (x, 2t)

)
dt.

We infer |φH(x)| ≤ C|x − 2|2H−4 for some constant C independent of H ∈ [H−, H+]. Summing
over ` in (21) yields the result. �

Using both Lemmas 17 and 18, we have

PH,η
[(
Qj,p − κp(H)η22−2jH−1

)2] ≤ C2−j(1+4H)(22)

for some constant C independent of H and η. The proof of (22) is obtained exactly in the same
way as in Proposition 3 of [GH07] and is thus omitted.

We are ready to prove the estimate (18) of Proposition 15. Let J0 and N be two arbitrary
integers and r > 0. We have

PH,η
(

inf
J0≤j≤N−1

22jHQj,N−j−1 ≤ r
)
≤

N−1∑
j=J0

PH,η
(
22jHQj,N−j−1 ≤ r

)
≤

N−1∑
j=J0

PH,η
(
Qj,N−j−1 − κp(H)η22−2jH−1 ≤ (r − κp(H)η2/2)2−2jH

)
.
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By Lemma 17, we can pick r small enough so that r − κp(H)η2/2 ≤ −c for some c > 0 fixed,
uniformly in p ≥ 0 and (H, η) ∈ D. The estimate (22) yields

PH,η
(

inf
J0≤j≤N−1

22jHQj,N−j−1 ≤ r
)
≤

N−1∑
j=J0

C2−j(1+4H)c−224jH ≤ C ′2−J0

and (18) follows.

6.3. Proof of Proposition 16. Recall from Equation (3) that by Q̂j,p,n =
∑2j−1−1
k=0 d̂2

j,k,p,n where

d̂2
j,k,p,n = d̃2

j,k,p,n−λj,p,n and λj,p,n = 6 Var(ε1,m)2−j−p. Moreover, recall that we have the decom-
position d̃j,k,p,n = dj,k,p + ej,k,p,n where e is defined in Equation (2). Therefore, we get:

Q̂j,p,n = Qj,p +
2j−1−1∑
k=0

(e2
j,k,p,n − λj,p,n) + 2

2j−1−1∑
k=0

ej,k,p,ndj,k,p

and the estimates

EH,η
[( 2−j−1−1∑

k=0

(e2
jk,p,n − λj,p,n)

)2]
≤ C(nδ)−22−j−2p,(23)

and EH,η
[( 2−j−1−1∑

k=0

ej,k,p,ndj,k,p

)2]
≤ C(nδ)−12−j(1+2H)−p.(24)

prove Proposition 16. First, notice that the random variables e2
j,k,p,n − λj,p,n are centred and

moreover, e2
j,k1,p,n

− λj,p,n and e2
j,k2,p,n

− λj,p,n are independent whenever |k1 − k2| ≥ 3. Thus

EH,η
[(∑

k

(e2
j,k,p,n − λj,p,n)

)2]
=
∑
k1,k2

EH,η[(e2
j,k1,p,n − λj,p,n)(e2

j,k2,p,n − λj,p,n)]

≤ C
∑
k

EH,η(e2
j,k,p,n − λj,p,n)2

≤ C
∑
k

EH,ηe4
j,k,p,n.

The noise variable ej,k,p,n is a sum of 2p independent centred random variables with the same
law as ε1,n − 2ε2,n + ε3,n. Therefore, its 4-th moment is of order 22p up to a multiplicative factor
bounded above by EH,η

[
ε4

1,n], as follows for instance by Rosenthal’s inequality. We derive

EH,η
[
e4
j,k,p,n

]
≤ C2−2j−2pEH,η

[
ε4

1,n].

Moreover, nδ exp(ε1,n) has a χ2 distribution with nδ degrees of freedom so that EH,η
[
ε4

1,n

]
≤

C(nδ)−2 by Lemma 36. Thus

EH,η
[
e4
j,k,p,n

]
≤ C2−2j−2p(nδ)−2

so that we have (23).

We now focus on the estimate (24). Notice that the random variables (ej,k,p,n)k are centred
and independent of the variables (dj,k,p)k. Moreover, ej,k1,p,n and ej,k2,p,n are independent if
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|k1 − k2| ≥ 3. Therefore we get

EH,η
[( 2−j−1−1∑

k=0

ej,k,p,ndj,k,p

)2]
≤ C

∑
k

EH,η
[
e2
j,k,p,nd

2
j,k,p

]
≤ C

∑
k

EH,η
[
e2
j,k,p,n

]
EH,η

[
d2
j,k,p

]
.

We conclude using Lemma 17 and the estimate EH,η
[
e2
j,k,p,n

]
= λj,p,n = 6 Var(ε1,m)2−j−p ≤

C2−j−p(nδ)−1.

6.4. Completion of proof when δ ≤ n−1/(2H+1). Suppose first that δ ≤ n−1/(2H+1) so that n ≤
δ−(2H+1) ≤ 2(2H+1)N . Then we define for any ε > 0

J−n (ε) = max
{
j ≥ 1 : r−(ε)2−2jH ≥ 2jn−1

}
∧ (N − 1)

=

⌊
log
(
r−(ε)n

)
2H + 1

⌋
∧ (N − 1)

≤
⌊
N +

log r−(ε)

2H + 1

⌋
∧ (N − 1).

Since r−(ε) < exp(−(2H + 1)) by Proposition 15, log r−(ε) < −(2H + 1) and J−n (ε) = b log(r−(ε)n)
2H+1 c

so that
1
2 (r−(ε)n)1/(2H+1) ≤ 2J

−
n (ε) ≤ (r−(ε)n)1/(2H+1).(25)

The following estimate ensures that with overwhelming probability, J∗n can be controlled by
J−n (ε).

Lemma 19. For any ε > 0, there exists L(ε) > 0 such that

sup
(H,η)∈D

PH,η(J∗n < J−n (ε)− L(ε)) ≤ ε+ ϕn(ε).

Proof. Let L > 0. For notational simplicity, we set Jn = J−n (ε)− L. We have:

PH,η(J∗n ≥ Jn) ≥ PH,η(Q̂Jn,N−J−1,n ≥ ν02Jn−1)

≥ PH,η(Q̂Jn,N−J−1 −QJn,N−Jn−1,n ≥ ν02Jnn−1 − 2−2HJnr−(ε))

− PH,η(QJ,N−Jn−1 ≤ 2−2HJnr−(ε)).

Since J−n (ε)→∞ as n→∞, we have J0(ε) ≤ Jn ≤ N − 1 for large enough n (J0(ε) is defined
in Proposition 15). This entails by Proposition 15

PH,η
(
QJn,N−Jn−1 ≤ 2−2HJnr−(ε)

)
≤ PH,η

(
inf

J0(ε)≤j≤N−1
22HjQj,N−j−1 ≤ r−(ε)

)
≤ ε.

By definition of J−n (ε), we also have r−(ε)2−2J−n (ε)H ≥ 2J
−
n (ε)n−1 so that

PH,η
(
J∗n ≥ Jn) ≥ PH,η(Q̂Jn,N−Jn−1 −QJn,N−Jn−1,n ≥ 2J

−
n (ε)n−1(ν02−L − 22HL)

)
− ε

≥ 1− PH,η(Q̂J,N−Jn−1 −QJ,N−Jn−1,n ≤ −2J
−
n (ε)n−1

)
− ε

as soon as L is taken sufficiently large so that ν02−L−22HL ≤ −1. Using Proposition 16, we derive
then

PH,η(J∗n < Jn) ≤ ε+ PH,η
(
|Q̂J,Nn−Jn−1 −QJ,Nn−Jn−1,n| ≥ 2J

−
n (ε)n−1

)
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≤ ε+ C2−2J−n (ε)n2
(
2−2N+Jnn−2δ−2 + n−1δ−12−N−2HJn

)
≤ ε+ C ′

(
2−J

−
n (ε) + 2−2(H+1)J−n (ε)n

)
where the constant C ′ can depend on ε but is independent of the parameters of the model. The
estimate (25) ends the proof. �

We now prove that v−1
n Bn is tight under the condition δn ≤ n−1/(2H+1). Let n ≥ 1 be suffi-

ciently large so that

J−n (ε)− L(ε) ≥ J0(ε) and N ≥ N0(ε)

simultaneously hold. Let M > 0. We first write

PH,η
(
v−1
n Bn ≥M

)
≤ I + II + III,

with

I = PH,η
(
v−1
n Bn ≥M, J∗n ≥ J−n (ε)− L(ε), inf

J0≤j≤N−1
22jHQj,N−j−1 ≥ r−(ε)

)
,

II = PH,η(J∗n < J−n (ε)− L(ε)),(26)

III = PH,η
(

inf
J0≤j≤N−1

22jHQj,N−j−1 ≤ r−(ε)
)
.

The term II is smaller than ε+ϕn(ε) by Lemma 19, while III is smaller than ε by Proposition 15.
For the term I , we apply estimate (25) to obtain

I ≤
N−1∑

j=J−n (ε)−L(ε)

PH,η
(
v−1
n Bn ≥M, J∗n = j, Qj,N−j−1 ≥ 2−2Hjr−(ε)

)

≤
N−1∑

j=J−n (ε)−L(ε)

PH,η
(∣∣Qj+1,N−j−1 − 2−2HQj,N−j−1

∣∣ ≥ κ2−2Hjr−(ε)vn
)

≤
N−1∑

j=J−n (ε)−L(ε)

2−jCM−2r−(ε)−2v−2
n

≤ C2−J
−
n (ε)+L(ε)M−2r−(ε)−2vn(H)−2.

and we obtain the tightness of v−1
n Bn thanks to the fact that 2−J

−
n (ε)v−2

n is bounded, see (22).

We now consider the tightness v−1
n V

(1)
n . Let M > 0. We have

PH,η
(
v−1
n V (1)

n ≥M
)
≤ I ′ + II

where

I ′ = PH,η
(
v−1
n V (1)

n ≥M, J∗n ≥ J−n (ε)− L(ε)
)

and where II is defined in (26). Recall that II ≤ ε + ϕn(ε) by Lemma 19. By definition, we also
have

Q̂J∗n,N−J∗n−1,n ≥ ν02J
∗
nn−1 on

{
J∗n ≥ J−n (ε)− L(ε)

}
.
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so that we get using also Proposition 16

I ′ ≤
N−1∑

j=J−n (ε)−L(ε)

PH,η
(
v−1
n |Q̂j+1,N−j−1,n −Qj+1,N−j−1| ≥Mν02jn−1

)

≤ C
N−1∑

j=J−n (ε)−L(ε)

M−2ν−2
0 2−2jn2v−2

n

(
n−2δ−22j−2N + n−1δ−12−2Hj−N

)

≤ CM−2ν−2
0 v−2

n

N−1∑
j=J−n (ε)−L(ε)

2−j + n2−2(H+1)j

≤ C ′M−2ν−2
0 v−2

n (2−J
−
n (ε) + n2−2(H+1)J−n (ε))

where C ′ can depend on ε. We conclude noticing that Equation (25) implies that v−2
n 2−J

−
n (ε) and

v−2
n n2−2(H+1)J−n (ε) are bounded.

We eventually prove the tightness of V (2)
n . First, notice that when v−1

n Bn ≤ M ′ for some
M ′ > 0, necessarily

2−2H −M ′vn ≤
QJ∗n+1,Nn−J∗n−1

QJ∗n,Nn−J∗n−1
≤ 2−2H +M ′vn.

For M ′ > 0, we have 2−2H −M ′vn > 0, at least when n is big enough since vn → 0 as n→∞. In
that case

QJ∗n,N−J∗n−1

QJ∗n+1,N−J∗n−1
≥ (2−2H +M ′vn)−1.

Let M > 0. It follows that

PH,η
(
v−1
n V (2)

n ≥M
)
≤ PH,η

(
v−1
n |Q̂J∗n,N−J∗n−1,n −QJ∗n,N−J∗n−1| ≥

MQ̂J∗n,N−J∗n−1,nQJ∗n,N−J∗n−1

QJ∗n+1,N−J∗n−1

)
≤ PH,η

(
|Q̂J∗n,N−J∗n−1,n −QJ∗n,N−J∗n−1| ≥

MQ̂J∗n,N−J∗n−1,n

2−2Hv−1
n +M ′

)
+ PH,η

(
v−1
n Bn ≥M ′

)
We can then repeat the proof for the tightness of v−1

n V
(1)
n like in Step 3 and we conclude by

noticing that 2−2Hv−1
n +M ′ is of the same order as v−1

n .

6.5. Completion of proof when δ ≥ n−1/(2H+1). Suppose now that δ ≥ n−1/(2H+1). We quickly
cover this case using the same arguments as in the first case. Note that here vn = δ1/2.

Recall that J∗n is defined by J∗n = max{2 ≤ j ≤ N − 1 : Q̂j,N−j−1,n ≥ ν02jn−1}. The following
estimate replaces Lemma 19 from the previous case.

Lemma 20. We have

sup
(H,η)∈D

PH,η(J∗n < N − 1)→ 0

Proof. Recall that ν0 < infH,η η
2κ0(H)22H so there exist a constant ι > 0 such that for any H, η,

ν0 − η2κ0(H)22H < −2ι. We have

PH,η(J∗n < N − 1) = PH,η(Q̂N−1,0,n ≤ ν0δ
2H/2) ≤ I + II
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where

I = PH,η(Q̂N−1,0,n −QN−1,0 ≤ (ν0 − κ0(H)η222H + ι)δ2H/2)

and II = PH,η(QN−1,0 ≤ (κ0(H)η222H − ι)δ2H/2).

