An Imprecise Label Ranking Method for Heterogeneous Data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

An Imprecise Label Ranking Method for Heterogeneous Data

Résumé

Learning to rank is an important problem in many sectors ranging from social sciences to artificial intelligence. However, it remains a rather difficult task to perform. Therefore, in some cases, it is preferable to perform cautious inference. For this purpose, we look into the possibility of an imprecise probabilistic approach for the Plackett-Luce model, a popular probabilistic model for label ranking. We aim at extending current Bayesian inference techniques for the Plackett-Luce model to an imprecise probabilistic setting so that we can deal with heterogeneous data by means of cautious mixture modelling. To achieve this, we perform a robust Bayesian analysis over a set of imprecise Dirichlet priors, which allows us to perform cautious label ranking. Finally, we use a synthetic dataset to illustrate our imprecise estimation method.
Fichier principal
Vignette du fichier
Imprecise_label_ranking_for_heterogeneous_data.pdf (297.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03946248 , version 1 (19-01-2023)

Identifiants

Citer

Tathagata Basu, Sébastien Destercke, Benjamin Quost. An Imprecise Label Ranking Method for Heterogeneous Data. 10th International Conference on Soft Methods in Probability and Statistics (SMPS 2022), Sep 2022, Valladolid, Spain. pp.32-39, ⟨10.1007/978-3-031-15509-3_5⟩. ⟨hal-03946248⟩
26 Consultations
74 Téléchargements

Altmetric

Partager

More