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Abstract: In this paper we studied the influence of adding skeleton data on top of human actions videos when performing
self-supervised learning and action recognition. We show that adding this information without additional
constraints actually hurts the accuracy of the network; we argue that the added skeleton is not considered by
the network and seen as a noise masking part of the natural image. We bring first results on puzzle solving and
video action recognition to support this hypothesis.

1 INTRODUCTION

Action recognition (Yamato et al., 1992) can provide
various informations for a robot-related task, like giv-
ing an action plan by cutting a video demonstration in
multiple sub-videos, each corresponding to a lower-
level action. However, action recognition is a task that
requires a consequent amount of annotations which
can be laborious to produce.

Meanwhile, in the recent years, self-supervised
learning (Chen et al., 2020) has emerged as a conve-
nient solution to the global lack of annotated data; in-
deed, there is a large amount of available raw data that
are widely collected from many sources (YouTube
videos, for instance), but the number of annotations
remains very small in comparison. Self-supervised
learning then offers a way of reducing the number
of needed annotations for action recognition, by first
pretaining the models on a pretext task in which la-
bels are automatically obtained from the data; this
pretraining allows the model to grasp a representation
of the data in its intermediate layers that is hopefully
helpful for the target task, action recognition.

Finally, skeleton data has appeared to be very use-
ful for action recognition (Li et al., 2017a); architec-
tures taking sequences of body poses as input have
been designed in order to solve this problem, and pre-
text tasks based on skeleton also have been proposed
for self-supervised learning.

In this work, we tried to add the skeleton as an im-
plicit information in the data, by adding it on top of

the videos, and mesured the influence of this added
signal on two tasks : puzzle solving, a self-supervised
task, and action recognition, trained from scratch. In
the first section, we will go over works related to ac-
tion recognition and self-supervised learning. Then,
we will introduce our method and share our first re-
sults. Finally, we will make some remarks on the pre-
sented results and conclude.

2 RELATED WORK

In this section, we review works covering action
recognition and the use of self-supervised learning in
this context. We will then focus on the specific pre-
text task that jigsaw puzzles represent, and finally end
by discussing the different uses that have been made
when it comes to human skeleton data.

2.1 Action Recognition

Action recognition (AR) is the task that consists in
assigning an action label to a video clip (Jhuang et al.,
2013) or a specific location of it, also called action
classification.

Most approaches are applied on video datasets
such as HMBD51 (Kuehne et al., 2011); the used ar-
chitectures are thus of the same kind as the ones used
for classical image classification, namely Convolu-
tional Neural Networks (CNNs). (Tran et al., 2018)
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proposed to use 3D convolutional networks, or 3DC-
NNs, and showed that they were suited for performing
action recognition on videos. Moreover, they built a
spatiotemporal convolutional block usable in CNNs
instead of classical convolutions to boost their perfor-
mance on datasets such as HMBD51.

(Girdhar and Ramanan, 2017) introduced atten-
tional pooling as an alternative pooling layer in
CNNs; this was a way of linking attention concepts
and action recognition, and it actually yielded great
improvements over state-of-the-art AR benchmarks.

Finally, works such as (Yan et al., 2018) used
skeleton sequences instead of simple videos; this al-
lowed to use a Graph Convolutional Network (GCN)
that brougth better results for action recognition over
classical methods such as CNNs.

2.2 Self-supervised Learning

Self-supervised learning is a branch of unsupervised
learning that has been widely explored in recent years;
it is unsupervised in the sense that the supervisory sig-
nal is automatically extracted from the data along the
inputs. This allows to train a neural network on what
is called a pretext task (or pseudo-task), which can
take various forms that we will detail here; the idea
behind this is to find a task that, in order to be solved,
needs high-level concepts to be grasped by the inter-
mediate layers of the network. The same network can
thus be fine tuned on the target task (see Figure 1), for
instance action recognition, hoping that the concepts
learned during pretraining allow a better performance
of the network compared to a random initialisation of
its weights.

Figure 1: A classical self-supervised learning setup; an en-
coder is first trained on a pretext task with unannotated data,
then fine tuned on the target task with annotations.

For action recognition, most datasets are built us-
ing images or videos; this means that most pretext
tasks are visual tasks. One of them is colourisation,
which was first introduced in (Zhang et al., 2016); the
objective here is to preemptively transform a colour
image into its grayscale counterpart, and train the net-
work to output coloured pictures given the grayscale
ones. Features learned through colourisation often
prove useful for target tasks such as object detection.