Then we have by Proposition 16

I ≤ PH,η(Q̂N−1,0,n −QN−1,0 ≤ −ιδ2H/2)

≤ C
(
n−2δ−22−N + n−1δ−12−N(1+2H)

)
ι−2δ−4H

≤ C
(
n−2δ−(1+4H) + n−1δ−2H)

)
ι−2

since δ = 2−N . We show then that I → 0 uniformly over D as n→∞ using that δ ≥ n−1/(2H+1).
Then we have

II = PH,η(QN−1,0 − κ0(H)η222Hδ2H/2 ≤ −ιδ2H/2)

≤ Cδι−2

by Equation (22) and we can conclude since δ → 0 when n→∞. �

We can now prove tightness. We start with v−1
n Bn. We have

PH,η
(
v−1
n Bn ≥M

)
≤ PH,η

(∣∣∣ QN,0
QN−1,0

− 2−2H
∣∣∣ ≥Mδ1/2

)
+ P(J∗n < N − 1)

so that we can focus on the first probability by Lemma 20. Then by Proposition 15

PH,η
(∣∣∣ QN,0
QN−1,0

− 2−2H
∣∣∣ ≥Mδ1/2

)
≤ PH,η(|QN,0 − 2−2HQN−1,0| ≥Mδ1/2+2Hr−(ε)22H) + ε

since 2N = δ−1 by definition. Using also (22) we eventually obtain

PH,η
(∣∣∣ QN,0
QN−1,0

− 2−2H
∣∣∣ ≥Mδ1/2

)
≤ CM−2r−(ε)−2 + ε

and therefore we can show that v−1
n Bn is tight.

Concerning the term V
(1)
n , for M > 0 we have:

PH,η
(
v−1
n V (1)

n ≥M
)
≤ PH,η

(
|Q̂N,0,n −QN,0| ≥ 1

2Mν0δ
1/2+2H

)
+ PH,η(J∗n < N − 1)

since Q̂N−1,0,n ≥ 1
2ν0δ

2H on {J∗n = N − 1}. By Proposition 15 and using δn ≥ n−1/(2H+1), we
obtain

PH,η
(
v−1
n V (1)

n ≥M
)
≤ Cκ−2δ−4H−2n−2 + +PH,η(J∗n < N − 1)

≤ CM−2 + PH,η(J∗n < N − 1)

where and the tightness of v−1
n V

(1)
n follows.

We eventually deal with the tightness of n−1
n V

(2)
n . Proceeding as for the case δ ≤ n−1/(2H+1),

we have for M,M ′ > 0 and n big enough that PH,η
(
v−1
n V

(2)
n ≥M

)
is bounded by

PH,η
(
|Q̂J∗n,N−J∗n−1,n −QJ∗n,N−J∗n−1| ≥

MQ̂J∗n,N−J∗n−1,n

2−2Hv−1
n +M ′

)
+ PH,η

(
v−1
n Bn ≥M ′

)
.
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The first term is similar to V (1)
n since 2−2Hv−1

n + M ′ is of the same order as v−1
n . The second

term can be made as small as we want since v−1
n Bn is tight.

7. PROOF OF THEOREM 3

The proof of Theorem 3 is similar to that of Theorem 1. For conciseness, we only provide here
a result similar to Proposition 11. The same development as in Section 5 would then conclude the
proof of Theorem 3.

Recall that ||µ||TV = sup||f ||∞≤1 |
∫
fdµ| is the total variation of a signed measure µ. We also

denote Pnf the law of (Si/n)i given ηWH
t = f(t).

Proposition 21. Let f and g be two bounded functions. Then there exists c0 > 0 such that

||Pnf − Png ||TV ≤ c0
√
nec0(||f ||∞+||g||∞)||f − g||∞(27)

Moreover, there exists c1 > 0 and a universal nonincreasing positive function R such that

1− 1
2 ||P

n
f − Png ||TV ≥ R(ne3||f ||∞+3||g||∞ ||f − g||2∞)(28)

Proof. As in the proof of Proposition 11, let K(µ, ν) =
∫

log(dµdν ) dµ denote the Kullback-Leibler
divergence between two probability measures µ and ν. We also recall the Pinsker’s inequality
||µ− ν||2TV ≤ 2K(µ, ν).

Notice that (Si/n − S(i−1)/n)i has the same law as
( ∫ i/n

(i−1)/n
σ2
t dt
)1/2

ξi,n where the random

variables (ξi,n)i are independent standard Gaussian variables since WH and B are independent.
Therefore we have

K(Pnf ,Png ) ≤
n∑
i=1

B
((∫ i/n

(i−1)/n

ef(t)dt
)(∫ i/n

(i−1)/n

eg(t)dt
)−1)

.

where B(x) = x− ln(x)− 1. and Pinsker’s inequality yields

||Pnf − Png ||
2

TV
≤ 2

n∑
i=1

B
((∫ i/n

(i−1)/n

ef(t)dt
)(∫ i/n

(i−1)/n

eg(t)dt
)−1)

.

Notice then that for x > 0, B(x) ≤ (x− 1)2 + (1/x− 1)2 so that we get

||Pnf − Png ||
2

TV
≤

n∑
i=1

(∫ i/n
(i−1)/n

ef(t) − eg(t)dt∫ i/n
(i−1)/n

eg(t)dt

)2

+
(∫ i/n

(i−1)/n
eg(t) − ef(t)dt∫ i/n

(i−1)/n
ef(t)dt

)2

.

Moreover, ∫ i/n

(i−1)/n

eg(t)dt ≥ n−1e−||g||∞ and
∫ i/n

(i−1)/n

ef(t)dt ≥ n−1e−||f ||∞

so

||Pnf − Png ||
2

TV
≤ 2n2(e||f ||∞ + e||g||∞)

n∑
i=1

(∫ i/n

(i−1)/n

ef(t) − eg(t)dt
)2

By Jensen inequality, we obtain

||Pnf − Png ||
2

TV
≤ 2n(e||f ||∞ + e||g||∞)

n∑
i=1

∫ i/n

(i−1)/n

(
ef(t) − eg(t)

)2

dt

≤ 2n(e||f ||∞ + e||g||∞)||ef − eg||2∞.
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Notice finally that ||ef − eg||∞ ≤ emax(||f ||∞,||g||∞)||f − g||∞ so that we obtain

||Pnf − Png ||
2

TV
≤ 2n(e||f ||∞ + e||g||∞)e2 max(||f ||∞,||g||∞)||f − g||2∞
≤ 2ne3||f ||∞+3||g||∞ ||f − g||2∞

which proves (27). For (28), we proceed exactly as for (13) and the proof is omitted here. �

8. PROOF OF THE RESULTS OF SECTION 3.3

8.1. Notation and organisation of the proofs. We start by introducing some useful notations. Let
b ≥ 1 and s ≥ 1. Consider r ∈ {1, . . . , 2S}s such that

∑
i ri = b. If b = 1, we write

WH,r
j,p,k,l = 2j+p

∫ k2−j+(l+1)2−j−p

k2−j+l2−j−p
WH
u du =

∫ 1

0

WH
k2−j+(l+u)2−j−pdu

and if b ≥ 2, we write

WH,r
j,p,k,l =

s∏
i=1

2j+p

ri!

∫ k2−j+(l+1)2−j−p

k2−j+l2−j−p
(WH

u −WH
k2−j+l2−j−p)ridu.

=
1

r!

∫
[0,1]s

s∏
i=1

(WH
k2−j+(l+ui)2−j−p

−WH
k2−j+l2−j−p)ridu.

where r! =
∏s
i=1 ri!. Define also WH,r

p,l = WH,r
0,p,0,l. Since WH,r

j,p,k,l = WH,r
j,p,0,2pk+l, we get by self-

similarity of the fractional Brownian motion(
WH,r
j,p,0,l

)
r,l

=
(

2−jH
∑
i riWH,r

p,l

)
r,l

in distribution.(29)

We fix 0 < H∗ < H− such that (2S + 1)H∗ ≥ H+. Then using Proposition 33 and notations
introduced within this proposition, we can decompose dj,k,p = gj,k,p + zj,p,k where

gj,k,p = 2−p−j/2
2p−1∑
l=0

2S∑
b=1

ηb
2S∑
s=1

(−1)s−1

s

∑
r∈{1,...,2S}s∑

j rj=b

WH,r
j,p,k+1,l −WH,r

j,p,k,l,(30)

zj,p,k = 2−p−j/22−(j+p)(2S+1)H∗
2p−1∑
l=0

Z((k + 1)2p + l, 2−j−p)− Z(k2p + l, 2−j−p).(31)

Then we write Gj,p =
∑
k g

2
j,p,k. The proofs of the results of Section 3.3 follow from similar

results on G together with an appropriate control of the error terms arising from z. Therefore the
proofs will be split as follows. First, in Section 8.2, will be gathered useful computational lemmas
used throughout the proofs. Then in Section 8.3, we present the proof of Proposition 4. In Section
8.4 are gathered the proofs of the results concerning the functions κ and finally, in Section 8.5 we
prove Proposition 7.

In the following, we will also use the notation
∑

to indicate a sum over all indexes 2 ≤
b1, b2 ≤ 2S, 1 ≤ s1, s2 ≤ 2S and multi-indexes r1 ∈ {1, . . . , S}s1 and r2 ∈ {1, . . . , S}s2 such
that

∑
j r1j = b1 and

∑
j r2j = b2. Additional subscripts to

∑
will denote additional constraints

over the indexes.
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8.2. Computational lemmas.

Lemma 22.

E
[
g2
j,p,k

]
= 2−j

S∑
a=1

η2a2−2jaHκp,a(H) +O(2−j(2S+1)H−j)(32)

where the O is uniform over H , j,k and p and where κp,a are explicit functions of H given by

κp,a(H) = 2−2p
∑
|l|<2p

∑
b1+b2=2a

(−1)s1+s2

s1s2
(2p − |l|)E

[(
WH,r1
p,2p −WH,r1

p,0

)(
WH,r2
p,2p+l −WH,r2

p,l

)]
.(33)

Proof. Using (29), we have

E
[
g2
j,p,k

]
=

1

22p+j

2p−1∑
l1,l2=0

∑
ηb1+b2

(−1)s1+s2

s1s2
E
[(
WH,r1
j,p,k+1,l1

−WH,r1
j,p,k,l1

)(
WH,r2
j,p,k+1,l2

−WH,r2
j,p,k,l2

)]

=
1

22p+j

2p−1∑
l1,l2=0

∑ (−1)s1+s2ηb1+b2

s1s22j(b1+b2)H
E
[(
WH,r1
p,2p+l1

−WH,r1
p,l1

)(
WH,r2
p,2p+l2

−WH,r2
p,l2

)]
.

By stationarity of the fractional Brownian motion, we also have

E
[(
WH,r1
p,2p+l1

−WH,r1
p,l1

)(
WH,r2
p,2p+l2

−WH,r2
p,l2

)]
= E

[(
WH,r1
p,2p −WH,r1

p,0

)(
WH,r2
p,2p+l2−l1 −WH,r2

p,l2−l1

)]
.

Thus writing l = l2 − l1, we get

E
[
g2
j,p,k

]
=

1

22p+j

∑
|l|<2p

∑ (−1)s1+s2ηb1+b2

s1s22j(b1+b2)H
(2p − |l|)E

[(
WH,r1
p,2p −WH,r1

p,0

)(
WH,r2
p,2p+l −WH,r2

p,l

)]
.

We can expanding the expectation E
[(
WH,r1
p,2p −WH,r1

p,0

)(
WH,r2
p,2p+l −WH,r2

p,l

)]
by linearity. Since

the expectation of the product of an odd number of (centred) Gaussian variables is null, we have

E
[(
WH,r1
p,2p −WH,r1

p,0

)(
WH,r2
p,2p+l −WH,r2

p,l

)]
= 0

if b1 + b2 is odd. Hlder’s inequality also ensures that when b1 + b2 is even, this expectation is
bounded uniformly over p, H , l, r1 and r2. �

Lemma 23. For any j, p ≥ 0 and k ≤ 2j , we have

E
[
g4
j,p,k

]
≤ C2−j(4H+2).

Proof. Recall that g is defined in Equation 32 so that

g4
j,k,p ≤ C2−p−2j

2p−1∑
l=0

2S∑
b=1

η4b
2S∑
s=1

1

s4

∑
r∈{1,...,2S}s∑

j rj=b

(
WH,r
j,p,k+1,l −WH,r

j,p,k,l

)4
.

We conclude using Lemma 24. �

Lemma 24. For any j, p ≥ 0, k ≤ 2j , l ≤ 2p, 1 ≤ s ≤ 2S, 1 ≤ b ≤ 2S and r ∈ {1, . . . , S}s such that∑
j rj = b, we have

E
(
WH,r
j,p,k+1,l −WH,r

j,p,k,l

)4 ≤ {C2−4jH if b = 1

C2−4(j+p)Hb otherwise
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Proof. Remark that since only there are only finitely many indexes s,b and multi-index r satisfying
the conditions of Lemma 24, we can supposed these index fixed and show the result for some
constant C uniform in j, p and k. Suppose first that b = 1, then

E
[(
WH,r
j,p,k+1,l −WH,r

j,p,k,l

)4]
= E

[( ∫ 1

0

WH
(k+1)2−j+(l+u)2−j−p −W

H
k2−j+(l+u)2−j−pdu

)4]
≤
[ ∫ 1

0

E
(
WH

(k+1)2−j+(l+u)2−j−p −W
H
k2−j+(l+u)2−j−p

)4
du
]

= 2−4jH .

Suppose now that b > 1. Then we have E
(
WH,r
j,p,k+1,l−W

H,r
j,p,k,l

)4 ≤ E
[
(WH,r

j,p,k+1,l)
4+(WH,r

j,p,k,l)
4
]
.

