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Covariance models and Gaussian process regression for the
wave equation. Application to related inverse problems

I. Henderson *#, P. Noble?, and O. Roustant?®

#Institut de Mathématiques de Toulouse; UMR 5219, Université de Toulouse;
CNRS , INSA, F-31077 Toulouse, France

Abstract

In this article, we consider the general task of performing Gaussian process regres-
sion (GPR) on pointwise observations of solutions of the 3 dimensional homogeneous
free space wave equation. In a recent article, we obtained promising covariance ex-
pressions tailored to this equation: we now explore the potential applications of these
formulas. We first study the particular cases of stationarity and radial symmetry,
for which significant simplifications arise. We next show that the true-angle multi-
lateration method for point source localization, as used in GPS systems, is naturally
recovered by our GPR formulas in the limit of the small source radius. Additionally,
we show that this GPR framework provides a new answer to the ill-posed inverse prob-
lem of reconstructing initial conditions for the wave equation from a limited number
of sensors, and simultaneously enables the inference of physical parameters from these
data. We finish by illustrating this “physics informed” GPR on a number of practical
examples.

Keywwords: wave equation, covariance models, Gaussian processes, Gaussian process regression, phys-

ical parameter estimation, initial condition reconstruction.

1 Introduction

Machine learning techniques have proved time and again that they can provide efficient
solutions to difficult problems in the presence of field data. A key element to this success
is the incorporation of “expert knowledge” in the corresponding statistical models. In
many practical applications, this knowledge takes the form of mathematical models which
are sometimes already well understood. This is e.g. common when dealing with problems
arising from physics, in which case the mathematical models often take the form of Partial
Differential Equations (PDEs), such as the wave equation at hand in this article. Because
of the broadness of the applications PDEs offer, large efforts have been devoted to studying
and solving them, both theoretically [18] and numerically [25]. These equations impose
very specific (yet often simple) structures on the observed data which can be very difficult
to capture or mimic with general machine learning models.
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In this article, we will focus on the linear 3 dimensional homogeneous free space wave
equation. This equation is the prototype for describing simple 3D phenomena which
propagate at finite speed; although particularly simple in the landscape of PDEs, it is
in fact central for many applications emerging from different fields such as acoustics or
electromagnetics. The homogeneity assumption is also commonly encountered in physics,
when modelling conservation laws. Given that the main structures of the solutions of this
PDE are well known, one may thus attempt to incorporate them in the machine learning
models that work with such solutions.

The class of models we will deal with is that of Gaussian Process Regression (GPR),
which is a Bayesian framework for function regression and interpolation [49]. It is es-
pecially adapted to performing inference in the presence of limited/scattered data, say
measurements from a small number of scattered sensors. It is also a “kernel method”,
meaning that it is built upon a positive semidefinite function, the kernel in question. In
the language of Bayesian inference, GPR puts a prior probability distribution on a suit-
able function space in which the unknown function u is assumed to lie. This prior is
then conditioned on available field data involving w thanks to Bayes’ law, which in turn
provides a posterior probability distribution from which statistical estimators related to
u can be computed. The posterior expectation in particular plays the role of an approx-
imant of u while the posterior covariance provides posterior error bounds. In the case of
GPR, these prior and posterior distributions are in many ways generalizations to infinite
dimensions of the multivariate normal distribution, and are fully specified by a mean and
covariance functions. These priors are naturally obtained by modelling u as a sample path
of a Gaussian process and we will thus say that we put a Gaussian process (GP) prior over
u. Imposing strict linear constraints on a GP prior as well as on the posterior expectation
it provides is straightforward in principle; we will apply this observation to the case where
the linear constraint is the homogeneous wave equation itself, as in [28].

Thus, we will first be concerned with building GP priors which incorporate beforehand
the knowledge that the sought function is in fact a solution to the wave equation, thus
drastically lowering the dimension of the function space upon which the prior is set. In
practice, the main consequence will be that all the possible estimators of u provided by
GPR will also be solutions to the same wave equation. Nevertheless, from a random field
perspective, it is remarkable that this property will in fact also hold at the level of the
sample paths of the GP, when the PDE is understood in the distributional sense ([28],
Proposition 4.1). Those covariance formulas are particular cases of general ones first de-
scribed in [28], which take the form of multidimensional convolutions against the PDE’s
Green’s function. They were derived by putting generic Gaussian process priors over the
initial conditions of the wave equation and propagating them through the solution map
of the said equation, leading to “wave equation-tailored” covariance functions. Though
interesting for theoretical purposes, these convolutions are very expensive to evaluate nu-
merically, which constitutes a limitation for their use in GPR. In this article, we explore
the particular cases where the initial condition priors are either stationary (Proposition
3.2) or radially symmetric (Proposition 3.3), as then notable simplifications can be ob-
tained. We then study the case of point sources, for which we show that the task of
recovering the position of the point source using multilateration (as e.g. in GPS systems,



see [20]) is unexpectedly recovered by maximizing the likelihood attached to the GPR
models we previously obtained for the wave equation, in the limit of the small source
radius (Figure 1). We will also discuss applications in physical parameter estimation and
initial condition reconstruction. Recovering the initial position in particular is the purpose
of photoacoustic tomography (PAT, [4], Chapter 3), an exercise for which we will provide
a simple proof of concept application, in the presence of radial symmetry.

Related literature The idea of solving and “learning” linear ODEs and PDEs thanks
to GPR probably goes back to [24] and has been re-explored ever since. A large part of
the subsequent works inspired by [24] deal with PDEs of the form L{u) = f where f is
a partially known interior source term: that is, f and u have the same input space. We
will not be interested in this case as we will impose the strict condition that f = 0, as
is e.g. the case in PAT. In our case, the initial conditions will instead play the role of
the source terms. For dealing with interior source terms, see [50, 37, 3, 51, 36, 47, 48|
and [2, 42] for subsequent applications to inhomogeneous wave equations. See also [9]
for an alternative method applicable to nonlinear PDEs. Compared to these approaches,
ensuring (deterministically) the homogeneity constraint f = 0 in the wave equation will
allow us to drastically reduce the dimensionality of the problem of approximating u given
scattered measurements of w.

Ensuring homogeneous PDE constraints on centered GPs is done by appropriately
constraining its covariance kernel ([28], Proposition 3.5). Such PDE constrained kernels
have been explicitly built for a number of classical PDEs, namely: divergence-free vector
fields [40, 53], curl-free vector fields [22, 53, 58, 31], the Laplace equation [52, 39, 1],
Maxwell’s equations [33], the heat equation in 1D [1] and 2D [23], Helmholtz’ 2D equations
[1], and linear solid mechanics [30]. See also [57] where generic PDE-constrained kernels
are built under stationarity assumptions. For further discussions and references on PDE
constrained random fields, we refer to [28], Section 1. This article is the continuation
of a previous work [28], where we described a covariance kernel tailored to the wave
equation at hand in this article. In parallel with homoegeneous PDEs, [34, 26, 54] enforce
homogeneous boundary conditions on the covariance kernel. We finish by mentioning that
fine properties of a stochastic three dimensional wave equation are studied in [11]. The
wave equation in [11] is not homogeneous, and because of the nonlinearity they consider,
a precise investigation of the covariance function of the solution process is not considered.