(Vondrick et al., 2018) and (Li et al., 2019) have
used colourisation in a different way on videos; a ref-
erence frame is given as input along another one in
grayscale later in the video. The pretext task is still
to recolour the image, but the network has a sup-
port frame to get information from. Those works
have shown that this colourisation task led the net-
work to learn trackers intrisically, especially for ob-
jects. However, this kind of tasks fails to grasp essen-
tial concepts in videos, since the temporal dimension
is not taken into account.

In this spirit, works like (Sumer et al., 2017) pro-
posed to learn jointly temporal and spatial cues; in
this work, the network tries to predict if two cropped
bounding boxes from a video are close to each other
in time. Other temporal pretext tasks based on video
frames include complete sequence ordering, where
the system must output the permutation that has been
done on multiple consecutive frames, as in (Lee et al.,
2017), or more simply output if the given sequence is
indeed ordered or not, like in (Misra et al., 2016).

(Sumer et al., 2017) rely on contrastive learning,
which is another complete branch of self-supervised
learning, recently brought up to date by the work of
(Chen et al., 2020); in this application, random data
augmentations are applied to pictures from ImageNet,
like color distortion, gaussian noise, or even mask-
ing a part of the image. The network is then trained
to predict if two transformed pictures come from the
same original image. The principle behind contrastive
learning is to build positive and negative pairs that
the system must try to differentiate; in (Sumer et al.,
2017), positive pairs are the ones that contain tem-
porally close frames. Pairs can also be formed with
object detection results, as in (Pirk et al., 2019); pos-
itive pairs are attracted in the representation space,
while they are pushed away from the negative ones.
This training naturally converges towards a disentan-
gled representation of objects, where similar objects
are close to each other.

Pretext tasks are sometimes directly applied to in-
termediate results obtained on the data, like object
proposals in (Pirk et al., 2019), or human body key-
points detection; (Wang et al., 2019) proposes to use
statistics related to motion and appearance in videos,
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for instance the position of the region with the largest
motion. Those statistics are extracted from videos,
and then used as labels; the network must predict in
which area of the video we can find any of those la-
bels. This way, a representation of the data sensitive
to movement and appearance is learned.

In (Lin et al., 2020) several pretext tasks based on
human skeleton detection results are proposed, and
solved at the same time; for example, given a tempo-
ral sequence of skeleton poses, the network is asked
to predict the end of the sequence while seeing only
the beginning.

It is noteworthy that while a vast majority of works
related to self-supervised learning focuses on design-
ing new pretext tasks or new ways to combine them,
some works like (Kolesnikov et al., 2019) focus on
the model used to perform the pretext task, and on
the influence of this model on the quality of the rep-
resentation learned. They notably showed that better
results on a pretext task do not necessarily translate
to a better representation of the data neither to better
results on the target task.

Finally, (Su et al., 2020) has shown that self-
supervision is very beneficial to few-shot learning, es-
pecially when the pretext task is very complex, and
that using more unlabelled data for pretraining is use-
ful only if they come from the same domain as the
ones used for the few-shot task. This is partly why
in this work we used the same dataset for the self-
supervised task that the one on which we want to per-
form action recognition.

2.3 Jigsaw Puzzles as a Pretext Task

The pretext task used in this work is the solving of
jigsaw puzzles; this task consists in dividing an im-
age in several same-sized patches, and in shuffling
them. When solving spatial puzzles, humans use their
knowledge about how objects look, where they are
generally located, etc; when solving temporal puz-
zles, they can use informations related to movements,
such as their direction; by teaching a network to solve
puzzles, it is expected that it learns such useful con-
cepts in the process. In our case, the network must
predict which permutations have been done on the
video patches; this brings the problem back to a clas-
sification problem, where the system must output a
class corresponding to the way the puzzle pieces have
been shuffled (for instance, for 4 pieces, 4! = 24 per-
mutations are possible, thus we will have 24 possible
classes). The shuffling can be done spatially, or tem-
porally if applied to a video, which is equivalent to
reordering a video sequence as in (Lee et al., 2017).

Early works like (Noroozi and Favaro, 2016) tend

to use still images to solve spatial puzzles; the con-
volutional neural network (CNN) trained on puzzle
solving is then repurposed to solve an object detec-
tion task, for instance. But with the recent growing
interest for video data and action recognition, the fo-
cus switched on puzzles applied to image sequences,
called spatio-temporal puzzles. Different approaches
are defended when it comes to spatio-temporal jig-
saw puzzles; on one hand, some works such as (Ah-
san et al., 2018) define them as a unique task, where
both spatial and temporal shuffling are done simulta-
neously. More precisely, 3 frames of the video are
taken as inputs, and each one is cut in 4 patches; the
simplest method would be to simply shuffle those 12
patches, and train a CNN to reorder them back, but
it is a very hard and underconstrained task. In their
work, the patches are first shuffled in their own frame,
and then the frames are shuffled together; we still have
a spatio-temporal shuffling, but the puzzle solving is
made simpler thanks to those additional constraints.

