Communication Dans Un Congrès Année : 2021

Implicitly using Human Skeleton in Self-supervised Learning: Influence on Spatio-temporal Puzzle Solving and on Video Action Recognition

Laurent Dollé
  • Fonction : Auteur
  • PersonId : 990346
  • IdHAL : ldollecea
Patrick Le Callet

Résumé

In this paper we studied the influence of adding skeleton data on top of human actions videos when performing self-supervised learning and action recognition. We show that adding this information without additional constraints actually hurts the accuracy of the network; we argue that the added skeleton is not considered by the network and seen as a noise masking part of the natural image. We bring first results on puzzle solving and video action recognition to support this hypothesis.
Fichier principal
Vignette du fichier
106895.pdf (1.29 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-03946524 , version 1 (19-01-2023)

Licence

Identifiants

Citer

Mathieu Riand, Laurent Dollé, Patrick Le Callet. Implicitly using Human Skeleton in Self-supervised Learning: Influence on Spatio-temporal Puzzle Solving and on Video Action Recognition. ROBOVIS 2021 : 2nd International Conference on Robotics, Computer Vision and Intelligent Systems, Oct 2021, Online streaming, France. ⟨10.5220/0010689500003061⟩. ⟨hal-03946524⟩
53 Consultations
35 Téléchargements

Altmetric

Partager

More