We only show the bound for E
[
(WH,r

j,p,k,l)
4
]
, the other term is treated similarly. Then by Hlder and

Jensen’s inequalities

E
[(
WH,r
j,p,k,l

)4]
= E

[( 1

r!

∫
[0,1]s

s∏
i=1

(WH
k2−j+(l+ui)2−j−p

−WH
k2−j+l2−j−p)ridu

)4]
≤ 1

r!4

∫
[0,1]s

E
[ s∏
i=1

(WH
k2−j+(l+ui)2−j−p

−WH
k2−j+l2−j−p)4ri

]
du

≤ 1

r!4

∫
[0,1]s

s∏
i=1

E
[
(WH

k2−j+(l+ui)2−j−p
−WH

k2−j+l2−j−p)4ris
]1/s

du

≤ C
∫

[0,1]s

s∏
i=1

(ui2
−j−p)4riHdu

≤ C2−(j+p)4Hb.

�

Lemma 25.∣∣∣Cov(g2
j,k1,p, g

2
j,k2,p)

∣∣∣ ≤ C2−j(2+4H)
(

(1 + |k1 − k2|)4(H−1) + 2−2jH(1 + |k1 − k2|)2(H−1)
)

Proof. By Lemma 23, we can suppose without loss of generality that |k1 − k2| ≥ 4. By symmetry,
we also assume k2 > k1. Then recall that we have

g2
j,k,p = 2−2p−j

2p−1∑
l1,l2=0

∑
ηb1+b2

(−1)s1+s2

s1s2
(WH,r1

j,p,k+1,l1
−WH,r1

j,p,k,l1
)(WH,r2

j,p,k+1,l2
−WH,r2

j,p,k,l2
)

so that we can develop Cov
[
g2
j,p,k1

, g2
j,p,k2

]
as

2−4p−2j
∑

ηb1+b2+b3+b4
(−1)s1+s2+s3+s4

s1s2s3s4
Cov

[
(WH,r1

j,p,k1+1,l1
−WH,r1

j,p,k1,l1
)(WH,r2

j,p,k1+1,l2
−WH,r2

j,p,k1,l2
),

(WH,r3
j,p,k2+1,l3

−WH,r3
j,p,k2,l3

)(WH,r4
j,p,k2+1,l4

−WH,r4
j,p,k2,l4

)
]

where the sum is taken over all indexes l1, l2, l3, l4, b1, b2, b3, b4, and multi-indexes r1, r2, r3, r4
such that

∑
i r1i = b1, r2i = b2,

∑
i r3i = b3,

∑
i r4i = b4. Note that the proof is completed once

we can show that the covariance appearing inside this sum is dominated by C2−4jH(1 + |k1 −
k2|)2(H−1), with C uniform in all indexes. We consider separately the cases b· = 1 and b· > 1.
For conciseness, we will only deal with the following two cases: b1 = b2 = b3 = b4 = 1 and
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b1, b2, b3, b4 > 1. The other cases should be treated similarly. Let’s start with the first case. Then
by definition we have

WH,r
j,p,k+1,l −WH,r

j,p,k,l =

∫ 1

0

WH
(k+1)2−j+(l+u)2−j−p −W

H
k2−j+(l+u)2−j−pdu.

Autosimilarity and stationarity of the fractional Brownian motion (increments), we get

Cov
[
(WH,r1

j,p,k1+1,l1
−WH,r1

j,p,k1,l1
)(WH,r2

j,p,k1+1,l2
−WH,r2

j,p,k1,l2
),

(WH,r3
j,p,k2+1,l3

−WH,r3
j,p,k2,l3

)(WH,r4
j,p,k2+1,l4

−WH,r4
j,p,k2,l4

)
]

= 2−4jH

∫
[0,1]4

Cov
[(
WH

1+(l1+u1)2−p −W
H
(l1+u1)2−p

)(
WH

1+(l2+u2)2−p −W
H
(l2+u2)2−p

)
,(

WH
(τ+1)+(l3+u2)2−p −W

H
τ+(l3+u2)2−p

)(
WH

(τ+1)+(l4+u3)2−p −W
H
τ+(l4+u4)2−p

)]
du

where τ = k2 − k1. We use then (44) so that the covariance in the integral reduces to

E(l1, l3, u1, u3)E(l2, l4, u2, u4) + E(l1, l4, u1, u4)E(l2, l3, u2, u3)

where

E(l,m, u, v) = E
[(
WH

1+(l+u)2−p −W
H
(l+u)2−p

)(
WH

(τ+1)+(m+v)2−p −W
H
τ+(m+v)2−p

)]
= E

[
WH

1

(
WH

(τ+1)+(m−l+v−u)2−p −W
H
τ+(m−l+v−u)2−p

)]
= DH(τ + (m− l + v − u)2−p)

andDH(x) = 1
2 (|x+1|2H−2|x|2H+|x−1|2H). By Taylor’s formula, we get: |DH(x)| ≤ C|x−1|2H−2

provided x ≥ 1. For x ≥ 3, we have even |DH(x)| ≤ C|x + 1|2H−2, for another constant C,
independent of H . Since (m− l + v − u)2−p ≥ −1 and since τ ≥ 4, we have

E(l,m, u, v) ≤ C|τ |2H−2

Therefore,

|E(l1, l3, u1, u3)E(l2, l4, u2, u4) + E(l1, l4, u1, u4)E(l2, l3, u2, u3)| ≤ C|τ |4H−4

which yields to∣∣∣Cov
[
(WH,r1

j,p,k1+1,l1
−WH,r1

j,p,k1,l1
)(WH,r2

j,p,k1+1,l2
−WH,r2

j,p,k1,l2
),

(WH,r3
j,p,k2+1,l3

−WH,r3
j,p,k2,l3

)(WH,r4
j,p,k2+1,l4

−WH,r4
j,p,k2,l4

)
]∣∣∣ ≤ C|τ |4H−4.

We now suppose that b1, b2, b3, b4 ≥ 2. In that case, we develop linearly each difference
WH,r·
j,p,k·+1,l·

−WH,r·
j,p,k·,l·

in the covariance. This let us with 16 covariances of the form

Cov
[
WH,r1
j,p,k′1,l1

WH,r2
j,p,k′′1 ,l2

,WH,r3
j,p,k′2,l3

WH,r4
j,p,k′′2 ,l4

]
with k′q, k′′q ∈ {kq, kq + 1}. By definition, this covariance equals

1

r1!r2!r3!r4!
Cov

[ ∫
[0,1]s1

s1∏
i=1

(WH
k′12−j+(l1+ui)2−j−p

−WH
k′12−j+l12−j−p)r1idu

∫
[0,1]s2

s2∏
i=1

(WH
k′′1 2−j+(l2+ui)2−j−p

−WH
k′′1 2−j+l22−j−p)r2idu,
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[0,1]s3

s3∏
i=1

(WH
k′22−j+(l3+ui)2−j−p

−WH
k′22−j+l32−j−p)r3idu

∫
[0,1]s4

s4∏
i=1

(WH
k′′2 2−j+(l4+ui)2−j−p

−WH
k′′2 2−j+l42−j−p)r4idu

]
.

Therefore, it is enough to show that the covariance between
s1∏
i=1

(WH
k′12−j+(l1+u1,i)2−j−p

−WH
k′12−j+l12−j−p)r1i

s2∏
i=1

(WH
k′′1 2−j+(l2+u2,i)2−j−p

−WH
k′′1 2−j+l22−j−p)r2i

and
s3∏
i=1

(WH
k′22−j+(l3+u3,i)2−j−p

−WH
k′22−j+l32−j−p)r3i

s4∏
i=1

(WH
k′′2 2−j+(l4+u4,i)2−j−p

−WH
k′′2 2−j+l42−j−p)r4i

is bounded by C2−4jH(1 + |k1 − k2|)4(H−1) uniformly for (u1, . . . , u4) ∈ [0, 1]s1+···+s4 . We aim at
applying Proposition 35 to prove this result. Notice that

E(WH
k′12−j+(l1+u1,i)2−j−p

−WH
k′12−j+l12−j−p)2 ≤ 2−2(j+p)H

and

E(WH
k′12−j+(l1+u1,i)2−j−p

−WH
k′12−j+l12−j−p)(WH

k′22−j+(l3+u3,i)2−j−p
−WH

k′22−j+l32−j−p)

= 2−2jH−1(|k′2 − k′1 + 2−p(l3 − l1 + u3)|2H − |k′2 − k′1 + 2−p(l3 − l1)|2H

+ |k′2 − k′1 + 2−p(l3 − l1 − u1)|2H − |k′2 − k′1 + 2−p(l3 − l1 + u3 − u1)|2H).

In addition, we have k′2−k′1 ≥ 3 and also l3− l1 +u3, l3− l1, l3− l1−u1 and l3− l1 +u3−u1 ≥ 2p.
Thus we can apply Taylor’s formula and we develop | · |2H around k′2− k′1 + 2−p(l3− l1). The last
expression reduces to

2−2jH−2pH(2H − 1)
(
u2

3

∫ 1

0

(1− t)|k′2 − k′1 + 2−p(l3 − l1 + tu3)|2H−2dt

+ u2
1

∫ 1

0

(1− t)|k′2 − k′1 + 2−p(l3 − l1 − tu1)|2H−2dt

− (u3 − u1)2

∫ 1

0

(1− t)|k′2 − k′1 + 2−p(l3 − l1 + t(u3 − u1))|2H−2dt
)
.

Since k′2 − k′1 ≥ 3, this is bounded in absolute value by C2−2jH−2p|k′2 − k′1|2H−2. All other
variances and covariances of interest to apply Proposition 35 are controled similarly and we can
apply this Proposition. Therefore, the covariance between

s1∏
i=1

(WH
k′12−j+(l1+u1,i)2−j−p

−WH
k′12−j+l12−j−p)r1i

s2∏
i=1

(WH
k′′1 2−j+(l2+u2,i)2−j−p

−WH
k′′1 2−j+l22−j−p)r2i

and
s3∏
i=1

(WH
k′22−j+(l3+u3,i)2−j−p

−WH
k′22−j+l32−j−p)r3i

s4∏
i=1

(WH
k′′2 2−j+(l4+u4,i)2−j−p

−WH
k′′2 2−j+l42−j−p)r4i

]
is bounded by≤ C2−2(1−H)p|k2−k1|2H−22−(b1+b2+b3+b4)(j+p)H , so we can conclude this proof. �



STATISTICAL INFERENCE FOR ROUGH VOLATILITY: MINIMAX THEORY 31

Lemma 26. For any j, p ≥ 0 and k ≤ 2j , we have

E[d2
j,p,k] ≤ C2−j(2H+1).

Proof. Recall z is defined in Equation (31). We have

E[z2
j,p,k] ≤ C2−2p−j2−2(j+p)(2S+1)H∗

2p+1−1∑
l=0

E[Z(k2p + l, 2−j−p)2] ≤ C2−j−2j(2S+1)H∗

by Proposition 33. Moreover, E[g2
j,p,k] ≤ C2−j(2H+1) by Lemma 22 so that we get

E[d2
j,p,k] ≤ E[g2

j,p,k] + E[z2
j,p,k]

≤ C(2−j(2H+1) + 2−j−2j(2S+1)H∗) ≤ C2−j(2H+1)

since (2S + 1)H∗ ≥ H+ ≥ H . �

8.3. Asymptotic behaviour of Q. We now prove Proposition 4. The proof is split in two parts. In
the first one, we will show a result similar to Proposition 4 directly on G. In the second, we will
show how this result extends to Q.

First, summing Equation (32) over k gives

E
[
Gj,p

]
=

S∑
a=1

η2a2−2aHjκp,a(H) +O(2−j(2S+1)H))

where the O is uniform over H , j, k and p. Moreover, by Lemma 25, we have

Var
[
Gj,p

]
= Var

[∑
k

g2
j,p,k

]
=
∑
k1,k2

Cov
[
g2
j,p,k1 , g

2
j,p,k2

]
≤ C2−j(2+4H)

∑
k1,k2

(1 + |k1 − k2|)4(H−1) + 2−2jH(1 + |k1 − k2|)2(H−1)

≤ C2−j(2+4H)
∑
|τ |<2j

(2j − |τ |)((1 + |τ |)4(H−1) + 2−2jH(1 + |τ |)2(H−1))

≤ C2−j(1+4H)
2j∑
τ=1

τ4(H−1) + 2−2jHτ2(H−1)

≤ C2−j(1+4H)(1 + 2−2jH2j(2H−1)) ≤ C2−j(1+4H).

Thus, bias-variance decomposition ensures that

E
[(
Gj,p −

S∑
a=1

η2a2−2aHjκp,a(H)
)2]

= Var
[
Gj,p

]
+
(
E[Gj,p]−

S∑
a=1

η2a2−2aHjκp,a(H)
)2

≤ C2−j(1+4H) +O(2−2j(2S+1)H))

since 2(2S + 1)H ≥ 1 + 4H (as S ≥ 1/(4H−) + 1/2), we obtain

E
[(
Gj,p −

S∑
a=1

η2a2−2aHjκp,a(H)
)2] ≤ C2−j(1+4H).
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We focus now on the difference E
[(
Qj,p−Gj,p

)2]
. By Hlder and Jensen’s inequalities, we have

E
[(
Qj,p −Gj,p

)2]
= E

[(∑
k

zj,p,k(zj,p,k + 2gj,p,k)
)2]

≤ C2j
(
E
[∑

k

z4
j,p,k

]
E
[∑

k

(
zj,p,k + 2gj,p,k

)4])1/2

.

Recall z is defined in Equation (31). By Hlder’s inequality and by the bound obtained on the
variables Z in Proposition 33, we have

E[z4
j,p,k] ≤ C2−2j2−4j(2S+1)H∗ .

