Deforming 3-manifolds of bounded geometry and uniformly positive scalar curvature - Archive ouverte HAL
Article Dans Une Revue Journal of the European Mathematical Society Année : 2020

Deforming 3-manifolds of bounded geometry and uniformly positive scalar curvature

Résumé

We prove that the moduli space of complete Riemannian metrics of bounded geometry and uniformly positive scalar curvature on an orientable 3-manifold is path-connected. This generalises the main result of the fourth author [Mar12] in the compact case. The proof uses Ricci flow with surgery as well as arguments involving performing infinite connected sums with control on the geometry.
Fichier principal
Vignette du fichier
JEMS-1008.pdf (264.66 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03945317 , version 1 (18-01-2023)

Identifiants

Citer

Laurent Bessières, Gérard Besson, Sylvain Maillot, Fernando C Marques. Deforming 3-manifolds of bounded geometry and uniformly positive scalar curvature. Journal of the European Mathematical Society, 2020, 23 (1), pp.153 - 184. ⟨10.4171/jems/1008⟩. ⟨hal-03945317⟩
22 Consultations
24 Téléchargements

Altmetric

Partager

More