The approach presented in this article falls in the field of Bayesian methods for solving
PDE related inverse problems, the literature of which is extensive; see [55, 12, 10, 13]
and the many references therein. However, the method we adopt here differs from the
standard Bayesian inversion methods aforementioned in that we incorporate the PDE
constraint beforehand, i.e. directly in the prior; the PDE does not only appear in the
likelihood. See [41] for a point of view similar with that of the present article, which uses
PDE-tailored GP priors for building optimal finite dimensional approximations of solution
spaces of elliptic PDEs.

The inverse problems we will study deal with approximating the initial conditions of
(3.1) as well as the related physical parameters (wave speed, source location and source
size), given scattered measurements of the solution u. A general methodology for esti-



mating the parameters of a linear PDE using GPR is described in [47], using the forward
differential operator. Here we will rather use its inverse, i.e. the Green’s function. The
task of approximating the initial position in particular is the purpose of photoacoustic
tomography (PAT), which is a technique commonly used e.g. in biomedical imaging [4].
See e.g. [32, 5] for details on the standard mathematical techniques and models used in
PAT. Note that the solution is often assumed available on a surface enclosing the source
[60], in order to use Radon transforms or similar inversion formulas. Our method instead
allows the sensors to be arbitrarily scattered. As the corresponding PAT problem becomes
ill-posed, we do not aim for a full reconstruction of the initial conditions. Instead, we show
that our method amounts to computing an orthogonal projection of the solution over a
well-chosen finite dimensional space. Of course, the geometry of the sensor locations plays
a crucial role in the accuracy of our model, but the reconstruction formula we introduce
remains nonetheless independent of any underlying geometry assumptions. In the two
dimensional setting, it is worth noting that [44] already showed that a GPR methodology
based on Radon transforms could be set up for solving x-ray tomography problems in the
presence of limited (scattered) data.

Organization of the paper For self-containment, section 2 is dedicated to reminders
on (Gaussian) random fields and GPR. Section 3 is dedicated to the study of GP priors
tailored to the wave equation. In section 4, we showcase some numerical applications
of the previous section on wave equation data. We conclude in section 5. For the sake
of readability, all the proofs as well as technical definitions concerning convolutions and
tensor products are gathered in the appendix.

Notations Let D be aset, m : D - Rand £k : D xD — R. Given z € D, k,
denotes the function y — k(z,y). If X = (z1,...,2,)7 is a column vector in D", we
denote m(X) the column vector such that m(X);, = m(x;), k&(X, X) the square matrix
such that k(X, X);; = k(z,2;) and given € D, k(X,z) the column vector such that
k(X,z); = k(x;,z). The variables (r,0,¢),r = 0,6 € [0,7],¢ € |0, 27|, denote spherical
coordinates and S denotes the unit sphere of R?. We write dQ) = sin #dfd¢ its surface
differential element; v = (sin 6 cos ¢, sin # sin ¢, cos §)” € S denotes the unit length vector
parametrized by (6, ¢).

2 Background on Gaussian process regression

2.1 Random fields, Gaussian processes, positive semidefinite functions

Let D be a set. A random field (U(x))zep is a collection of random variables defined on
the same probability space (£2, F,P). It is second order if for all x € D, E[U(z)?] < +oo0.
Its sample paths are the deterministic functions z — U(z)(w), given w € Q. (U(x))zep is
a GP if for all (x1,...,7,) € D", the law of (U(z1),...,U(xy,))T is a multivariate normal
distribution. The law of a GP is characterized by its mean and covariance functions ([29],
Section 8), defined by m(xz) := E[U(z)] and k(z,2") = Cov(U(z),U(z’)) = E[U(x)U (z")] -
m(x)m(z'), and we write (U(z))zep ~ GP(m, k). Given w € €, the associated sample



path is the deterministic function U, : z — U(x)(w). The mean function can be chosen
arbitrarily, but the covariance function has to be symmetric and positive semidefinite,
which means that for all (z1,...,z,) € D", the matrix (k(zs,z;))1<i j<n i symmetric non
negative definite ([49], Section 4.1). In the rest of the paper, positive semidefinite functions
will implicitly be assumed symmetric. The mathematical properties of the GP are encoded
in the function k. Furthermore, there is a bijection between positive semidefinite functions
and covariance functions of centered GPs ([29], Theorem 8.2). We will thus focus on the
design of positive semidefinite kernels. A covariance kernels is stationary if k(x,z’) only
depends on the increment z — 2': k(z,2') = kg(x — 2') for some function kg. Common
examples of stationary kernels are the squared exponential and Matérn kernels [49]; see
equation (4.1). Informally, if the covariance function of a GP is stationary, then its sample
paths “look similar at all locations” ([49], p.4).

2.2 Gaussian process regression [49]

2.2.1 Kriging equations. GPs can be used for function interpolation. Let u be a
function defined on D for which we know a dataset of values B = {u(xy),...,u(xy,)}.
Conditioning the law of a GP (U(z))zep ~ GP(m, k) on the data B yields a second GP
defined by V(z) := (U(z)|U(x;) = u(x;),i = 1,...,n). Its mean and covariance functions m
and k are given by the so-called Kriging equations (2.1) and (2.2). Note X = (z1,...,2,)T
and assume that K (X, X) is invertible, then [49]

{ m(x) = m(z) + (X, 2)Tk(X, X) " (u(X) — m(X)), (2.1)
kE(z,2) = k(z,2) —k(X,2)TE(X, X)'k(X,2"). (2.2)

The function 7 is an estimator of v and for all  in D, m(z) can be used for predicting
the value u(z). By construction, for all observation points x;, we have m(z;) = u(x;)
and k(z;,z;) = 0. If observing noisy data U; = U(x;) + &; with (g1, ...,e,)" ~ N(0,021,,)
independent from U, one replaces K (X, X) with K(X, X) + ¢%I in the Kriging equations
and leaves the other terms k(X, z) unchanged. This amounts to applying Tikhonov regu-
larization on k(X, X), which is also relevant for approximating equations (2.1) and (2.2)
when k(X, X) is ill-conditioned.

2.2.2 Tuning covariance kernels [49]. Covariance functions are usually chosen among
a parametrized family of kernels {kg,0 € © < R?}. 6 contains the hyperparameters of ky.
One then attempts to find the value § which fits best the observations uops = (1, ..., un)?
the set of observations of w at locations X = (zy,...,x,). This is performed by max-
imizing the marginal likelihood, which is the probability density of the random vector
(U(x1), ..., U(zn))T at point ueps, given 6. Denote p(u,ps|0) the associated marginal likeli-
hood at 6, one searches for  such that § = argmaxg.ep(teys|0). Explicitly, assuming that
m = 0, then we have (U(x1),...,U(z,))T ~ N(0, kg(X, X)) and

1 —2uT ko(X, X)L uops
27‘()”/2 dot k‘g(X,X)l/Qe 2 Uobs 0 bs (2.3)

p(uobs |9) = (



Equivalently, for noisy observations with identical noise standard deviation o, set

L(0,0%) : = —21log p(ueps|0) — nlog 2w
= ull (ko(X, X) + 02,) tueps + logdet(kg(X, X) + 021,,). (2.4)

We call E(G 0?) the negative log marginal likelihood, and one may rather attempt to find 6
such that 6 = arg ming.g £(6,02). Note that o can also be interpreted as a hyperparameter
and estimated through negative log marginal likelihood minimization.