Moreover, E[g4
j,p,k] ≤ C2−j(4H+2) by Lemma 23 so that we get

E
[(
Qj,p −Gj,p

)2]
≤ C2j · 2−j2−2j(2S+1)H∗ ·

(
2−2j2−4j(2S+1)H∗ + 2−j(4H+2)

)1/2

≤ C2−j(1+4H).

since (2S + 1)H∗ ≥ H+ ≥ H .

8.4. Behaviour of the function κp,a.

Bounds on κp,1. We first deal with the functions κp,1. From (33), we get that

κp,1(H) = 2−2p
∑
|l|<2p

(2p − |l|)E
[(
WH,1
p,2p −WH,1

p,0

)(
WH,1
p,2p+l −WH,1

p,l

)]
= 2−2p

∑
|l|<2p

(2p − |l|)
∫ 1

0

∫ 1

0

E
[(
WH

1+u2−p −W
H
u2−p

)(
WH

1+(l+v)2−p −W
H
(l+v)2−p

)]
dudv

= 2−2p
∑
|l|<2p

(2p − |l|)
∫ 1

−1

(1− |w|)ϕH((l + w)2−p)dw

where ϕH(x) = 1
2

(
|x + 1|2H − 2|x|2H + |x − 1|2H

)
. Notice that ϕH is continuous and there exists

C independent of H such that |ϕH(x) − ϕH(y)| ≤ C22H∧1 and |ϕ(x)| ≤ C for any −1 ≤ x, y ≤ 1.
We define κp,1(H) =

∫ 1

−1
(1− |x|)ϕH(x)dx and we will show that κp,1 converges towards κ∞,1 as

p→∞ uniformly on H . First, we rewrite κ∞,1 as

κp,1(H) = 2−p
∑
|l|<2p

(1− |l2−p|)ϕH(l2−p)

+ 2−2p
∑
|l|<2p

(2p − |l|)
∫ 1

−1

(1− |w|)(ϕH((l + w)2−p)− ϕH(l2−p))dw

and we study both sums separately. For the first one, we have∣∣∣κ∞,1(H)− 2−p
∑
|l|<2p

(1− |l2−p|)ϕH(l2−p)
∣∣∣

=
∣∣∣2−p 2p−1∑

l=−2p

∫ (l+1)2−p

l2−p
(1− |x|)ϕH(x)− (1− |l2−p|)ϕH(l2−p)dx

∣∣∣
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≤ 2−p
2p−1∑
l=−2p

∫ (l+1)2−p

l2−p
(1− |x|)

∣∣∣ϕH(x)− ϕH(l2−p)
∣∣∣+ ϕH(l2−p)

∣∣∣(1− |x|)− (1− |l2−p|)
∣∣∣dx

≤ C2−p
2p−1∑
l=−2p

∫ (l+1)2−p

l2−p
(1− |x|)

∣∣∣x− l2−p∣∣∣2H∧1

+ ϕH(l2−p)
∣∣∣x− l2−p∣∣∣dx

≤ C2−p(2H∧1).

For the second sum,

2−2p
∣∣∣ ∑
|l|<2p

(2p − |l|)
∫ 1

−1

(1− |w|)(ϕH((l + w)2−p)− ϕH(l2−p))dw
∣∣∣

≤ 2−2p
∑
|l|<2p

(2p − |l|)
∫ 1

−1

(1− |w|)
∣∣∣ϕH((l + w)2−p)− ϕH(l2−p)

∣∣∣dw
≤ C2−2p

∑
|l|<2p

(2p − |l|)
∫ 1

−1

(1− |w|)|w2−p|2H∧1dw

≤ C2−p(2H∧1).

Thus, κp,1(H) → κp,∞(H) uniformly. But κp,∞ is continuous from its definition and we easily
check that κ∞,1(H) = E

[( ∫ 1

0
WH
u+1 −WH

u du
)2]

> 0 so κ∞,1(H) is bounded below and above by
positive constants. Since each κp,1 is also a positive continuous function, it is also bounded below
and above by positive constants. The uniform convergence ensures we can conclude.

Bounds on κp,a. Suppose a ≥ 2. By (33), we have

|κp,a(H)| ≤ C sup
|l|<2p,b1+b2=2a
s1,s2,r1,r2,∑

i r1i=b1,
∑
i r2i=b2

∣∣∣E[(WH,r1
p,2p −WH,r1

p,0

)(
WH,r2
p,2p+l −WH,r2

p,l

)]∣∣∣
for some constant C independent of a, p and H . We also have∣∣∣E[(WH,r1

p,2p −WH,r1
p,0

)(
WH,r2
p,2p+l −WH,r2

p,l

)]∣∣∣ ≤ E
[(
WH,r1
p,2p −WH,r1

p,0

)2]1/2E[(WH,r2
p,2p+l −WH,r2

p,l

)2]1/2
≤ C(2−pHb1 + 1b1=1)(2−pHb2 + 1b2=1)

by Lemma 24. But since b1 + b2 = 2a ≥ 4 and b1, b2 ≥ 1, we obtain the result.

Bounds on κ′p,a. Recall that is defined in Equation (33) by

κp,a(H) = 2−2p
∑

|l|<2p,b1+b2=2a,s1,s2,r1,r2,∑
i r1i=b1,

∑
i r2i=b2

(−1)s1+s2

s1s2
(2p − |l|)Er1,r2,p,l(H)

where

Er1,r2,p,l(H) = E
[(
WH,r1
p,2p −WH,r1

p,0

)(
WH,r2
p,2p+l −WH,r2

p,l

)]
.

Therefore Lemma 6 is proven once we can prove that the functions E′r1,r2,p,l exist and are
bounded on [H−, H+] by a constant independent of p and l. (The dependence is r1 and r2 does
not matter since there are finitely many possible indexes r1 and r2 appearing in the sum).
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We consider separately the cases b1 = 1 and b1 > 1 and the cases b2 = 1 and b2 > 1. In the
following, we only deal with b1 = b2 = 1 and b1, b2 > 1. The two others cases, b1 = 1, b2 > 1 and
b1 > 1, b2 = 1 are treated with the same methods.

Suppose first that b1 = b2 = 1. Then r1 = r2 = 1 and we get

Er1,r2,p,l(H) = E
[ ∫ 1

0

WH
1+u2−p −W

H
u2−pdu

∫ 1

0

WH
1+(l+v)2−p −W

H
(l+v)2−pdv

]
=

∫ 1

0

∫ 1

0

E
[
(WH

1+u2−p −W
H
u2−p)(WH

1+(l+v)2−p −W
H
(l+v)2−p)

]
dudv

=
1

2

∫ 1

0

∫ 1

0

2
∣∣∣ l + v − u

2p

∣∣∣2H − ∣∣∣ l + v − u
2p

− 1
∣∣∣2H − ∣∣∣ l + v − u

2p
+ 1
∣∣∣2Hdudv

=

∫ 1

−1

F (w,H)dw

where F (w,H) = (1−|w|)(|(l+w)2−p|2H−|1+(l+w)2−p|2H). We now prove that E′r1,r2,p,l(H) =∫ 1

−1
∂HF (w,H)dw. Note that

• For any H , w 7→ F (w,H) is integrable since |F (w,H)| is bounded uniformly on [−1, 1] ×
[H−, H+].
• For anyw,H 7→ F (w,H) is differentiable since x 7→ |a|x is always differentiable, whenever
a = 0 (this function is constant) or a 6= 0 (this function is ex ln |a|). In both cases, the
derivative of x 7→ |a|x is x 7→ |a|x ln |a|, with the convention that 0 × ln(0) = 0. Therefore
we get

∂HF (w,H) = (1− |w|)
(∣∣∣ l + w

2p

∣∣∣2H ln
∣∣∣ l + w

2p

∣∣∣− ∣∣∣1 +
l + w

2p

∣∣∣2H ln
∣∣∣1 +

l + w

2p

∣∣∣)
• | l+w2p | ≤ 2 and |1 + l+w

2p | ≤ 2 so | l+w2p |
2H ≤ 4 and |1 + l+w

2p |
2H ≤ 4. Moreover, x 7→ x ln(x) is

bounded by a constant C on [0, 4] so that

|∂HF (w,H)| ≤ 2C(1− |w|)/(2H) ≤ C/H−(34)

which is integrable on [−1, 1].
Therefore we can differentiate under the integral sign and we obtain

E′r1,r2,p,l(H) =

∫ 1

−1

∂HF (w,H)dw

=

∫ 1

−1

(1− |w|)
(∣∣∣ l + w

2p

∣∣∣2H ln
∣∣∣ l + w

2p

∣∣∣− ∣∣∣1 +
l + w

2p

∣∣∣2H ln
∣∣∣1 +

l + w

2p

∣∣∣)dw.
Using (34), |E′r1,r2,p,l(H)| ≤ 2C/H− where C does not depend on p or l so we can conclude.

We now consider the case b1 > 1 and b2 > 1. In that case, we decompose Er1,r2,p,l(H) as
E

(1)
r1,r2,p,l

(H)− E(2)
r1,r2,p,l

(H)− E(3)
r1,r2,p,l

(H) + E
(4)
r1,r2,p,l

(H) with

E
(1)
r1,r2,p,l

(H) = E
[
WH,r1
p,0 WH,r2

p,l

]
, E

(2)
r1,r2,p,l

(H) = E
[
WH,r1
p,0 WH,r2

p,2p+l

]
,

E
(3)
r1,r2,p,l

(H) = E
[
WH,r1
p,2p W

H,r2
p,l

]
, E

(4)
r1,r2,p,l

(H) = E
[
WH,r1
p,2p W

H,r2
p,2p+l

]
.
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Each of these four functions should be studied separately. For conciseness, we only detail the
proof for E(1)

r1,r2,p,l
(H). By definition, we have

E
(1)
r1,r2,p,l

(H) = E
[
WH,r1
p,0 WH,r2

p,l

]
= E

[ ∫
[0,1]s1

s1∏
i=1

(WH
ui )

r1idu

∫
[0,1]s2

s1∏
j=1

(WH
(l+vj)2−p

−WH
l2−p)r2jdv

]
=

∫
[0,1]s1

∫
[0,1]s2

E
[ s1∏
i=1

(WH
ui )

r1i

s2∏
j=1

(WH
(l+vj)2−p

−WH
l2−p)r2j

]
dudv.

We aim at applying Theorem 34 to compute E
[∏s1

i=1(WH
ui )

r1i
∏s2
j=1(WH

(l+vj)2−p
− WH

l2−p)r2j
]
.

Note that this expectation can be rewritten as E
[∏b1+b2

k=1 Xk

]
with either Xk = XH

k (w) = WH
wk

if k ≤ b1 and Xk = XH
k (w) = WH

(l+wk)2−p − WH
l2−p otherwise, where w is the vector obtained

concatenating

(u1, · · · , u1︸ ︷︷ ︸
r11 times

, u2, · · · , u2︸ ︷︷ ︸
r12 times

, · · · , · · · , us1 , · · · , us1︸ ︷︷ ︸
r1s1 times

)

and the corresponding vector with v. Thus Theorem 34 yields

E
[ s1∏
i=1

(WH
ui )

r1i

s2∏
j=1

(WH
(l+vj)2−p

−WH
l2−p)r2j

]
=
∑
P

∏
(i,j)∈P

E(Xi(w)Xj(w)).

Since there a finitely many 2-partitions P , it is enough to prove that for a given partition of
{1, · · · , b1 + b2}, the application ẼP defined by

ẼP (H) =

∫
[0,1]s1+s2

∏
(i,j)∈P

E(XH
i (w)XH

j (w))dw

is differentiable and its derivative is bounded uniformly over p and l. Notice that each term
E(XH

i (w)XH
j (w)) is bounded and has a derivative with respect to H uniformly bounded over

w ∈ [0, 1]b1+b2 (using explicit computations similar to the case b1 = b2 = 1). Therefore (H,w) 7→∏
(i,j)∈P E(XH

i (w)XH
j (w)) is differentiable with respect to H and its derivative is given by∏

(i0,j0)∈P

∂H
(
E(XH

i0 (w)XH
j0 (w))

) ∏
(i,j)∈P\{(i0,j0)}

E(XH
i (w)XH

j (w))

which is also uniformly bounded over w ∈ [0, 1]b1+b2 and we can conclude.

8.5. Proof of Proposition 7. Let J0 and N be two arbitrary integers and let r > 0. We have

PH,η
(

inf
J0≤j≤N−1

22jHQj,N−j−1 ≤ r
)
≤

N−1∑
j=J0

PH,η(22jHQj,N−j−1 ≤ r)

≤
N−1∑
j=J0

PH,η
(
Qj,N−j−1 −

S∑
a=1

η2a2−2aHjκN−j−1,a(H) ≤ r2−2jH −
S∑
a=1

η2a2−2aHjκN−j−1,a(H)
)
.
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Notice then that

r2−2jH −
S∑
a=1

η2a2−2aHjκN−j−1,a(H) ≤ r2−2jH − (η2
− ∧ 1)2−2Hjc−,1 +

c·,S2S

2
2−4Hj

by Equations (5) and (6). Since N − j − 1 ≥ p0, we can take r < r0 small enough and J0 > big
enough so that r2−2jH − (η2

− ∧ 1)2−2Hjc−,1 + c·,S2−3H(N−j−1) < −c02−2jH for some absolute
constant c0 > 0. Proposition 4 and Markov inequality finally gives

PH,η
(

inf
J0≤j≤N−1

22jHQj,N−j−1 ≤ r
)
≤ C

N−1∑
j=J0

2−j ≤ C2−J0 ≤ ε

provided J0 is big enough.