On the other hand, works like (Kim et al., 2018)
create separately temporal and spatial puzzles, but
they feed them to the same network. Permutation
classes are shared across both types of puzzles (see
Figure 2), so the network is forced to discover and
use features that are useful to both sides of the wanted
spatiotemporal representation.

(a) Original sample. (b) Permuted sample.

Figure 2: Shared classes between spatial (top) and temporal
(bottom) puzzles. Permutations are equivalent between the
two types of puzzles as presented here : top-left in spatial is
equivalent to first in temporal, bottom-left to second, etc.

2.4 Skeleton Data Usage

In this last part, we will cover a few works that used
skeleton data as their main input.

The most simple way to feed a skeleton in a net-
work is to simply consider it as numerical data (Li
et al., 2017b), namely the coordinates of each key-
point, that can then be processed by a network to
predict action labels, for instance. (Lin et al., 2020)
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also used raw skeleton sequences as inputs for self-
supervised learning.

Other works such as (Shi et al., 2019) and (Yan
et al., 2018) take advantage of the fact that skeletons
are naturally graphs. In (Shi et al., 2019), motion in-
formation is also encoded in a similar graph structure;
both graphs are fed in a two-stream Graph Convolu-
tional Neural Network (GCNN). In (Yan et al., 2018),
the graph has two kinds of edges : intra-body edges
link body joints together, and inter-frame edges link
similar joints across time. This way a compact graph
representing the whole skeleton sequence is obtained
and can be processed by a Spatial Temporal GCNN.

Finally, as in (Li et al., 2017a) or (Wu et al.,
2019a), the whole skeleton video sequence can be
converted to one single RGB image; this image can
then be processed by traditional CNNs to perform
action recognition on them. For instance, each row
of the image can represent one frame, each column
a joint of the skeleton, and RGB values are for the
XYZ coordinates; this 2D representation can also be
learned.

3 METHOD

3.1 Spatio-temporal Puzzles

Our work draws its main inspiration from (Kim et al.,
2018); from a set of video demonstrations performed
by different actors, we extract spatial and temporal
puzzles composed of 4 pieces. We generate a number
of puzzles proportional to the duration of each video.
When created, a jigsaw puzzle can either be temporal
or spatial, each with a 50% probability. In our work,
a puzzle piece is an image, but we also ran some ex-
periments on videos; in both cases, the first step in
the puzzle generation process is to pick a reference
frame that serves as a starting point in time for puz-
zles. Then, the video is spatially cut in 4 corners of
the same size, and is also temporally cut every 2 sec-
onds, as presented in Figure 3; this forms what (Kim
et al., 2018) called space-time cuboids. Finally, we
apply a random permutation among the 24 available
to those cuboids.

Puzzles are fed in a 4-headed siamese-like
network (see Figure 7), where each head is a
CNN/3DCNN that extracts features from the im-
ages/videos, respectively; as in a siamese network,
weights are shared between all 4 heads. The obtained
outputs are then concatenated, and a final fully con-
nected layer allows the network to make a prediction
regarding the class of the puzzle.

Figure 3: Extracting puzzles from videos; in our method,
videos are cut both spatially and temporally in cuboids.
Then we can chose between creating a spatial puzzle with
the red cuboids, or a temporal puzzle with the blue ones.

The main difference of this work compared to
other puzzle-based methods is that we added the re-
sults of a body keypoint detector applied to every
frame of the videos directly on the image (see Figure
5 and Figure 6); more precisely, we draw the human
skeleton on top of each video frame when an actor
is present. This is what we called implicitly adding
skeleton information on the image.

3.2 Additional Processing

Figure 4: Subsampling of a puzzle piece : given a video
clip, we select a spatial crop of the video, and only keep
half of its duration.