2.2.3 The RKHS point of view. The Kriging equations (2.1) and (2.2) can alterna-
tively be viewed as orthogonal projections of w in a suitable Hilbert space. Given a positive
semidefinite kernel £ defined on a set D, one may build a Reproducing Kernel Hilbert Space
(RKHS) of functions defined on D, which we denote by Hj ([6], Theorem 3). The inner
product of Hy, verifies the reproducing property [59]: {k(x,-), k(2 ))n, = k(z,2’). One
may then formulate the following regularized interpolation problem [21, 59]

inf ||v||g, st v(x) =wu(z) Vie{l,..,n}. (2.5)
vEH )

Then m in equation (2.1) is the unique solution of (2.5). One can also show [59] that
equation (2.1) amounts to m = m + prp(u — m), where pr stands for the orthogonal
projection operator on F := Span(k(z1,-), ..., k(xy, -)) with reference to the inner product
of Hy. If in particular m = 0, then m = pp(u). Likewise, equation (2.2) amounts to
k(z,-) = Ppi(k(z,-)). Viewing the Kriging mean as an orthogonal projection over a finite
dimensional deterministic space is reminiscent of Fourier series or Galerkin reconstruction
approaches.

3 Gaussian process priors for the 3D wave equation

3.1 General solution to the wave equation

Denote the 3D Laplace operator A = 82, + 52 + 02, and the d’Alembert operator with the
box symbol, []= ¢ 20% — A with constant wave speed ¢ > 0. Consider then the following
initial value problem in the free space R3

(3.1)

(w =0 V(z,t) € R3 x R%,
w(zx, 0) ug(z), dyw(w,0) =vo(x) VaeR3

The solution of this problem is unique in the distributional sense ([16], p. 164). It can be
extended to all £ € R and is represented as follow ([16], p. 295)

w(z,t) = (Fy # vo)(x) + (Fy * ug)(x), V(z,t) e R® x R, (3.2)

(F})ier is the Green’s function of the wave equation ([15], p. 202). For fixed ¢, F; is a
singular measure, meaning that it has no density with reference to the Lebesgue measure.
Fy is Fy’s “time derivative” (formally, Fy = 6,F}, [16], equation (18.16) p. 297), understood



as a continuous linear form over C' L(R3). Details on the definition of the convolution Fy vy
are given in Section A.1, while F} * ug is effectively computed as Fy x up = Ot (Fy = vg).
Explicitly, F; and F}; are defined by

Telt|
t =
drc?t’

and  Voe CYRY), (B o) = atURg @(m)Ft(daz)>, (3.3)

where o is the surface measure of the sphere of center 0 and radius R, and {-,-) is the
duality bracket between C'(R?) and its dual. If uy € C*(R3) and vy € C°(R3), then w as
defined in (3.2) is a pointwise defined function and equation (3.2) reduces to the Kirschoff
formula ([18], p. 72), which writes in spherical coordinates:

ds2
w(z,t) = L tvg(z — c|t|y) + uo(z — c|t|y) — c|t]y - Vuo(z — c|t|7)g. (3.4)

3.2 Gaussian process priors for the wave equation

3.2.1 General covariance structure. Suppose that the initial conditions ug and vy
are realizations of two independent centered Gaussian processes, U’ ~ GP(0,k,) and
VY ~ GP(0,k,). That is, up = US and vg = V0 for some w € . This assumption is
relevant e.g. when ug and vy are unknown, in which case UY and V? are interpreted as
GP priors over ug and vyg. We will assume that the sample paths of VO are continuous
and that of U° are continuously differentiable, in order to use the formula (3.4) (see [28],
Section 4.2 for more details and discussions on these assumptions). By solving (3.1), one
obtains a time-space random field W (x,t) defined by

W(z,t): Q35w (F+ VO)(x) + (B » UY)(x). (3.5)
The next result, which describes the covariance function of W, is the starting point of this
paper.

Proposition 3.1 ([28], Proposition 4.1). Denote z = (z,t) and 2’ = (2',t') the space-time
variables. Let ky (resp. ky) be a positive semidefinite function such that the sample paths
of the associated GP are continuously differentiable (resp. continuous). In particular,
k, € CO(R3 x R3) and ky(z, .), ku(.,2') € CHR3) for all x,2' € R3. Define then the two
functions

Rz, ) = [(F, @ Fo) » (2, 7)), (3.6)
ky™e(2,2") = [(Fy @ Fy) * ko) (2, 2"). (3.7)
(1) Then (W(z)).er3xr s a centered GP whose covariance kernel is given by

kw(z,2") = kY™(2,2") + kW*(2, 2'). (3.8)

(i) Conversely, any centered second order random field with a.s. continuous sample paths
and with covariance function ky has its sample paths solution of the wave equation (3.1)
for some ug and vy, in the sense of distributions, almost surely.



Equation (3.6) is to be understood in the sense of the appendix section A.1, while in
practice, equation (3.7) can be computed as [(F; ® Fy) = ky](x,2') = 0,00 [(Fy ® Fy) «
ku](x,2"). The proof of equation (3.8) relies on Fubini’s theorem, to permute E[-] and
integrals over the sphere S (see equation (3.4)). To apply Fubini’s theorem, one needs the
maps (z,w) — V(z)(w) and (z,w) — 0, U(z)(w),i € {1,2,3} to be measurable. In our
case this property holds, up to a modification, because the random fields V' and 0,,U(z)
are assumed a.s. continuous (see [28], Section 2.1.2 for further discussions). Complete
expressions of equations (3.6) and (3.7) in terms of integrals of ky, its first derivatives and
ky over the unit sphere can be found in [28], p. 23. They are derived from the Kirschoff
formula (3.4).

Remark 3.1. A more general result holds if one drops the GP assumption over (V°(x)),cprs
and (U%(2))egrs. If we only assume that V9 (resp. U°) is a centered second order ran-
dom field with a.s. continuous (resp. a.s. continuously differentiable) sample paths and
covariance function ky (resp. ky), then W in equation (3.5) is well-defined, centered, and
its covariance function is ky, in equation (3.8). Only the Gaussianity of W is lost. In-
deed, the proof of Proposition 4.1, [28], only uses the aforementioned relaxed assumptions
over U and VY to obtain the formula (3.8). The Gaussianity of U" and V? is only used
to show that W is also a GP. Non Gaussian (say log normal or exponential) priors are
relevant e.g. for modelling nonnegative initial conditions. They are especially interesting
for the wave equation because the nonnegativity of the measure F; yields the following
remarkable positivity preserving property: if ug = 0 and vy = 0, then w in equation (3.2)
verifies w(zx,t) = 0 for all £ > 0.