Similarly, we have

r2−2jH −
S∑
a=1

η2a2−2aHjκN−j−1,a(H) ≥ r2−2jH − (η2
+ ∨ 1)2−2Hjc+,1 −

c·,S2S

2
2−4Hj

so we can conclude following the same reasoning that

PH,η
(

sup
J0≤j≤N−1

22jHQj,N−j−1 ≥ r
)
≤ ε

provided r is large enough and J0 is large enough.

8.6. Proof of Lemma 9. By definition,|B(S)
j,p (η1, H1)−B(S)

j,p (η2, H2)| is bounded by

S∑
a=2

η2a
1 |2−2aH1jκp,a(H1)− 2−2aH2jκp,a(H2)|+ 2−2aH2jκp,a(H2)|η2a

1 − η2a
2 |.

Moreover, t 7→ t2a is differentiable with derivative t 7→ 2at2a−1 which is uniformly bounded
on [η−, η+]. Similarly, t 7→ 2−2atjκp,a(t) is differentiable with derivative

t 7→ 2−2atj(−2aj log(2)κp,a(t) + κ′p,a(t)).

Its absolute value is bounded by Cj2−2atj by Lemma 6. Since 2 ≤ a ≤ S, we get

|B(S)
j,p (H1, η1)−B(S)

j,p (H2, η2)| ≤ C(j2−4(H1∧H2)j |H1 −H2|+ 2−4H2j |η1 − η2|).

9. PROOF OF THEOREM 10

9.1. Outline and completion of proof. Our estimator is heavily based on the estimation of the
energy levels through the quantities Q̂j,p. We quantify the error Q̂j,p − Qj,p in the following
Proposition

Proposition 27. We have

EH,η
[(
Q̂j,p −Qj,p

)2] ≤ C(2−2p−j + 2−j(2H+1)−p)

The proof of Theorem 10 is then an application of the following four propositions, proved in
dedicated Sections.

Proposition 28. Define v(0)
n = v

(0)
n (H) = n−2H ∨ n−1/(4H+2). Then (v

(0)
n )−1|Ĥ(0)

n −H| is bounded in
probability uniformly over D.
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Recall that this first estimator is used to derive a new adaptive level choice ĵn. Indeed, we have

Corollary 29.

PH,η
(
ĵn ∈

{⌊
1

2H+1 log2(n)
⌋
− 1,

⌊
1

2H+1 log2(n)
⌋})
→ 1

uniformly over D.

Proof. Since (v
(0)
n )−1|Ĥ(0)

n −H| is bounded in probability uniformly over D, (v
(0)
n )−1|

⌊
1

2Ĥ
(0)
n +1

⌋
−⌊

1
2H+1

⌋
| is also bounded in probability uniformly over D. Therefore, we have

PH,η
(
ĵn ∈

{⌊
1

2H+1 log2(n)
⌋
− 1,

⌊
1

2H+1 log2(n)
⌋})

≥ PH,η
(

1
2H+1 log2(n)− 1 ≤ 1

2Ĥ
(0)
n +1

log2(n) ≤ 1
2H+1 log2(n) + 1

)
≥ PH,η

(
v(0)
n

−1
| 1

2Ĥ
(0)
n +1

− 1
2H+1 | ≤ (v(0)

n log2(n))−1
)
→ 1

since v(0)
n log2(n)→ 0 and the convergence is uniform on D. �

Proposition 30. Define w(0)
n = w

(0)
n (H) = v

(0)
n log(n). Then (w

(0)
n )−1|η̂n − η| is bounded in probability

uniformly over D.

Proposition 31. Suppose that we have estimators Ĥn and η̂n such that v−1
n |Ĥn −H| and w−1

n |η̂n − η|
are bounded in probability uniformly over D, with wn = vn log(n)→ 0. Suppose also that η̂n ∈ [η−, η+]

and Ĥn ∈ [H−, H+]. We write Ĥc
n = Ĥc

n(Ĥn, η̂n) as defined in Equation (9) Define also vcn = vcn(H) =

(vn log(n)n−2H/(2H+1)) ∨ n−1/(4H+2). Then (vcn)−1|Ĥn −H| is bounded in probability uniformly over
D.

Proposition 32. Suppose that we have estimators Ĥn and η̂n such that v−1
n |Ĥn−H| and w−1

n |η̂n−η| are
bounded in probability uniformly over D. Suppose also that η̂n ∈ [η−, η+] and Ĥn ∈ [H−, H+]. We write
η̂cn = η̂cn(Ĥn, η̂n) and wcn = max

(
log(n)vn, n

−1/(4H+2) log(n), wnn
−2H/(2H+1)

)
. Then wcn

−1|η̂n− η|
is bounded in probability uniformly over D.

We are now ready to conclude the proof of Theorem 10. We define by induction the sequences
v

(m)
n and w(m)

n by

v(0)
n = n−2H ∨ n−1/(4H+2) and w(0)

n = v(0)
n log(n)

exactly as in Propositions 28 and 30, and then for m > 0

v(m)
n = (vn log(n)n−2H/(2H+1)) ∨ n−1/(4H+2) and w(m)

n = v(m)
n log(n).

By induction, we can see that

v(m)
n = (logm(n)n−2H(1+m/(2H+1))) ∨ n−1/(4H+2)

and provided m > 1/(4H)− 2H − 1, we can see that v(m)
n = n−1/(4H+2) for n large enough.

Propositions 28 and 30 show that (v
(0)
n )−1|Ĥ(0)

n −H| and (w
(0)
n )−1|η̂(0)

n −η| are bounded in prob-
ability uniformly over D; while Propositions 31 and 32 ensure that for anym > 0, (v

(m)
n )−1|Ĥ(m)

n −
H| and (w

(m)
n )−1|η̂(m)

n − η| are bounded in probability uniformly over D.

Since mopt > m > 1/(4H) − 2H − 1 for any H− < H < H+, we can conclude the proof of
Theorem 10.
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9.2. Proof of Proposition 27. By definition,

Q̂j,p = Qj,p + 2
∑
k

dj,p,kej,k,p +
∑
k

(
e2
j,k,p − 2−j−p+1 Var(log ξ2)

)
.

Moreover, the random variables ej,k,p are centred and ej,k1,p is independent of ej,k2,p if |k1 −
k2| ≥ 2. We deduce that

EH,η
[(∑

k

e2
j,k,p − 2−j−p+1 VarH,η(log ξ2)

)2]
≤ CEH,η

[∑
k

(
e2
j,k,p − 2−j−p+1 VarH,η(log ξ2)

)2]
≤ C

∑
k

EH,η[e4
j,k,p] + 2−2j−2p+2 VarH,η(log ξ2).

But ej,k,p = 2−p−j/2
∑2·2p−1
l=0 ± log

(
ξ2
j,p,k2p+l

)
and the ξ2

j,p,k2p+l are independent. Thus BDG in-
equality yields

EH,η[e4
j,k,p] ≤ 2−4p−2jEH,η

[( 2·2p−1∑
l=0

log
(
ξ2
j,p,k2p+l

)2)2]
≤ C2−2p−2j .

We obtain finally

EH,η
[(∑

k

e2
j,k,p − 2−j−p+1 VarH,η(log ξ2)

)2]
≤ 2−2p−j

We now focus on the other term EH,η
[(∑

k dj,p,kej,k,p
)2]. Note that d and e are independent.

Moreover, the random variables ej,k,p are centred and ej,k1,p is independent of ej,k2,p if |k1−k2| ≥
2. Therefore, working first conditionally on d, we get that

EH,η
[(∑

k

dj,p,kej,k,p
)2] ≤ C∑

k

EH,η
[
d2
j,p,ke

2
j,k,p

]
≤ C

∑
k

EH,η
[
d2
j,p,k

]
EH,η

[
e2
j,k,p

]
≤ C2j2−j(2H+1)2−j−p) ≤ C2−j(2H+1)−p

using Lemma 26

9.3. Proof of Proposition 28. SinceH ∈ [H−, H+] and t 7→ 2−2t is invertible on (0, 1) with inverse
uniformly Lipschitz on the compact sets of (0, 1), it is enough to prove that

QJ∗n+1,N−J∗n−1,n

QJ∗n,N−J∗n−1,n
−2−2H

is bounded in probability uniformly over D.

First, notice that ∣∣∣ Q̂J∗n+1,N−J∗n−1,n

Q̂J∗n,N−J∗n−1,n

− 2−2H
∣∣∣ ≤ B(1)

n + V (1)
n + V (2)

n

where

B(1)
n =

∣∣∣QJ∗n+1,N−J∗n−1

QJ∗n,N−J∗n−1
− 2−2H

∣∣∣,
V (1)
n =

∣∣∣ Q̂J∗n+1,N−J∗n−1,n −QJ∗n+1,N−J∗n−1

Q̂J∗n,N−J∗n−1,n

∣∣∣,
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V (2)
n =

∣∣∣QJ∗n+1,N−J∗n−1(Q̂J∗n,N−J∗n−1,n −QJ∗n,N−J∗n−1)

Q̂J∗n,N−J∗n−1,nQJ∗n,N−J∗n−1

∣∣∣.
We now aim at proving that (v

(0)
n )−1B

(1)
n , (v

(0)
n )−1V

(1)
n and (v

(0)
n )−1V

(2)
n are bounded in proba-

bility uniformly over D.

Preliminary: Behaviour of J∗n. For any ε > 0, let

J−n (ε) = max
(
j : r−(ε)2−2jH ≥ 2jn−1

)
.

Notice that J−n (ε) = max
(
j : r−(ε)n ≥ 2j(2H+1)

)
so that

1
2 (r−(ε)n)1/(2H+1) ≤ 2J

−
n (ε) ≤ (r−(ε)n)1/(2H+1).(35)

We will show that for ε > 0 fixed, there exists L(ε) > 0 and ϕn(ε)→ 0 such that

sup
H,η

PH,η(J∗n < J−n (ε)− L(ε)) ≤ ε+ ϕn(ε)(36)

Let L to be chosen later. We write r = r−(ε) and p = N − j − 1 when the context is clear. We
also write J−n = J−n (ε) for conciseness.

PH,η(J∗n < J−n − L) ≤ PH,η(Q̂J−n −L < 2J
−
n −Ln−1)

≤ PH,η(Q̂J−n −L −QJ−n −L < 2J
−
n −Ln−1 −QJ−n −L)

≤ PH,η(Q̂J−n −L −QJ−n −L < 2J
−
n −Ln−1 − r2−2(J−n −L)H) + ε

since PH,η(infJ0≤j≤N−1 22jHQj,N−j−1 ≤ r) ≤ ε by Proposition 7. Moreover, note that (35) yields

2J
−
n −Ln−1 − r2−2(J−n −L)H ≤ (r−(ε)n)1/(2H+1)2−Ln−1 − r−(ε)22(L+1)H(r−(ε)n)−2H/(2H+1)

= r−(ε)1/(2H+1)n−2H/(2H+1)(2−L − 22(L+1)H).

For L large enough, 2−L − 22(L+1)H ≤ −1 so that we get by Proposition 27, Markov inequality
and Equation (35)

PH,η(Q̂J−n −L −QJ−n −L < 2J
−
n −Ln−1 − r2−2(J−n −L)H)

≤ C(n−22J
−
n + 2−2HJ−n n−1)r−(ε)−2/(2H+1)n4H/(2H+1)(2−L − 22(L+1)H)−2

≤ C(n−2/(2H+1)2J
−
n + 2−2HJ−n n(2H−1)/(2H+1))

≤ C(n−1/(2H+1) + n−1/(2H+1))

which proves (36).

Term B
(1)
n : By (36) and Proposition 7, PH,η

(
(v

(0)
n )−1B

(1)
n ≥M

)
is bounded by

PH,η
(

(v(0)
n )−1B(1)

n ≥M,J∗n ≥ J−n (ε)− L(ε)
)

+ PH,η(J∗n < J−n (ε)− L(ε))

≤
N−1∑

j=J−n (ε)−L(ε)

PH,η
(

(v(0)
n )−1B(1)

n ≥M,J∗n = j,Qj,N−j−1 ≥ 2−2Hjr−(ε)
)

+ 2ε+ ϕn(ε).

Using the definition of B, the probability appearing in the sum is bounded by

P
(∣∣∣Qj+1,N−j−1 − 2−2HQj,N−j−1

∣∣∣ ≥M2−2Hjr−(ε)v(0)
n

)
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≤M−224Hjr−(ε)−2(v(0)
n )−2E

∣∣∣Qj+1,N−j−1 − 2−2HQj,N−j−1

∣∣∣2.
But EH,η

∣∣∣Qj+1,N−j−1 − 2−2HQj,N−j−1

∣∣∣2 is bounded by a constant times

EH,η
[(
Qj+1,N−j−1 −

S∑
a=1

η2a2−2aH(j+1)κN−j−1,a(H)
)2]

+ 2−4HEH,η
[(
Qj,N−j−1 −

S∑
a=1

η2a2−2aHjκN−j−1,a(H)
)2]

+
( S∑
a=1

η2a2−2aH(j+1)κN−j−1,a(H)− 2−2H
S∑
a=1

η2a2−2aHjκN−j−1,a(H)
)2

.

The two first terms are bounded by C2−j(1+4H) by Proposition 4, and the last term equals( S∑
a=2

η2aκN−j−1,a(H)2−2aHj(2−2aH − 2−2H)
)2

which is bounded by C2−6HN−2jH by Equation (6). Thus PH,η
(

(v
(0)
n )−1B

(1)
n ≥M

)
is bounded by

CM−2r−(ε)−2(v(0)
n )−2

N−1∑
j=J−n (ε)−L(ε)

24Hj(2−j(1+4H) + 2−6HN−2jH) + 2ε+ ϕn(ε)

≤ C(ε)M−2(v(0)
n )−2

(
2−J

−
n (ε) + 2−4HN

)
+ 2ε+ ϕn(ε)

where the notation C(ε) is used to precise explicitly that the constant C may depend on ε. But
2−J

−
n (ε) ≤ C(ε)n−1/(2H+1) so we can conclude since n−1/(2H+1)(v

(0)
n )−2 and n−4H(v

(0)
n )−2 are

bounded sequences by definition of v(0)
n .