As in most self-supervised learning works, we ap-
plied some transformations to the data in order to keep
the network from learning using low-level cues with-
out any semantical meaning. First, as used in (Lee
et al., 2017), we performed channel replication on
the images; this method consists in randomly chos-
ing one of the color channels and copying its values
to the other 2 channels (we can also perform channel
splitting, where we only keep one channel). Classical
grayscale images depend on all 3 colors, contrarily
to the ones obtained through channel replication; as
shown in (Lee et al., 2017), using gray images makes
the task more challenging for the network, forcing it
to discover features that are unrelated to color, and
improving its results on action recognition.
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As in (Kim et al., 2018), we also randomly sub-
sample all of our puzzle pieces, both in time and
space (Figure 4); this causes the cuboids to not be
aligned in both dimensions, which in turn keeps the
network from learning by just aligning edges of ob-
jects or shapes, which holds very little interest as fea-
tures learned through self-supervised learning.

Figure 5: Human skeleton keypoints and edges added on
top of a MPII Cooking 2 Dataset video frame.

Figure 6: An example of a spatial puzzle used in our self-
supervised learning experiments; both actor’s shoulders are
on the right pieces; top-left piece contains actor’s left arm.

3.3 Transfering Knowledge

Our target task is video action recognition, which
in our case could also be named video label predic-
tion; usually, when performing transfer learning from
a self-supervised pretrained network, as in (Kim et al.,
2018), only one of the 4 heads is kept to act as an
encoder for the target task, and the final layers are re-
placed to match the new dimension of the output. This
means that only one video clip is fed into the network
in order to predict the action that is performed in this
precise timelapse.

We take a different approach to this video label
prediction problem; rather than predicting the action
performed in the video clip, we want to be able to pre-
dict the global action performed in the whole video.
In order to do this, each video in the dataset is sepa-
rated in four parts of equal size, and an image (or a
video clip) is randomly extracted from each of those
parts. This allows us to get 4 clips that are representa-
tive of the whole video; we can repeat this operation
any number of time to generate several quadruplets
for one video, which is our way of generating anno-
tated data for action recognition at no cost. The 4 clips
can then be fed in the same network that was used for
spatio-temporal puzzle solving, with the last layer be-
ing changed to fit the number of action classes in the
dataset.

4 EXPERIMENTS

4.1 Dataset

For our experiments, we used the MPII (Max
Planck Institute for Informatics) Cooking 2 Dataset
(Rohrbach et al., 2015); it consists of 273 videos of
actors performing recipes in a kitchen. 59 differ-
ent recipes are available, such as ”pouring a beer”
or ”preparing a salad”; given the limited number of
videos, each recipe is performed between 1 and 11
times by a different actor. This was one of the rea-
son we chose this dataset; it allows us to set ourselves
in a context of few-shot learning, where very few ex-
amples are available for each action, leading to the
quadruplets generation we discussed before. Also the
level of the annotations in the MPII Cooking 2 Dataset
was perfectly suited for an action recognition task in a
robotic context : the annotations consist in high-level
manipulation tasks, not in atomic actions (”grasp”,
”drop”...) nor high-level human actions that involves
the whole human body (”playing basketball”, ”danc-
ing”...).

Regarding the augmentation of this dataset with
human skeleton data, we used the PyTorch implemen-
tation of Keypoint R-CNN (Wu et al., 2019b), avail-
able in the torchvision package, in order to perform
skeleton keypoints detection on each video frame, as
shown in Figure 5. Then the keypoints and skeleton
edges were drawn on top of the videos using OpenCV
(Bradski, 2000); videos were cropped around the
center of the skeleton in a 640*640 pixels window.
When creating the puzzle pieces, each cuboid was
then a 320*320*120 video (the temporal dimension
is mesured in frames); after subsampling, each puz-
zle piece was reduced to a 240*240*60 area, namely
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Figure 7: The typical architecture used in this work; each head takes a puzzle piece as input and extracts features from it. All
four heads’ outputs are then concatenated, and used by a fully connected layer to make a prediction regarding the class of the
puzzle.

2 seconds long video clips, and channel replication
was applied, resulting in puzzles such as the one pre-
sented in Figure 6. We created around 13000 puzzles
both with and without skeleton from the MPII Cook-
ing 2 Dataset; the 2 sets of puzzles were identical, the
only difference being the presence of the skeleton on
the image for the first set.

4.2 Models

As mentionned, we used a siamese-like architecture
(Figure 7) to process spatio-temporal puzzles. In the
case where images were used, each head was com-
posed of 6 2D convolutional layers (with respectively
32, 64, 128, 256, 512 and 512 filters); kernel size was
(3,3) and padding was set to 1. Each layer was fol-
lowed by a LeakyReLu activation function, and a max
pooling operation : from layers 1 to 4, filter size was
(2,2), and it was (3,3) for convolutional layers 5 and
6. After concatenation of the outputs of the 4 heads
and the fully connected layer, a softmax layer was ap-
plied to output classification scores. The model was
implemented using PyTorch.