Observe now that for all z = (z,t) € R? x R, we have [Jky(z,-) = 0. Using equation
(2.1), one then deduces that all the Kriging mean obtained using the kernel ky, always
verifies [ = 0. For this reason, we call WIGPR (“Wave equation informed GPR”)
the act of performing GPR with a covariance kernel of the form (3.8). Note that the
inheritance of the distributional PDE constraint over the sample paths of the conditioned
GP is proved in [28], Proposition 3.8.

In applications, a first obstacle of WIGPR is the cost of the evaluation of expressions
(3.6) and (3.7), both in computational resources and in memory. Indeed, their compu-
tation requires 4-dimensional convolutions. This motivates the study of special cases of
expressions (3.6) and (3.7). In the next paragraphs, we focus on stationarity and radial
symmetry assumptions.

3.2.2 Stationary initial conditions. Many standard covariance kernels used for GPR
are stationary [49]. More generally, a centered second order stochastic process is said to
be stationary in the wide (or weak) sense if its covariance function is stationary ([49],
footnote 2 p. 79). Such stochastic processes play a central role in many different fields
such as time series analysis or signal processing [27]. Because of the popularity of such
stationary random field models as well as GPR methods based on stationary kernels, we
study equation (3.6) when k, is stationary. For conciseness, we restrict ourselves to the
case where ug = 0, i.e. k, = 0.



Proposition 3.2. Assume that ky is continuous and stationary: ky(z,z') = kg(x — 2').
(i) Then kY*V¢ is stationary in space and

[(F; @ Fy) # ky](z,2") = (Fy « Fy x kg)(x — 7). (3.9)

(ii) Moreover, the measure Fy + Fy is absolutely continuous over R®. Denoting |h| the
Euclidean norm of h € R? and identifying Fy = Fy with its density, we have

sgn(t) sgn(t’)

Fy = Fu)(h) =
( t* t)( ) 87’[’62|h| [c“t|—\t’\

et URD- (3.10)

If k, is assumed zero, and if V¥ only satisfies the minimal assumptions of Remark 3.1
as well as wide sense stationarity, then the covariance expression (3.9) still holds for the
solution process W in equation (3.5). Formally, one can obtain similar formulas for k}2v¢
by differentiating the formulas above with respect to t and t/, as F, = ,F, (Ft * Ft/ will
only be a generalized function though).

We underline that the proof of Point (i) in Proposition 3.2 makes use of the specificities
of the dimension 3. First in equation (A.5), where the scalars r? cancel each other out;
second in (A.7) where an exact antiderivative of the integrated function can be computed.
None of these two simplifications hold in higher dimension or in dimension 2, and formulas
as simple as equation (3.10) are not expected to hold.

Remark 3.2. Expression (3.10) with h = 2 — 2’ is the covariance kernel of the solution
process U with initial condition the “formal” white noise process V° with the stationary
Dirac delta covariance kernel ky(z,2’) = do(z — 2'):

[(F; ® Fy) * ky|(z,2") = (Fy = Fy o 60)(x — 2') = (Fy = Fy)(z — 2'). (3.11)

Somewhat surprisingly, although formula (3.10) yields a summable function over R? when
t and ¢’ are fixed, it can not be used for practical computations as the diagonal terms of the
related covariance matrices are all singularities: (F; = F3)(0) = +o0... Yet, formula (3.10)
may be used together with explicit kernels kg to yield usable expressions. For instance, if
ky(z,2") = ks(x — 2') = Cexp(—|z — 2'|?/2L?), we state without proof that

(Fy* Fy = kg)(h) =

vercL? (@(REM) —o(pH)  e(R) — a()
. 02( 0 - o L (312)

sgn(tt')

where h = x — 2/, ®(s) = (2m) Y27 exp(—t2/2)dt, Ry = ||t| — |||, R2 = c(|t| + [t']).
Such a kernel always takes finite values: when h goes to 0, the above formula reduces to
well defined derivatives.

Although these formulas are interesting in their own right, the study of propagation
phenomena is usually done thanks to compactly supported initial conditions, which can
never be modelled with wide sense stationary random fields. We partially deal with com-
pactly supported initial conditions in Section 3.2.3, within the context of radial symmetry.



3.2.3 Radially symmetric initial conditions. Assume that the sample paths of the
process V0 enjoy radial symmetry around some g € R3. This can be expressed in terms
of differential operators in (r, 6, ¢), the spherical coordinate system around xg:

PlweQ: V0 =0}) =1, and PH{weQ:05V)=0})=1. (3.13)
Then by Proposition 3.5 of [28], ky verifies, in the sense of distributions,
VreD, do(ky(z,-)) =0 and 0dy(ky(z,-)) =0. (3.14)

Thus, there exists a function k defined on Ry x R, such that k(z,2") = k2(r?,r"2),
with r = |z|, ' = |2/| (directly using the squares 2 and 7’2 will simplify computations
later on). Similarly, assume that the sample paths of UY exhibit radial symmetry and
write ky(x,2') = k%(r?,r"?). Because of the generality of Proposition 3.5 from [28], the
Gaussianity of V? and U° are not required. Furthermore, the same theorem states that
equations (3.13) and (3.14) are in fact equivalent. From the radial representations of k&
and k,, we can deduce the following convolution-free formulas for £J*¥® and kJ*V:

Proposition 3.3. Set K,(r,r") = §| Sgl kO(s,s')dsds'. Then for all z = (x,t) € R x R
and 2’ = (2/,t') e R3 x R,
sgn(tt")

ke (s 21y = T Z e Ky (1 + eclt))®, (' + €'clt’])?), (3.15)
emrr e,e’e{—1,1}

Rz, ) =

1
g Z (r+eclt])(r' +clt]) x kS((r + eclt])?, (" +'c|t'])?). (3.16)
e,e’e{—1,1}
The expressions (3.15) and (3.16) are interesting in that they are much easier and
faster to compute than (3.6) and (3.7), which require to compute convolutions.

3.2.4 Compactly supported initial conditions. Suppose that vy is compactly sup-
ported on a ball B(xg, R). The Strong Huygens Principle for the 3 dimensional wave
equation ([18], p. 80) states that F; = vy is supported on the spherical shell B(xg, R +
clt)\B(zg, (R—c|t|)+), where z := max(0, z). From a GP modelling perspective, assum-
ing that Supp(V") = B(zo, R) amounts to imposing that V°(x) = 0 a.s. if = ¢ B(x, R).
This is equivalent to Var(V°(x)) = ky(z,2) = 0 since V9 is assumed centered. The same
reasoning in terms of support can be applied to ug and U°. In the next proposition, we
explore the consequences of such compactness assumptions on the radial formulas (3.15)
and (3.16). The new formulas are readily deduced from Proposition 3.3, but we state them
on their own as they are the ones used in Section 4.