Term V
(1)
n : We now deal with V

(1)
n . By definition, recall that Q̂J∗n,N−J∗n−1,n ≥ 2J

∗
nn−1, at least

when J∗n ≥ J−n (ε)− L(ε). Therefore PH,η
(
v

(0)
n

−1
V

(1)
n ≥M

)
is bounded by

N−1∑
j=J−n (ε)−L(ε)

PH,η
(
v(0)
n

−1
|Q̂j+1,N−j−1,n −Qj+1,N−j−1| ≥M2jn−1

)
+ ε+ ϕn(ε)

by Equation (36) By Proposition 27, the probability in the sum is bounded from beyond by a
constant times

M−22−2jn2v(0)
n

−2
(
n−22j + n−12−2jH

)
≤M−2v(0)

n

−2
(

2−j + n2−2j(H+1)
)
.

Since L(ε) is fixed, we deduce that

PH,η
(
v(0)
n

−1
V (1)
n ≥M

)
≤M−2v(0)

n

−2
(

2−J
−
n (ε) + n2−2J−n (ε)(H+1)

)
+ ε+ ϕn(ε).

But recall from Equation (35) that 2−J
−
n (ε) ≤ Cn−1/(2H+1) so that

PH,η
(
v(0)
n

−1
V (1)
n ≥M

)
≤ CM−2v(0)

n

−2
n−1/(2H+1) + ε+ ϕn(ε)

and we conclude with tightness using that v(0)
n

−2
n−1/(2H+1) is bounded.
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Term V
(2)
n : By definition, we have

V (2)
n =

QJ∗n+1,N−J∗n−1

QJ∗n,N−J∗n−1
×
∣∣∣ (Q̂J∗n,N−J∗n−1,n −QJ∗n,N−J∗n−1)

Q̂J∗n,N−J∗n−1,n

∣∣∣.
We show that v(0)

n

−1
∣∣∣ (Q̂J∗n,N−J∗n−1,n−QJ∗n,N−J∗n−1)

Q̂J∗n,N−J∗n−1,n

∣∣∣ is bounded in probability uniformly over D

by applying readily the same proof as for V (1)
n . Therefore, it is enough to show that

QJ∗n+1,N−J∗n−1

QJ∗n,N−J∗n−1

is bounded in probability uniformly over D. Indeed, we have

PH,η
(QJ∗n+1,N−J∗n−1

QJ∗n,N−J∗n−1
≥M

)
= PH,η

(
QJ∗n+1,N−J∗n−1 ≥MQJ∗n,N−J∗n−1

)
≤ PH,η

(
sup

J0≤j≤N−1
22jHQj+1,N−j−1 ≥Mr−(ε)

)
+ 2ε+ ϕn(ε)

by Proposition 7 and Equation (36). We can conclude since whenever Mr−(ε) ≥ r+(ε), we have
PH,η

(
supJ0≤j≤N−1 22jHQj+1,N−j−1 ≥Mr−(ε)

)
≤ ε by Proposition 7.

9.4. Proof of Proposition 30. Since η ∈ [η−, η+] and t 7→ t2 is invertible on (0,∞) with inverse
uniformly Lipschitz on the compact sets of (0,∞), it is enough to prove that η̂2

n − η2 is bounded
in probability uniformly over D.

First, notice that

|η̂2
n − η2| ≤ κ−1

N−ĵn,1
(Ĥn)

(
B(1)
n +B(2)

n + V (1)
n + V (2)

n

)
22ĵn(Ĥn−H)

where

B(1)
n = 22ĵnH |

S∑
a=2

η2a2−2aHĵnκN−ĵn,a(H)|,

B(2)
n = 22ĵnH |Qĵn,N−ĵn −

S∑
a=1

η2a2−2aHĵnκN−ĵn,a(H)|,

V (1)
n = 22ĵnH |η22−2HĵnκN−ĵn,1(H)− η22−2ĵnĤnκN−ĵn,1(Ĥn)|,

V (2)
n = 22ĵnH |Q̂ĵn,N−ĵn,n −Qĵn,N−ĵn |

The term κ−1

N−ĵn,1
(Ĥn) disappears because κp,1 is a continuous function bounded away from

0 on [H−, H+], see Equation (5). We now prove that 22ĵn(Ĥn−H), (w
(0)
n )−1B

(1)
n , (w

(0)
n )−1B

(2)
n ,

(w
(0)
n )−1V

(1)
n and (w

(0)
n )−1V

(2)
n are bounded in PH,η-probability uniformly over D.

Term 22ĵn(Ĥn−H): We want to prove that 22ĵn(Ĥn−H) is bounded in probability uniformly over
D. It is enough to prove this for ĵn(Ĥn − H). But with probability converging to 1, ĵn ≥⌊

1
2H+1 log2(n)

⌋
− 1 by Equation (36) so that

PH,η
(
ĵn|Ĥn −H| ≥M

)
≤ PH,η

(⌊
1

2H+1 log2(n)
⌋
− 1|Ĥn −H| ≥M

)
+ ε.

But v(0)
n

−1
|Ĥn − H| is bounded in probability and

⌊
1

2H+1 log2(n)
⌋
v

(0)
n → 0 (and v

(0)
n → 0)

deterministically so we can conclude.
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Term B
(1)
n : By Equation (6), we know that

22ĵnH |
S∑
a=2

η2a2−2aHĵnκN−ĵn,a(H)| ≤ C2−2Hĵn−3H(N−ĵn)

so we need to prove that (w
(0)
n )−12Hĵnn−3H is uniformly tight. Recall from Corollary 29 that

PH,η
(
ĵn ∈

{⌊
1

2H+1 log2(n)
⌋
− 1,

⌊
1

2H+1 log2(n)
⌋})
→ 1

uniformly on D. Moreover

(w(0)
n )−12

H
⌊

1
2H+1 log2(n)

⌋
n−3H ≤ C(w(0)

n )−12
H

2H+1 log2(n)
n−3H = C(w(0)

n n
3H− H

2H+1 )−1

which is bounded since w(0)
n n

3H− H
2H+1 = v

(0)
n n

6H2+2H
2H+1 log(n) is bounded below (since v(0)

n ≥
n−2H ), and thus it proves that (w

(0)
n )−12Hĵnn−3H is uniformly tight.

Term B
(2)
n : By Corollary 29, PH,η

(
(w

(0)
n )−1B

(2)
n ≥M

)
is bounded by

PH,η
(∣∣∣Qĵn,N−ĵn − S∑

a=1

η2a2−2aHĵnκN−ĵn,a(H)
∣∣∣ ≥Mw(0)

n 2−2ĵnH
)

≤
∑

j=
⌊

1
2H+1 log2(n)

⌋
−r,

r∈{0,1}

PH,η
(∣∣Qj,N−j − S∑

a=1

η2a2−2aHjκp,a(H)
∣∣ ≥Mw(0)

n 2−2jH
)

+ o(1)

where the o is uniform over D. Moreover, by Proposition 4, it is bounded by

C
∑
j

M−2(w(0)
n )−22−j + o(1) ≤ CM−2(w(0)

n )−2n−1/(2H+1) + o(1)

and we conclude with tightness using that (w
(0)
n )−2n−1/(2H+1) is bounded.

Term V
(1)
n : For each j, p, t 7→ 2−2tjκp,1(t) is differentiable with derivative

t 7→ 2−2tj(−2j log(2)κp,1(t) + κ′p,1(t)).

By Lemma 6, its absolute value is bounded by C(j + 1)2−2tj for some constant C. Therefore,
Taylor’s formula yields that

V (1)
n ≤ C(ĵn + 1)|Ĥn −H| ≤ C log(n)|Ĥn −H|.

Moreover, v(0)
n

−1
|Ĥn−H| is bounded in probability uniformly over D so log(n)−1v

(0)
n

−1
V

(1)
n is

also bounded in probability uniformly over D.

Term V
(2)
n : By Corollary 29,

PH,η
(
w(0)
n

−1
V (2)
n ≥M

)
≤

∑
j=
⌊

1
2H+1 log2(n)

⌋
−r,

r∈{0,1}

PH,η
(
|Q̂j,N−j,n −Qj,N−j | ≥M2−2jHw(0)

n

)
+ o(1)

where the o is uniform over D and by Proposition 27, the probability in the sum is bounded from
beyond by a constant times

M−2w(0)
n

−2
(n−22j(1+4H) + n−122jH) ≤ CM−2w(0)

n

−2
(n−2n(1+4H)/(2H+1) + n−1n2H/(2H+1))
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= CM−2w(0)
n

−2
n−1/(2H+1) → 0.

9.5. Proof of Proposition 31. Proceeding as for Proposition 28, we only need to show that

(vcn(H))−1
∣∣∣ Q̂(S)

J∗cn +1,N−J∗cn −1,n(Ĥn, η̂n)

Q̂
(S)
J∗cn ,N−J∗cn −1,n(Ĥn, η̂n)

− 2−2H
∣∣∣

is bounded in PH,η-probability uniformly over D. We will use the same scheme of proof though
additional care needs to be taken since we cannot use the same Markov estimates because of
the use of the first-hand estimator Ĥn to finetune the procedure. In the following, we will write
J∗cn = J∗cn (Ĥn, η̂n). Note that we have the following decomposition∣∣∣ Q̂(S)

J∗cn +1,N−J∗cn −1,n(Ĥn, η̂n)

Q̂
(S)
J∗cn ,N−J∗cn −1,n(Ĥn, η̂n)

− 2−2H
∣∣∣ ≤ Bn + V (1)

n + V (2)
n

where

Bn =
∣∣∣QcJ∗cn +1,N−J∗cn −1(H, η)

QcJ∗cn ,N−J∗cn −1(H, η)
− 2−2H

∣∣∣
V (1)
n =

∣∣∣ Q̂cJ∗cn +1,N−J∗cn −1,n(Ĥn, η̂n)−QcJ∗cn +1,N−J∗cn −1(H, η)

Q̂cJ∗cn ,N−J∗cn −1,n(Ĥn, η̂n)

∣∣∣
V (2)
n =

∣∣∣QcJ∗cn +1,N−J∗cn −1(H, η)(Q̂cJ∗cn ,N−J∗cn −1,n(Ĥn, η̂n)−QcJ∗cn ,N−J∗cn −1(H, η))

Q̂cJ∗cn ,N−J∗cn −1,n(Ĥn, η̂n)QcJ∗cn ,N−J∗cn −1(H, η)

∣∣∣
and we want to prove that vcn

−1Bn, vcn
−1V

(1)
n and vcn

−1V
(2)
n are bounded in probability uniformly

over D.

Preliminary: Behaviour of J∗cn . We fix ε > 0 and we define

J−cn (ε) = J−cn (ε) = max
(
j : r

(S)
− (ε)2−2jH ≥ 2jn−1

)
where r(S)

− (ε) is defined in Proposition 8. Notice that J−cn (ε) is independent of η and H since in
Proposition 8, r(S)

− (ε) is defined uniformly for all η and H . As for Equation (35),

1
2 (r

(S)
− (ε)n)1/(2H+1) ≤ 2J

−c
n (ε) ≤ (r

(S)
− (ε)n)1/(2H+1).(37)

We will show that there exists Lc(ε) > 0 and ϕcn(ε)→ 0 such that

sup
H,η

PH,η(J∗cn < J−cn (ε)− Lc(ε)) ≤ ε+ ϕcn(ε)(38)

Let L to be chosen later. We write r = r
(S)
− (ε) and p = N − j − 1 when the context is clear. We

also write J−cn = J−cn (ε) for conciseness. By definition, PH,η(J∗cn < J−cn − L) is bounded by

PH,η(Q̂
(S)

J−cn −L,N−J−cn +L,n
(Ĥn, η̂n)−Q(S)

J−cn −L,N−J−cn +L
(H, η) <

2J
−c
n −L

n
−Q(S)

J−cn −L,N−J−cn +L
(H, η)).

But PH,η(infJ0≤j≤N−1 22jHQ
(S)
j,N−j−1(H, η) ≤ r) ≤ ε by Proposition 8, so it is also bounded by

PH,η(Q̂
(S)

J−cn −L,N−J−cn +L,n
(Ĥn, η̂n)−Q(S)

J−cn −L,N−J−cn +L
(H, η) < 2J

−c
n −L/n− r2−2(J−cn −L)H) + ε.
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Moreover, note that (37) yields

2J
−c
n −Ln−1 − r2−2(J−cn −L)H ≤ (r

(S)
− (ε)n)1/(2H+1)2−Ln−1 − r(S)

− (ε)22(L+1)H(r
(S)
− (ε)n)−2H/(2H+1)

= r
(S)
− (ε)1/(2H+1)n−2H/(2H+1)(2−L − 22(L+1)H).

