Covariance models and Gaussian process regression for the wave equation. Application to related inverse problems - Archive ouverte HAL
Article Dans Une Revue Journal of Computational Physics Année : 2023

Covariance models and Gaussian process regression for the wave equation. Application to related inverse problems

Résumé

In this article, we consider the general task of performing Gaussian process regression (GPR) on pointwise observations of solutions of the 3 dimensional homogeneous free space wave equation. In a recent article, we obtained promising covariance expressions tailored to this equation: we now explore the potential applications of these formulas. We first study the particular cases of stationarity and radial symmetry, for which significant simplifications arise. We next show that the true-angle multilateration method for point source localization, as used in GPS systems, is naturally recovered by our GPR formulas in the limit of the small source radius. Additionally, we show that this GPR framework provides a new answer to the ill-posed inverse problem of reconstructing initial conditions for the wave equation from a limited number of sensors, and simultaneously enables the inference of physical parameters from these data. We finish by illustrating this ``physics informed'' GPR on a number of practical examples.
Fichier principal
Vignette du fichier
main.pdf (2.81 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03941939 , version 1 (16-01-2023)
hal-03941939 , version 2 (07-11-2023)

Identifiants

Citer

Iain Henderson, Pascal Noble, Olivier Roustant. Covariance models and Gaussian process regression for the wave equation. Application to related inverse problems. Journal of Computational Physics, 2023, 494, pp.112519. ⟨10.1016/j.jcp.2023.112519⟩. ⟨hal-03941939v2⟩
304 Consultations
243 Téléchargements

Altmetric

Partager

More