Proposition 3.4. Let R, > 0 and R, > 0. Let a € (0,1) and ¢, : Ry — [0,1] be a
C! decreasing function such that pa(s) = 1 if s < a and @a(s) = 0 if s = 1. Set the
truncated kernels
kfv (x,2") = k?,’RV (r?,r"?) = kg(TQ,r'Q)]l[O,RV] (1) 10,Ry] (', (3.17)
kit (z,2') = kgt (r?,r2) = kg (r2,0) o (r/Ru ) o (r'/ Ru) (3.18)
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Assume now that VO ~ GP(0,kR) and U° ~ GP(0,kE). Then, defining the function
Ko(r,r) = §3 55 k2(s, ' )dsds', the two following formulas hold

wave n o_ SQn(ttl)
k) = 16c2rr’
3 56'Kv(min ((r + eclt])?, R2), min (' + £'c|t')2, R%)), (3.19)
e,e’e{-1,1}
wave ! 1
kY (z,2") = e
Z (r + eclt))(r’ + & c|t'|) k0P ((7“ + eclt)?, (' + €/c|t'|)2). (3.20)
e,e’e{-1,1}

Notice that the truncated kernels k% and kF+ are the covariance kernels of the trun-
cated processes ‘/t(r]unc(x) = I[[O,Rv]ﬂx - $0|)V0($) and Ugunc(‘r) = (p(|l' - QZ()|/RU) UO(x)
respectively. For k| the truncation procedure has to be sufficiently smooth to compute
(Ft * Ft/) # kR which requires to differentiate kfs. In contrast, we used a blunt trun-
cation for k. Strictly speaking, the sample paths of V2, .(z) are not continuous and
Proposition 3.1 cannot be used on this GP. However, as discussed in [28], Section 4.2.1,
it is easily checked that for V0 (), all the computations leading to equation (3.6) still
hold, and thus equation (3.19) also holds.

We also observe that such compactly supported kernels can never be stationary as
their sample paths are compactly supported. Using equation (3.19), one can indeed check
that k¥2Ve(z,2) = Var(V(z)) = 0 as soon as (r —clt|)? > R2, ie V() = 0 a.s. and likewise
for kYV¢: this is the expression of the strong Huygens principle on the kernels £Y*' and
EY®e. Such compactly supported kernels may lead to sparse covariance matrices which
may then be used for computational speedups (a topic we leave aside in this article).

3.2.5 Estimation of physical parameters. The wave kernel (3.8), using for k, and
k, radially symmetric kernels supported in B(z{}, Ry) and B(x{, Ry) respectively, has for
hyperparameters 0 = (c, z, Ru, 0o, 73, Ry, 010) Among those, (c, zj, Ru, 2, Ry) all corre-
spond to physical parameters. Their estimation via likelihood maximisation is numerically
investigated in Section 4. Note that finding the correct radii R,, and Ry is not a well posed
problem: if Supp(U°) c B(z}, Ry) then Supp(U°) ¢ B(z8, aR,) for any a > 1 and aR,
is also a suitable candidate for R,. This is discussed in Section 4.

Remark 3.3 (GPR, radial symmetry and the 1D wave equation). It is known that the
radially symmetric 3D wave equation is equivalent to the 1D wave equation, by introducing
w(r,t) = rw(z,t), r = |x|. However, the joint problem of approximating a radially
symmetric solution w of Problem (3.1) with GPR and searching for the correct source
location parameters (zg, Ry, xf, Rv) cannot be reduced to the one dimensional case, as
the source centers xy and xy both lie in R3.

3.3 The Point Source limit

The case of the point source deserves a study on its own as it plays a central role for
linear PDEs, both in theory [15] and in applications. For the wave equation, modelling
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the source term as a point source (i.e. a Dirac mass) is relevant in a number of real life
cases: a localized detonation in acoustics, an electric point source in electromagnetics, a
point mass in mechanics and so forth. In this section, we will not make use of the Kriging
equations (2.1) and (2.2) as reconstructing an initial condition that is a point source is
actually of little interest. Also, reconstructing the wave equation’s Green’s function thanks
to a pointwise approximation such as GPR is expected to yield poor results because this
Green’s function in particular is not even defined pointwise: it is a family of singular
measures, see equation (3.3). However, estimating the physical parameters attached to it,
essentially the position parameter xg, is a relevant question and an attainable goal. This
is the topic of this section, where we study the behaviour of the log marginal likelihood
that comes with WIGPR when the initial condition reduces to a point source. On a more
general level, this section also serves as an illustration of the very explicit links one may
draw between classical PDE based models and Bayesian kernel methods using physics
informed kernels. We will restrict ourselves to the case up = 0 in equation (3.1) and thus
focus on the kernel k¥V¢(z, z’). We begin by clarifying the setting in which we will work.

3.3.1 Setting, assumptions and objectives.

(i) Note x1,...,x4 the ¢ sensor locations and assume that we have N time measurements
in [0,T] corresponding to times 0 = t; < ... < tiy = T for each sensor; we have overall
n = Nq pointwise observations of a function w that is a solution of the problem (3.1). The
space-time observation locations (z;,t;) are stored in a vector Z = (Zy|---|Z,)T where
Z; := ((z5,t1), ..., (z;,tN)) corresponds to the i*? sensor. The observations are then stored
in the column vector webs = (w(Z1)]...|w(Z,))T.

(ii) We assume that the initial condition vy corresponding to w is almost a point source:
in particular it is supported on a small ball B(x§, R*) where R* « 1.

(117) We are interested in finding x§, the correct source location. To do so, we study
the log marginal likelihood associated to the observations wgps, using a covariance kernel
associated to initial conditions truncated around a ball B(xg, R) to be estimated. Set first
kR (z,2) = (47 R3/3) 2k (z, ' ILBS,C 7)1 g(go,r) (") Where ky is a given a covariance
functlon The pre-factor 47rR3 /3)7¢ is an antlclpatlon of the upcoming Proposition 3.5.
We will then use the wave kernel

ket (@, 1), (2,1) = [(Fr @ Fy) # kg | (2, 2). (3.21)

wave,R

We then view (z9, R) as hyperparameters of kz, , and we denote (z§, R*) the real source

position and size.

1w) We assume that except for xq, all the other hyperparameters 6 of EraveR are fixed.
(i) y 0

In particular, we assume that R = R* and ¢ = ¢*, where ¢* is the true celerity parameter
appearing in the wave equation.

In that framework, the log-marginal likelihood p(weps|@) only depends on xy. We thus
write Ky, := ka*®(Z,Z) and L£(0,\) = L(zo,A), A being a Tikhonov regularization
parameter (see equation (3.22) below). The log-marginal likelihood then writes

L(O,N) = L(20,\) = wh(Kuy + M) wons + log det(Ky, + ALy). (3.22)
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3.3.2 Level sets of L(z9,\) and GPS localization. In Figure 1, we provide a 3
dimensional image which displays the numerical values of the map z¢ — L(xg, A) that are
below a suitable threshold, on a test case. This figure constitutes visual evidence that
in the limit R — 0, recovering a point source location from minimizing the log marginal
likelihood provided by the kernel (3.21) reduces to the classic true-angle multilateration
method used for example in GPS systems (see e.g. [20]). In this localization method, the
user who is located on a sphere (Earth) sends signals to satellites gravitating around the
Earth. From the corresponding time measurements, the distance between the satellite and
the user is deduced, which in turn defines a sphere (one for each satellite) on which the
user is located. The location of the user lies at the intersection of those spheres, and the
Earth. At least three satellites are needed for this intersection to be reduced to a point.