For L large enough, 2−L − 22(L+1)H ≤ −2 so that we only need to prove that the probabilities

PH,η(Q̂J−cn −L,N−J−cn +L,n − Q̂J−cn −L,N−J−cn +L,n < −r
(S)
− (ε)1/(2H+1)n−2H/(2H+1))

and PH,η(B
(S)

J−cn −L,N−J−cn +L
(Ĥn, η̂n)−B(S)

J−cn −L,N−J−cn +L
(H, η) < −r(S)

− (ε)1/(2H+1)n−2H/(2H+1))

converge to 0 uniformly on D. The first convergence is proven as in the preliminary of the proof of
Proposition 28. We deal with the second convergence using Lemma 9. The probability considered
is bounded by

PH,η(cB2−4(Ĥ∧H)(J−cn −L)((J−cn − L)|Ĥ −H|+ |η̂ − η|) ≥ r(S)
− (ε)1/(2H+1)n−2H/(2H+1))

≤ PH,η(2−4(Ĥ∧H)J−cn (log(n)|Ĥ −H|+ |η̂ − η|) ≥ n−2H/(2H+1)c̃B
−1

)

where c̃B = r
(S)
− (ε)−1/(2H+1)cB24H+L. But for any ε̃ > 0, we have PH,η(v−1

n |Ĥn − H| ≥ M̃) ≤ ε̃

for M̃ large enough, so the last probability is bounded by

PH,η(2−4(H+M̃vn)J−cn (log(n)|Ĥ −H|+ |η̂ − η|) ≥ n−2H/(2H+1)c̃B
−1

) + ε̃.

We conclude here using first that vnJ−cn ≤ vn log(n)→ 0, then 2−4HJ−cn is of the same order as
n−4H/(2H+1) and finally that log(n)n−2H/(2H+1)|Ĥ −H| and n−2H/(2H+1)|η̂ − η| converge to 0.

Term Bn: We rewrite Bn as∣∣∣QJ∗cn +1,N−J∗cn −1 − 2−2HQJ∗cn ,N−J∗cn −1 −B(S)
J∗cn +1,N−J∗cn −1(H, η) + 2−2HB

(S)
J∗cn ,N−J∗cn −1(H, η)

∣∣∣
QcJ∗cn ,N−J∗cn −1(H, η)

.

Notice that for a = 1,

η2a2−2aH(J∗cn +1)κN−J∗cn −1,a(H) = 2−2Hη2a2−2aHJ∗cn κN−J∗cn −1,a(H)

so by definition of B(S)
j,p , Bn ≤ B(1)

n + 2−2HB
(2)
n where

B(1)
n :=

∣∣∣QJ∗cn +1,N−J∗cn −1 −
∑S
a=1 η

2a2−2aH(J∗cn +1)κN−J∗cn −1,a(H)
∣∣∣

QcJ∗cn ,N−J∗cn −1(H, η)

and B(2)
n :=

∣∣∣QJ∗cn ,N−J∗cn −1 −
∑S
a=1 η

2a2−2aHJ∗cn κN−J∗cn −1,a(H)
∣∣∣

QcJ∗cn ,N−J∗cn −1(H, η)
.

Both terms are controlled identically so we only prove here that vcn
−1B

(1)
n is bounded in probabil-

ity uniformly over D.
By Equation (38) and Proposition 8, PH,η

(
vcn
−1B

(1)
n ≥M

)
is bounded by

PH,η
(
vcn
−1B(1)

n ≥M,J∗cn ≥ J−cn (ε)− Lc(ε)
)

+ PnH,η(J∗cn < J−cn (ε)− Lc(ε))

≤
N−1∑

j=J−cn (ε)−Lc(ε)

PH,η
(
vcn
−1B(1)

n ≥M,J∗n = j,Qcj,N−j−1(H, η) ≥ 2−2Hjr
(S)
− (ε)

)
+ 2ε+ ϕn(ε).
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Using the definition of B(1)
n , the probability in the sum is bounded by

PH,η
(∣∣∣Qj+1,N−j−1 −

S∑
a=1

η2a2−2aH(j+1)κN−j−1,a(H)
∣∣∣ ≥M2−2Hjr

(S)
− (ε)vcn

)
.

By Markov inequality and Proposition 4, this is bounded by CM−22−jr
(S)
− (ε)−2vcn

−2 and sum-
ming over j yields

PH,η
(
vcn
−1B(1)

n ≥M
)
≤ CM−22−J

−c
n (ε)+Lc(ε)r

(S)
− (ε)−2vcn

−2 + 2ε+ ϕn(ε).

We conclude using that vcn
−22−J

−c
n (ε) is bounded (by Equation (37)).

Term V
(1)
n . By definition of V (1)

n , we have

V (1)
n =

∣∣∣ Q̂(S)
J∗cn +1,N−J∗cn −1,n(Ĥn, η̂n)−QcJ∗cn +1,N−J∗cn −1(H, η)

Q̂
(S)
J∗cn ,N−J∗cn −1,n(Ĥn, η̂n)

∣∣∣
≤
|Q̂J∗cn +1,N−J∗cn −1,n(Ĥn, η̂n)−QJ∗cn +1,N−J∗cn −1(H, η)|

Q̂cJ∗cn ,N−J∗cn −1,n(Ĥn, η̂n)

|B(S)
J∗cn +1,N−J∗cn −1(Ĥn, η̂n)−B(S)

J∗cn +1,N−J∗cn −1(H, η)|

Q̂cJ∗cn ,N−J∗cn −1,n(Ĥn, η̂n)
.

Moreover, Q̂cJ∗n,N−J∗n−1,n(Ĥn, η̂n) ≥ 2J
∗
nn−1, at least when J∗cn ≥ J−cn (ε) − Lc(ε). It happens at

least with probability 1− ε− ϕcn(ε) by Equation (38) so it is enough to prove that

nvcn
−12−J

∗c
n |Q̂J∗cn +1,N−J∗cn −1,n −QJ∗cn +1,N−J∗cn −1,n|(39)

and

nvcn
−12−J

∗c
n |BJ∗cn +1,N−J∗n−1(Ĥn, η̂n)−BJ∗cn +1,N−J∗n−1(H, η)|(40)

are bounded in probability uniformly over D, conditionally to J∗cn ≥ J−cn (ε)− Lc(ε).
The term (39) is similar to V (1)

n appearing in the proof of Proposition 28. Indeed, by Proposition
27, we have

PH,η
(
nvcn

−12−J
∗c
n |Q̂J∗cn +1,N−J∗n−1,n −QJ∗cn +1,N−J∗n−1,n| ≥M, J∗cn ≥ J−cn (ε)− Lc(ε)

)
≤

N−1∑
j=J−cn (ε)−Lc(ε)

PH,η
(
|Q̂j+1,N−j−1,n −Qj+1,N−j−1,n| ≥Mn−1vcn2j

)

≤ C
N−1∑

j=J−cn (ε)−Lc(ε)

(2jn−2 + 2−2Hjn−1)n2(Mvcn)−22−2j

≤ C(ε)M−2vcn
−2(2−J

−c
n (ε) + n2−2(H+1)J−cn (ε))

and we conclude using Equation (37) and the definition of vcn.
We now focus on the term (40). By Lemma 9 and using J∗cn ≤ log(n), it is bounded by

cB2−4((Ĥn−H)∧0) log(n) × nvcn
−12−(4H+1)J∗cn (log(n)|Ĥn −H|+ |η̂n − η|).
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First, notice that 2−4((Ĥn−H)∧0) log(n) is bounded in probability uniformly over D because v−1
n |Ĥn−

H| is uniformly tight and log(n)vn → 0. Therefore we can focus on nvcn
−12−(4H+1)J∗cn (log(n)|Ĥn−

H|+ |η̂n − η|). Conditionally to J∗cn ≥ J−cn (ε)− Lc(ε), it is bounded by

Cn log(n)vnv
c
n
−12−(4H+1)J−cn (ε)(vn

−1|Ĥn −H|+ (log(n)vn)−1|η̂n − η|)

and we conclude using Equation (37), hypotheses on vn, Ĥn and η̂n and the definition of vcn.

Term V
(2)
n : We deal with this term using the same method as the corresponding term in the proof

of Proposition 28, using Proposition 8 and Equation (38) instead of Proposition 7 and Equation
(36).

9.6. Proof of Proposition 32. As for Proposition 30, it is enough to prove that wcn
−1|(η̂cn)2 − η2| is

bounded in probability uniformly over D.
First, notice that

|(η̂cn)2 − η2| ≤ κ−1

N−ĵn,1
(Ĥn)

(
B(1)
n +B(2)

n + V (1)
n + V (2)

n

)
22ĵn(Ĥn−H)

where

B(1)
n = 22ĵnH |

S∑
a=2

η2a2−2aHĵnκN−ĵn,a(H)−
S∑
a=2

(η̂n)2a2−2aĤn ĵnκN−ĵn,a(Ĥn)|,

B(2)
n = 22ĵnH |Qĵn,N−ĵn −

S∑
a=1

η2a2−2aHĵnκN−ĵn,a(H)|,

V (1)
n = 22ĵnH |η22−2HĵnκN−ĵn,1(H)− η22−2ĵnĤnκN−ĵn,1(Ĥn)|,

V (2)
n = 22ĵnH |Q̂ĵn,N−ĵn,n −Qĵn,N−ĵn |

The term κ−1

N−ĵn,1
(Ĥn) disappears because κp,1 is a continuous function bounded away from

0 on [H−, H+], see Equation (5). We prove that 22ĵn(Ĥn−H), (wcn)−1B
(1)
n , (wcn)−1B

(2)
n , (wcn)−1V

(1)
n

and (wcn)−1V
(2)
n are bounded in probability uniformly over D. Indeed, all these terms except B(1)

n

are the same as in the proof of Proposition 30. The same proofs readily apply here for these terms
and we conclude using that wcn ≥ log(n)vn and wcn

−2n−1/(2H+1) → 0 . Therefore, we only need to
focus on B(1)

n .

By Lemma 9, we have

B(1)
n = 22ĵnH

∣∣∣B(S)

ĵn,N−ĵn
(H, η)−B(S)

ĵn,N−ĵn
(η̂n, Ĥn)

∣∣∣
≤ cB22ĵnH2−4(H∧Ĥn)ĵn(ĵn|Ĥn −H|+ |η̂n − η|)

≤ cB2−4(0∧(Ĥn−H))ĵn2−2Hĵn(ĵn|Ĥn −H|+ |η̂n − η|).

But v−1
n |Ĥn − H| is bounded in probability uniformly on D and vnĵn ≤ vn log(n) → 0, so

2−4(0∧(Ĥn−H))ĵn is uniformly tight. Thus it is enough to show that (wcn)−12−2Hĵn(ĵn|Ĥn − H| +
|η̂n − η|) is bounded in probability uniformly on D. Recall that

PH,η
(
ĵn ∈

{⌊
1

2H+1 log2(n)
⌋
− 1,

⌊
1

2H+1 log2(n)
⌋})
→ 1
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so it is enough to prove that (wcn)−1n−2H/(2H+1) log(n)|Ĥn − H| and (wcn)−1n−2H/(2H+1)|η̂n − η|
are uniformly tight. It is the case since vn(wcn)−1n−2H/(2H+1) log(n) and wn(wcn)−1n−2H/(2H+1)

are bounded and v−1
n |Ĥn −H| and w−1

n |η̂n − η| are uniformly tight.
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APPENDIX A. ASYMPTOTIC EXPANSION OF THE INTEGRATED VOLATILITY

This Section is of independent interest from the rest of this paper and therefore we shall rede-
fine a few notations defined in Section 3.1.

Let D be a compact subset of (0, 1) × (0,∞) and let T > 0. We also fix some arbitrary integer
constant S > 0 and some constant 0 < H∗ < min(H,η)∈DH . We consider a measurable space
(Ω,A) on which is defined a process (σt)t≤T such that under probability PH,η with (H, η) ∈ D, σ
is given by

σ2
t = exp(ηWH

t )

where WH is a fractional Brownian motion with Hurst index H . We will write EH,η the expecta-
tion under probability PH,η .

For any α > 0 we also define the best α-Hlder constant of function f : [0, T ]→ R by

Hα(f) := sup
0≤s6=t≤T

|f(t)− f(s)|
|t− s|α

and we will write HH
α := Hα(WH) to shorten expressions.

Proposition 33. There exists random variable Z0 bounded in L2(PH,η) uniformly on D such that for any
δ > 0 and i such that (i+ 1)δ ≤ T , then

log
(
δ−1

∫ (i+1)δ

iδ

σ2
udu

)
=

2S∑
b=2

2S∑
s=1

(−1)s−1

s

∑
r∈{1,...,S}s∑

j rj=b

s∏
j=1

ηrj

rj !

1

δ

∫ (i+1)δ

iδ

(WH
u −WH

iδ )rjdu

+
1

δ

∫ (i+1)δ

iδ

ηWH
u du+ Z(i, δ) · δH

∗(S+1)

where the random variables Z(i, δ) satisfy |Z(i, δ)| ≤ Z0.

Proof. Recall that for any reals x and a, we have the Taylor expansion

ex =

2S∑
r=0

(x− a)rea

r!
+

(x− a)S+1

S!

∫ 1

0

(1− z)2Sea+z(x−a)dz

= ea
(

1 +

2S∑
r=1

(x− a)r

r!
+

(x− a)S+1

S!

∫ 1

0

(1− z)2Sez(x−a)dz
)
.

Applying this equality with x = ηWH
u and a = ηWH

iδ , we get

eηW
H
u = eηW

H
iδ

(
1 +

2S∑
r=1

ηr(WH
u −WH

iδ )r

r!
+
ηS+1(WH

u −WH
iδ )S+1

(S + 1)!

∫ 1

0

(1− z)2Seηz(W
H
u −W

H
iδ )dz

)
.