4.3 Results

All trainings reported here have been run for 500
epochs.

We first present the mean accuracy obtained on the
testing set for the spatio-temporal puzzle solving task,
reported in Table 1, for different learning rate values.

As we can see, there is no major improvement in
terms of accuracy from adding the skeleton; for high

Table 1: Final mean accuracy on test set for spatio-temporal
puzzle solving (lr = learning rate).

With skeleton Without skeleton
lr = 0.1 0.292 0.325
lr = 0.02 0.300 0.308
lr = 0.01 0.323 0.324
lr = 0.001 0.314 0.311

learning rates the network actually reaches worse per-
formances when the skeleton is present. It can also
be noted that the reached accuracy is quite low in
both cases. To see where the network was struggling
the most, we ran additional experiments with a 0.01
learning rate either only on temporal puzzles or on
spatial puzzles (see Table 2).

Table 2: Final mean accuracy on test set for temporal and
spatial puzzle solving.

With skeleton Without skeleton
Temporal
puzzles

0.037 0.049

Spatial
puzzles

0.765 0.780

It appears clearly that the temporal puzzles were
reducing the overall accuracy of the network that was
trained to solve both types of puzzles, since networks
trained only on temporally shuffled data achieve very
poor performances, comparable to random predic-
tions. Meanwhile, spatial puzzles are easily solved,
and the models achieve a good accuracy considering
the difficulty of the task. However, in both cases the
gap between skeleton and non-skeleton puzzles still
holds.
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Finally, we also trained the same type of architec-
ture (4-headed siamese network) to solve the action
recognition problem from scratch, namely without a
self-supervised pretraining. Results over 3 different
trainings are reported in Table 3.

Table 3: Final accuracies on test set for the action recogni-
tion task trained from scratch.

With skeleton Without skeleton
Training 1 0.651 0.692
Training 2 0.577 0.644
Training 3 0.650 0.657

Even trained from scratch, both networks man-
age to predict the right labels consistantly, especially
given the high number of classes (59), and the diffi-
culty of predicting a video label from only 4 represen-
tative still images. Once again we can notice the same
gap in accuracy when adding the skeleton.

5 DISCUSSION

In the previous section, we have seen that the pro-
posed architecture fails to solve temporal, and thus
spatio-temporal, puzzles; nevertheless, the network
performs well on both spatial puzzle solving and
video action recognition. We also observed that
adding skeleton data directly on top of images without
explicitly specifying it to the network does not yield
improved results, and even actually hurts its perfor-
mance on all tasks. This implies that the network does
not consider the skeleton, and that it only acts as a
noise over the natural image behind it. This hypothe-
sis makes sense since the added skeleton can actually
be considered as a mask placed in front of the videos,
which hides part of the information, hence the deteri-
oration in accuracy.

We still have to run some experiments on trans-
fering knowledge learned in a self-supervised way
onto an action recognition task to see if this differ-
ence in accuracy still holds, but the initial results pre-
sented here allow us to conclude that simply adding
the skeleton on images is not enough for it to be
grasped by the network.

To fix this issue, we will constrain more the puz-
zles over the skeleton data; namely, instead of simply
adding it on top of the video frames, we could find
ways to include this information such that the network
will tend to look at it. We can think of this as skeleton
as an additional supervisory signal for learning from
images, such as in (Alwassel et al., 2020) where audio
was used to supervise video learning and vice versa.

We will also run experiments without channel
replication applied to the videos; while it forces the
network to grasp features unrelated to color, this pre-
processing also destroys part of the information that
is contained in natural images.

Another line of research we will explore consists
in using the skeleton as an input in itself, on which
we will also perform self-supervised tasks. We could
then fuse results from both types of inputs to improve
the performance of action recognition from human-
related videos.

6 CONCLUSION

In this work, we tried to add the human skeleton as an
implicit signal in images and videos, and performed
both puzzle solving in a self-supervised way and ac-
tion recognition from scratch on those ”augmented”
images. We noticed an overall decrease in perfor-
mance when adding the skeleton that we attributed to
a fail from the network to grasp it as an information;
without any further constraints, this additional pixels
are considered as noise by the network. For future
works, we plan on constraining more our architecture
based on skeleton poses, whether it is by adding it in
a different way to the image or by giving it as a sec-
ondary input to our network.
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