On Figure 1, three facts in particular are noteworthy; our task will be to explain them
mathematically. First, as a function of xg, £(xo, \) reaches local minima over the whole
surface of spheres centered on each sensor. Second, at the intersection of two of those
spheres, the local minima are smaller. Third, the spheres all intersect at a single point x,
which is the global minima of £(xo, A) and the real source location.

On our way to explaining these three facts, we begin with a convergence statement
describing the point source limit, from a covariance point of view.

Proposition 3.5. Let k be a continuous positive semidefinite function defined on R3 x R3
and let xg € R3. For R > 0, define k;}o its truncation around xg by

ko (2, 2) = k(x,2') L p (2o, (@) Lp(zo,ry (@) /(4T R?/3)?.

Let t,t' € R. Then (F; ® Fy) k}}o defines an absolutely continuous Radon measure over
R3 x R3. Furthermore we have the following weak-x convergence in the space of Radon
measures (i.e. the dual of C.(R? x R3), the latter space being the space of continuous
functions over R3 x R3 with compact support):

Ce(R3xR3Y
_— 7

[(Ft®Ft’) % ]{750] R0

k((l)o, .CC[)) X (Tont) ® (Tont’)7 (323)

where Ty, the translation of p by x, is defined by § f(y)mop(dy) := § f(z + y)pu(dy).

As before, the kernel kﬁ) of Proposition 3.5 is the covariance kernel of the truncated
process V0 (z) = 1B(x0o,R) (x)VO(z)/(47R3/3). The limit object we obtain in equation
(3.23) is not a function but a singular measure, and thus it cannot be a covariance function.
This means that we do not obtain a Gaussian process in the point source limit. More
precisely, the Gaussian process associated to the covariance function k. ve,R degenerates
into a Gaussian measure [8] over the locally convex space C.(R? x R?) when R goes to zero,
though we leave aside this observation for now. On a formal level though, Proposition 3.5
provides an entry point for studying the log marginal likelihood (3.22) associated with the
kernel (3.21) when R is small. Indeed, Proposition 3.5 states that for small values of R, the
kernel (3.21) behaves like a rank one kernel, i.e. a kernel of the form k(z,z') = f(z)f(2')
for some particular function f. This observation will prove to be enough for explaining
the patterns observed in Figure 1.

13



x10°

12
19 =
11.8
1
p
0.8 -
5% 1 1.6
n 0.4 4 SRR * } 14
1.2
1
0 0.8

T axig

Figure 1: Negative log marginal likelihood as a function of zg € R3. Are only represented
values of the negative log marginal likelihood that are below 2.035 x 10°. There only
remains thin spherical shells. Red crosses: sensor locations. Black cross: source position.
The source is located at the intersection of spheres centered at the sensor locations.

Properly dealing with the limit R — 0 implies that we use a mathematical frame-
work compatible with general Radon measures, as indicated by Proposition 3.5. This also
implies an additional layer of technicality. Instead, we introduce regularized (mollified)
versions of both the limit object in Proposition 3.5 and £(xg, A), and study these regular-
ized terms. This is the content of Propositions 3.6 and 3.7, which are statements on the
regularized log marginal likelihood Lyeg (20, A) introduced in equation (3.24). Note how-
ever that proving a rigorous mathematical statement linking the behaviours of L(xg, \)
and Lyeg (20, A) is an open question.

3.3.3 Point source mollification. We start with regularizing F; thanks to a mollifier
©(z) on R? which we choose to be radially symmetric as in [19], section 4.2.1. Define
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or(y) = ¢(y/R)/R3, then a C® regularization of F; is obtained by setting fR(z) :=
(Fy * pr)(x) for all z in R3. As F;, f} exhibits radial symmetry. We will next use the
following regularizations:

e Note kyo((z,t), (2/,t)) := fR(x — mo) f} (2’ — 20), which plays the role of a regularized
version of the limit measure in Proposition 3.5. The same proposition states that in some
sense, when R approaches 0, ky®® is close to k8. Denote also Fy, := (Fp |- | Fa) T,
with FY := (ff(zi — 20), ..., f/& (#; — 20)). The covariance matrix corresponding to the
hyperparameter xq is then given by Ky.° = kyo(Z,Z) = onFch In particular it is rank
one.

e We also assume that w(z;,t;) can be approximated by w(z;,t;) = ft (x; — ) as
in the point source limit, v9 = J, and in that case we would have w(:vl, i) = (Ft. s
vo)(z;) = Fy,(x; — o) (forgetting for a second that F; is not defined pointw1se). We thus
introduce the column vector of “approximated observations” W = (w(a:i,tj))iyj and we

assume that W is ordered as W = (W] --- |W,)T where W; corresponds to the " sensor:
Wi = (w(x;, t1), ..., w(x;, ty)) € RN,

We may then introduce the “regularized” log marginal likelihood built by replacing k with
ki? and weps by W:

Lreg(z0,A) 1= W (KL + A,) "W + log det(KL% + AI,,), (3.24)

where we recall that Kiof = kyg(Z,Z) = Fy F . We will then study Lyeg(zo,A) in the
place of L(xg, A); as stated before, we expect that L£(zo, A) behaves similarly to Lyeg(z0, A),
although proofs of such statements are lacking for the moment. We begin with a propo-
sition which describes the asymptotic behaviour of Lyeg(x0, A) in the limit of A — 0. This
limit corresponds to noiseless observations, and the limit object in Proposition 3.6 provides

an explanation of the patterns of Figure 1.

Proposition 3.6 (Asymptotic behaviour of Lyeg(zg,A) when A — 0). Let ¢ > 0 and

= {xg € R3 : ||Fyl|2n > €}. Define the correlation coefficient between Fy, and W
by r(xo) = Corr(Fyy, W) = (Fpy, Worn/(||W||rn||Fao||rn ). We set r(xo) = 0 if Fy, = 0.
Then we have the following pointwise convergence:

Vo € R, [ALreg(0, A) — [|W[[gn (1 — 7(20)?)| = Oxs0(Alog A),
and the uniform convergence on E.

SUpP | ALreg (0, A) — W& (1 = r(z0) )‘ = O)0(AlogA).
xo€EFE:

The set E. is the set of values of xg for which the vectors Fj, are uniformly large
enough for the Euclidean norm. This is interpreted by saying that the elements xg of
E. are potential source positions for which the chosen sensor locations should capture a
signal with sufficient L? energy (at least ¢ across all sensors) over the window [0, T'], should
the source be located at xg. Loosely speaking, such locations xy are “visible” candidate
source positions. From a covariance perspective, we have that p(Kyc?) = ||Fy,||%., where
p denotes the spectral radius.
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Remark 3.4. In the proof of Proposition 3.6, the determinant term in (3.24) has no influ-
ence in the limit object and only pollutes the rate of convergence. Discarding it leads to
a Ox_,0(A) rate of convergence.