Notice that since H > H∗, HH
H∗ is almost surely finite. Then∣∣∣ηS+1(WH

u −WH
iδ )S+1

∫ 1

0

(1− z)2Seηz(W
H
u −W

H
iδ )dz

∣∣∣ ≤ ηS+1(HH
H∗)

S+1|u− iδ|H
∗(S+1) e

2η||WH ||∞

S + 1
.
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Therefore, for iδ ≤ u ≤ (i+ 1)δ, we have

eηW
H
u = eηW

H
iδ

(
1 +

2S∑
r=1

ηr(WH
u −WH

iδ )r

r!
+RH,S(u)δH

∗(S+1)
)

(41)

where |RH,S(u)| ≤ ηS+1(HH)S+1|u/δ − i|H∗(S+1) e2η||W
H ||∞

(S+1)! ≤ (ηHH
H∗)

S+1 e2η||W
H ||∞

(S+1)! = RH,S0 is a
random variable independent of δ and u.

Then we integrate both sides of (41) and we take the logarithm. This yields to

log
(1

δ

∫ (i+1)δ

iδ

σ2
udu

)
= ηWH

iδ + log
(

1 +

2S∑
r=1

ηr

r!
WH,r
i,δ + R̃H,S(i, δ)δH

∗(S+1)
)

(42)

where

WH,r
i,δ =

1

δ

∫ (i+1)δ

iδ

(WH
u −WH

iδ )rdu

and where R̃H,S(i, δ) = 1
δ

∫ (i+1)δ

iδ
RH,S(u)du is still dominated by RH0 . Note that this notation

differs from W introduced in Section 8. We will now expand the logarithm on the right-hand side
of (42). Taylor’s expansion of the logarithm writes

log(1 + x) =

2S∑
s=1

(−1)s−1

s
xs + (−1)S

∫ x

0

(x− t)S

(1 + t)S+1
dt.

We want to apply this with x =
∑2S
r=1

ηr

r! W
H,r
i,δ + R̃H,S(i, δ)δH

∗(S+1). Notice that this quantity is

indeed independent of S and we also have x =
∑S′

r=1
ηr

r! W
H,r
i,δ + R̃H,S

′
(i, δ)δS

′+1 for any S′. In

particular, with S′ = 0, x = R̃H,0(i, δ)δ. Moreover, we have 1 + x = 1
δ

∫ (i+1)δ

iδ
σ2
u

σ2
iδ
du. We obtain

log
(1

δ

∫ (i+1)δ

iδ

σ2
udu

)
= ηWH

iδ +

2S∑
s=1

(−1)s−1

s

( 2S∑
r=1

ηr

r!
WH,r
i,δ + R̃H,S(i, δ)δH

∗(S+1)
)s

+ TH(i, δ)

(43)

where TH(i, δ) = (−1)S
∫ R̃H,0(i,δ)δ

0
(R̃H,0(i,δ)δ−t)S

(1+t)S+1 dt. Notice in addition that∣∣∣(−1)S
∫ x

0

(x− t)k

(1 + t)k+1
dt
∣∣∣ ≤ { |x|S+1

S+1 for x ≥ 0,
|x|S+1

(1+x)S+1(S+1)
for x ≤ 0

which translates here in∣∣∣TH(i, δ)
∣∣∣ ≤


|R̃H,0(i,δ)δ|S+1

S+1 for 1 + x ≥ 0,
|R̃H,0(i,δ)δ|S+1

( 1
δ

∫ (i+1)δ
iδ σ2

udu)S+1(S+1)
σ

2(S+1)
iδ for 1 + x ≤ 0.

Since exp(−η||WH ||∞) ≤ σ2
u ≤ exp(η||WH ||∞) and |R̃H,0(i, δ)| ≤ RH,00 = ηHH

H∗e
2η||WH ||∞ , we

deduce that∣∣∣TH(i, δ)
∣∣∣ ≤ |R̃H,0(i, δ)δ|S+1

S + 1
e2(S+1)η||WH ||∞ ≤ 1

S + 1

(
ηHH

H∗e
3η||WH ||∞δ

)S+1

Recall that HH
H∗ has moments of all orders bounded independently of H and ||WH ||∞ has ex-

ponential moments of all orders bounded independently of H so TH(i, δ) satisfies the condition
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required for Z in Proposition 33.

We now focus on the expression
(∑2S

r=1
ηr

r! W
H,r
i,δ + R̃H,S(i, δ)δH

∗(S+1)
)s

. We expand the power

s and remove all the terms of order smaller than δH
∗(S+1) or smaller. Remark that |WH,r

i,δ | ≤
δH
∗r(HH

H∗)
r. Thus ( 2S∑

r=1

ηr

r!
WH,r
i,δ + R̃H,S(i, δ)δH

∗(S+1)
)s

=
∑
r

s∏
j=1

Xrj

where the sum is taken over all r = (r1, . . . , rs) with 1 ≤ rj ≤ S + 1 and where we write Xr =
ηr

r! W
H,r
i,δ for r ≤ S and XS+1 = R̃H,S(i, δ)δH

∗(S+1). By the preceding remark, we have

s∏
j=1

Xrj ≤ δH
∗∑

j rj (HH
H∗)

∑
j rj .

Proceeding as for TH(i, δ), we can show that
∏s
j=1Xrj can be incorporated in the rest of Propo-

sition 33 whenever
∑
j rj ≥ S + 1. Therefore we can restrict the sum

∑
r

∏s
j=1Xrj to indexes r

satisfying
∑
j rj ≤ S. In that case, rj ≤ S and we get:

( 2S∑
r=1

ηr

r!
WH,r
i,δ + R̃H,S(i, δ)δH

∗(S+1)
)s

=
∑
r

s∏
j=1

ηrj

rj !
W
H,rj
i,δ + remainder of order δH

∗(S+1).

Plugging this into (43) and using the symbol ≈ to indicate implicitly the rest of order δH
∗(S+1)

incorporated in the term Z of Proposition 33, we obtain:

log
(1

δ

∫ (i+1)δ

iδ

σ2
udu

)
≈ ηWH

iδ +

2S∑
s=1

(−1)s−1

s

∑
r∑

j rj≤S

s∏
j=1

ηrj

rj !
W
H,rj
i,δ

≈ ηWH
iδ +

2S∑
b=1

2S∑
s=1

(−1)s−1

s

∑
r∑

j rj=b

s∏
j=1

ηrj

rj !
W
H,rj
i,δ

≈ 1

δ

∫ (i+1)δ

iδ

ηWH
u du+

2S∑
b=2

2S∑
s=1

(−1)s−1

s

∑
r∑

j rj=b

s∏
j=1

ηrj

rj !
W
H,rj
i,δ .

�

APPENDIX B. SOME CORRELATION ESTIMATES FOR GAUSSIAN VECTORS

First, we recall the Isserlis’ theorem (see [Iss18]) allowing us to compute the expectation of a
product of zero-mean correlated normal random variables.

Theorem 34. Suppose that (X1, . . . , X2n) is a centred Gaussian vector. Then we have

E(
∏
i

Xi) =
∑
P

∏
(i,j)∈P

E(XiXj)

where the sum is over all the partitions P of {1, · · · , 2n} into subsets of exactly two elements.
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In particular, we have:

Cov(X1X2, X3X4) = E(X1X3)E(X2X4) + E(X1X4)E(X2X3).(44)

Proposition 35. Suppose that (X1, . . . , Xn+m) is a centred Gaussian vector, where n and m are two
integers such that n+m is even. Suppose in addition that for any i ≤ n and j ≥ n+ 1, we have∣∣E(XiXj)

∣∣ ≤ ρσ2,

for some 0 ≤ ρ ≤ 1 and σ ≥ 0 and suppose that EX2
i ≤ σ2 for any i ≥ 1. Then

∣∣Cov(

n∏
i=1

Xi,

n+m∏
j=n+1

Xj)
∣∣ ≤ Cρασn+m

where α = 1 if n is odd and α = 2 if n is even, and C is a constant depending only on n and m.

Proof. Denote P2(E) the set of all partitions of the set E in subsets of exactly 2 elements. Then we
have by Theorem 34

Cov(

n∏
i=1

Xi,

n+m∏
j=n+1

Xj) =
∑

P∈P2({1,...,n+m})

∏
(i,j)∈P

E(XiXj)

−
∑

P∈P2({1,...,n})

∏
(i,j)∈P

E(XiXj)
∑

P∈P2({n+1,...,n+m})

∏
(i,j)∈P

E(XiXj).

Moreover, the application

P2({1, . . . , n+ 1})× P2({n+ 1, . . . , n+m})→ P2({1, . . . , n+m})
(P,Q) 7→ P ∪Q

is injective and its image Q(n,m) is exactly the set of the partitions P of {1, . . . , n + m} such that
if (i, j) ∈ P with i ≤ n, then j ≤ n as well. Thus

Cov(

n∏
i=1

Xi,

n+m∏
j=n+1

Xj) =
∑

P∈P2({1,...,n+m})\Q(n,m)

∏
(i,j)∈P

E(XiXj).

Since there are finitely many partitions of {1, . . . , n + m}, the proof is completed once we can
prove that for any P ∈ P2({1, . . . , n + m})\Q(n,m), there exists a constant C depending only on
n and m such that ∣∣∣ ∏

(i,j)∈P

E(XiXj)
∣∣∣ ≤ ρασn+m.

Consider such a partition P . Then there is at least one pair (i0, j0) ∈ P such that i0 ≤ n and
j0 ≥ n+ 1. thus∣∣∣ ∏

(i,j)∈P

E(XiXj)
∣∣∣ ≤ ∣∣∣E(Xi0Xj0)

∏
(i,j)∈P\{(i0,j0)}

E(XiXj)
∣∣∣ ≤ ρσ2

∏
(i,j)∈P\{(i0,j0)}

σ2

which conclude the case n odd since #
(
P\{(i0, j0)}

)
= (n+m− 2)/2.

Suppose in addition that n is even. Then there must be another pair (i1, j1) ∈ P such that
i1 ≤ n and j1 ≥ n+1, (i1, j1) 6= (i0, j0) because there is no partition of {1, . . . , n}\{i0} into subsets
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of 2 elements. Then∣∣∣ ∏
(i,j)∈P

E(XiXj)
∣∣∣ ≤ ∣∣∣E(Xi0Xj0)E(Xi1Xj1)

∏
(i,j)∈P\{(i0,j0),(i1,j1)}

E(XiXj)
∣∣∣ ≤ ρ2σn+m.

�

APPENDIX C. LOG MOMENTS OF χ2 VARIABLES

We first define a few notations. We write Γ the usual Gamma function, defined by

Γ(t) =

∫ ∞
0

tx−1e−tdt.(45)

We also introduce the polygamma function ψ(k), which is the k-th logarithmic derivative of the
Gamma function. Thus, ψ(0) = Γ′

Γ and explicit computations also give

ψ(1) = Γ′′

Γ − (ψ(0))2,

ψ(2) = Γ(3)

Γ − (ψ(0))3 − 3ψ(0)ψ(1),

ψ(3) = Γ(4)

Γ − (ψ(0))4 − 6(ψ(0))2ψ(1) − 4ψ(0)ψ(2) − 3(ψ(1))2.

Note that we can express explicitly ratios Γ(k)

Γ with k ≤ 4 in terms of poly-gammas functions from
these equations.

Lemma 36. Suppose that for m ≥ 1, Xm is a random variable following a χ2 distribution with m degree
of freedom. We write Ym = log(m−1Xm). Then there exists C > 0 such that for any m ≥ 1,

Var(Ym) = ψ(1)(m2 ) ≤ Cm−1,

E
[
Y 4
m

]
≤ Cm−2.

Proof. We know that

E
[

exp(tYm)
]

= ( 2
m )t

Γ(m2 + t)

Γ(m)
.

Moments of Ym can be derived through the classical formula

E
[
Y km
]

=
dk

dtk

∣∣∣
t=0

(
( 2
m )t

Γ(m2 + t)

Γ(m)

)
.

Thus we get

E
[
Ym
]

= − ln(m2 ) +
Γ′(m2 )

Γ(m2 )
,

E
[
Y 2
m

]
= ln2(m2 )− 2 ln(m2 )

Γ′(m2 )

Γ(m2 )
+

Γ′′(m2 )

Γ(m2 )
,

E
[
Y 4
m

]
= ln4(m2 )− 4 ln3(m2 )

Γ′(m2 )

Γ(m2 )
+ 6 ln2(m2 )

Γ′′(m2 )

Γ(m2 )
− 4 ln(m2 )

Γ(3)(m2 )

Γ(m2 )
+

Γ(4)(m2 )

Γ(m2 )
.

We then rewrite Var(Ym) and E
[
Y 4
m

]
in terms of these polygamma functions

Var(Ym) = ψ(1)(m2 ),

E
[
Y 4
m

]
= ln4(m2 )− 4 ln3(m2 )ψ(0)(m2 ) + 6 ln2(m2 )(ψ(1)(m2 ) + ψ(0)(m2 )2)
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− 4 ln(m2 )(ψ(2)(m2 ) + ψ(0)(m2 )3 + 3ψ(0)(m2 )ψ(1)(m2 ))

+ ψ(3)(m2 ) + ψ(0)(m2 )4 + 6ψ(0)(m2 )2ψ(1)(m2 ) + 4ψ(0)(m2 )ψ(2)(m2 ) + 3ψ(1)(m2 )2.

Asymptotic expansion of the polygamma functions ψ(k)(x) is given when x→∞ by Equation
5.15.9 in the internet appendix of [OLBC10]

ψ(0)(x) = ln(x)− 1
2x
−1 − 1

12x
−2 +O(x−3),

ψ(1)(x) = x−1 + 1
2x
−2 +O(x−3),

ψ(2)(x) = −x−2 +O(x−3),

ψ(3)(x) = O(x−3).

Plugging these asymptotic development into the explicit expression of Var(Ym) and E
[
Y 4
m

]
, we

get

Var(Ym) = ψ(1)(m2 ) = 2
m +O(m−2),

E
[
Y 4
m

]
= 12m−2 + o(m−2)

which concludes the proof. �
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