It also makes sense to inspect the case N — o0, which is the content of the next
proposition; the obtained limit object is similar to that of Proposition 3.6. The limit
N — o0 corresponds to having the sampling frequency of the sensors go to infinity. In this
case, the discrete objects in Proposition 3.6 behave as Riemann sums if the time steps
ti are equally spaced and we obtain integrals in the limit N — oo. Notation wise, we
highlight the dependence in N in Lyeg(70, A) by noting it instead L, (zo, \).

reg

Proposition 3.7 (Asymptotic behaviour of L'ﬁ\ég(a:o, A) when N — o). Define the follow-
ing vector valued functions in L2([0,T],R%):

VEe[0,T], Iy(t) := (@(z1,t), ..., D(xg, 1)),
Ve [0,T], Log(t) := (fR(x1 — o), oo, [Rag — 70)) "

Denote || - ||r2 and {, )12 the norm and the dot product of the usual Euclidean structure
of L?([0,T],RY). Assume that the observations are such that ||Iy||z2 > 0. Introduce then
the correlation function, defined whenever ||Iy,||r2 > 0:
<IW7 Ix0>L2
roo(xg) 1= . (3.25)
” [ w2 Lo |2
Assume that for all k€ {1,.... N}, ti, = T(k—1)/(N — 1), i.e. the ty are equally spaced in
[0, T]. Then for all zg such that ||I,||z2 # 0, we have the following pointwise convergence
at xg

%cgg(xo, 3) > [l (1 = renla0)?) + aAlog A (3.26)
3.3.4 Discussion: location of the point source. Propositions 3.6 and 3.7 enable us
to explain the patterns observed in Figure 1 where the correct source position is located
at the intersection of spheres centered on receivers. For that purpose, we analyze the
limit term in Proposition 3.6 (the same can be done with the one in Proposition 3.7). We
denote L(xo) the said limit object from Proposition 3.6:

( 3=1<F;‘0,Wi>w>2).

L<x0>=||W||ﬁn(1—r<x0>2):"W"%"(l_ 11 Pl
R» zo | IR"

Note T; the time of arrival of the point source wave at sensor i: |z; — x| = ¢*T;. Define
also S; := S(x;, ¢T;), the sphere centered on x;, and A; the thin spherical shell of thickness
2R that surrounds Sj, given by A; := B(xg, cT; + R)\B(zo,cT; — R). Then:

(i) L(xo) reaches a local minima over the whole sphere S;. When zg is located inside A;,
the subvectors W; and F?.  of W and F, respectively become almost colinear because fR
is radially symmetric. They become exactly colinear when xy € S;. This maximizes the
term <F£O, W;) in virtue of the Cauchy-Schwarz inequality. When z lies in one and only

one of those spherical shells A;, the other terms (FY,, W;) are all zero.
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(7i) The local minima of L(x() located at the intersection of two or more spheres S; are
smaller. More generally, when I is a subset of {1,...,¢q} and When 20 € [Nier A\Njer Ajs
the term >, (F% ,W;) is (almost) maximized while ) ie1{Fio, Wiy = 0, which explains
why the intersection of spheres are darker coloured than the other parts of the spheres in
Figure 1.

(111) The spheres S; intersect at a single point, which is exactly x§ as well as the global
minima of L(xg). The quantity r(zo) reaches a global maximum when all subvectors W;
and F;O are colinear, which is the case only when zg € (), S;. When there are at least 4
sensors, the intersection of all the spheres (), S; is reduced to at most one point. Recall
that we have assumed that ¢ = ¢*: this implies that = € (), S;, and thus the minimum of
L(zp) is located at xop = x§.

Note that if the speed ¢ in k:?o does not correspond to the real speed c¢*, the intersection
(), Si will be empty. Additionally, from an optimization point of view, numerically solving
inf,, L£(zo,\) is obviously highly non convex and none of our numerical experiments lead
to the correct solution.

3.4 Initial condition reconstruction and error bounds

3.4.1 Initial condition reconstruction procedure. Consider a set of space locations
(%i)1<i<q and moments (¢;)1<j<n (imagine ¢ sensors each collecting measurements at time
t; for all j). Consider now the following inverse problem:

Build an approximation of ug and vy from a finite set of measurements (3.27)
{w(z;,t;)}i; where (w,ug,vp) are subject to (3.1). .

We now show that WIGPR provides an answer to the problem (3.27). This is not sur-
prising, because the covariance models described in the previous section were derived by
putting GP priors over ug and vyg.

As already observed in Section 3.2.1, performing GPR on any data with kernel (3.8)
automatically produces a prediction m that verifies [Im = 0 in the sense of distributions.
Therefore, this function m is the solution of the Cauchy problem (3.1) for some initial
conditions @y and vgp:

m(x,t) = (Fy = 00)(x) + (F * o) (z). (3.28)

These initial conditions are simply given by @o(x) = m(z,0) and 99(z) = oym(z,0). If the
data {w(z;,t;)}i; on which GPR is performed is comprised of observations of a function w
that is another solution of problem (3.1), the initial conditions (%o, 7p) can be understood
as approximations of the initial conditions (ug,vg) corresponding to w. More precisely,
following Section 2.2.3, we have m = pp(w) and thus

tig(z) = m(xz,0) = pp(w)(x,0) Vo e R3, (3.29)
vo(z) = 0pm(x,0) = opp(w)(x,0) = pp(drw)(z,0) Vz e R3, (3.30)
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where F' denotes the finite dimensional space Span(kw(z1,-), ..., kw(2n,-)) and pp is the
orthogonal projector on F' with reference to the Hilbert space structure of Hy, . Here, 2z,
is of the form 2, = (z;,t;) € R*. This use of WIGPR provides a flexible framework for
tackling the problem (3.27), as the sensors are not constrained in number or location by
any integration formula such as Radon transforms. Taking a look at equations (3.29) and
(3.30), we can qualitatively discuss the matter of optimal sensor locations for WIGPR.
Indeed, we expect that m will provide a better approximation of w when the functions
kw(zi,+)i=1,..n are as orthogonal as possible in Hy, , since m is an orthogonal projection
on F' with reference to the Hy,, inner product. The optimal situation is when given two
different sensors z; and x;, the following should hold for most times tj, t;:

<kW(($i7t/€)v ')7kW((xjvtl)a )>ka = kW((xiatk)v (xj’tl)) < 1. (3'31)

A close inspection of the explicit covariance expressions (equations (52) and (53) from [28])
shows that the property (3.31) can be obtained for most times ¢; and ¢; when the sensors
are far apart from each other, as soon as the kernels k, and k, are such that k(z,2') — 0
when |z — 2’| — 400 (which is common, see e.g. the kernel (4.1)). Computing optimal
sensor locations and obtaining quantitative guaranties of the accuracy of the reconstruction
provided by WIGPR is a hard question left for future research.

3.4.2 Time-dependent error bounds in terms of the initial condition recon-
structions. Now that we have showed that WIGPR provides approximations of the ini-
tial conditions of (3.1), we underline the fact that these initial condition reconstructions
induce a control of the spatial error between the target function v and the Kriging mean
m, at all times. Indeed, we have the following L? control in terms of the initial condition
reconstruction error. Given p € [1, +0], denote W1P(R3) the Sobolev space of functions
f € LP(R?) whose weak derivatives 0., f,1 < i < d, exist and lie in LP(R3).

Proposition 3.8. For any p € [1, +o0] and any pair v € LP(R?), ug € WHP(R?) we have
the following LP estimates for all t € R:

1%+ wvollp < [¢] [Jvollp, (3.32)

[uollp + Cpelt] |[Vuollp, (3.33)

NN

|

[1F * uollp < |
1/

where C), = (SS Iv[5 dQ/47T> 8 <3Y1<31/p+1/g=1 (Cyp =1,C1 < 1). Assume that

the correct speed c is known and plugged in ky, equations (3.32) and (3.33) then lead to
the following LP error estimate between the target w and its approximant m:

[fw(-, ) = m(, Ollp < [¢] [[vo = ollp + [[uo —tollp + Cpelt] [|V(uo = uo)llp,  (3.34)
where Uy and Uy are defined in (3.29) and (3.30), and m is given in equation (3.28).

Equations (3.32) and (3.33) are simple stability estimates for the 3D wave equation,
although we have not found them in that form in the literature (notably the explicit
control constants |t| and Cpc|t|). They fall in the category of Strichartz estimates with
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LP control for the space variable and L™ control for the time variable. We thus provide a
proof of Proposition 3.8.

Equation (3.34) shows that LP approximations of the initial conditions provide an LP
control between the solution w and the approximation m, for any time ¢. This is one reason
why in our numerical applications (Section 4), we focus on initial condition reconstruction.

When c is unknown and estimated by ¢ through maximizing the log marginal likelihood,
we have instead (highlighting the dependence in ¢ by writing Fy’ = oy Jamct)

[w(-, )=, )|y = | Ff # uo — F # tig + FF % vo — = G|,

= [|Ff = (uo — i) + (Ff — FY) # g + Ff = (vo — o) + (B — Ff) # o],
and thus

lw(- 1) = m(, Dllp <[] [[vo = Tollp + [Juo = tollp + Cpelt] [V (uo — o)l
+HI(F = FY) = aollp + [[(F — FY) # Dol . (3.35)

The terms containing F¢ — F{ and Ff — Ff¢ may be further controlled in terms of |c—¢| with
additional assumptions such as Lipschitz continuity of ug and vy. Likewise, the quantity
llw(-,t) — m(-,t)||, may be further controlled if additional assumptions are made on ug
and/or vg. We leave such results to the interested reader.

4 Numerical experiments

In this section, we showcase WIGPR on functions w that are solutions of Problem (3.1),
using the kernels (3.19) and (3.20) separately as well as together, as in equation (3.8).
The goal is twofold: reconstructing the target function w, which more or less amounts to
reconstructing its initial conditions (Proposition 3.8), and estimating the physical param-
eters attached. Note that with badly estimated physical parameters, the reconstruction
step is more or less bound to fail, especially with inaccurate wave speed ¢ and/or source
centers zy and xy).

Running an extensive numerical study of the capabilities and limitations of WIGPR is
a large task in itself. For the time being we will settle for simple test cases; in particular
we only consider compactly supported and radially symmetric initial conditions, for which
we can use the formulas (3.19) and (3.20) which can be evaluated numerically with a low
computational cost. We will denote with a star the corresponding true source position
x4 and celerity c¢*. whereas their starless counterpart will denote the hyperparameters of
the WIGPR kernels. The estimated hyperparameters will be denoted with a hat, e.g. ¢.
Two test cases for WIGPR are considered here. A first test case for ky*'® described in
Subsection 4.1, for which ug # 0 and vg = 0. This would correspond to PAT, though real
life PAT test cases would be very unlikely to enjoy radial symmetry properties. A second
test case for kV*V¢ + ky®V¢ described in Subsection 4.2, for which ug # 0 and vy # 0. For
each test case, the full procedure described below is performed.
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Numerical simulation and database generation Given initial conditions ug and vy,
we numerically simulate the solution w over a given time period. We use a basic two step
explicit finite difference time domain (FDTD) numerical scheme for the wave equation as
described in [7], equation A.24, over the cube [0,1]3. We also use first order Engquist-
Majda transparent boundary conditions [17], in order to mimic a full space simulation.
We use a sample rate SR = 200 Hz (time step At = 1/200 s), a space step Az = 43 mm,
and a wave speed ¢* = 0.5 m/s. The simulation duration is 7' = 1.5 s.

30 sensors are scattered in the cube [0.2,0.8]% using a Latin hypercube repartition
and a minimax space filling algorithm. Signal outputs correspond to time series for each
sensor, with a sample rate of 50 Hz, so 75 data points altogether spanned over the time
interval [0, T] for each sensor. This leads to 30 x 75 = 2250 observations. Each signal is
then polluted by a centered Gaussian white noise with standard deviation opgige = 0.45
(resp. 0.09) for the test case #1 (resp. test case #2). These values correspond to around
10% of the maximal amplitude of the signals, see Figures 2a and 5.

Perform WIGPR on simulated data We perform WIGPR on portions of the dataset
obtained above, using the kergp package [14] from R [46]. For that we use kernels (3.19)
and/or (3.20) which are “fast” to evaluate, with K, and k) both 1D 5/2—Matérn kernels.
This Matérn kernel is stationary and writes, in term of the increment h = z — 2/,

ksja(h) = o (1 + |hl/p + |h[*/3p%) exp (— [hl/p). (4.1)

It has two hyperparameters on its own, p and o2. p is the length scale of the kernel (4.1)
and should correspond to the typical variation length scale of the function approximated
with GPR; ¢ is the variance of the kernel. We tackle two different questions related to
WIGPR which are respectively the estimation of physical parameters and the sensitivity
to sensor locations.

(P1) We first study how well the physical parameters (c*, z§, R*) can be estimated with
WIGPR. For this, we first select Ny time series corresponding to the first N sensors with
Ns € {3,5,10,15,20,25,30}. The corresponding Kriging database contains 75 x Ny data
points. For this database, we perform negative log marginal likelihood minimization to
estimate the corresponding hyperparameters, which are

o { (28, Ru, 040, ¢, \) € R® if v = 0 and ug # 0, 42)

(xbl,Ru,Hkg,xb’,Rv,Hkg,c, A) eR"™  if vy # 0 and ug # 0.

A corresponds to 2 in Section 2.2.2, and is viewed as an additional hyperparameter
in the log marginal likelihood. We use a COBYLA optimization algorithm to optimize
L(0,\) and a multistart procedure with np,; = 100 different starting points. That is,
100 different values of 6y are scattered over an hypercube H c R® or H < R, and the
COBYLA log marginal likelihood optimization procedure is run using each value of 6y
as a starting point. The resulting hyperparameter value providing the minimal negative
log marginal likelihood is selected. The multistart procedure mitigates the risk of getting
stuck in local maxima. COBYLA is a gradient-free optimization method used in kergp
and is available in the nloptr package from R. We then reconstruct the initial conditions
using WIGPR, which we evaluate in terms of the indicators in equation (4.3).
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(P2) Next, we study the sensibility of the reconstruction step with respect to the sen-
sor locations. Consider 40 different Latin hypercube layouts of the 30 sensors, each
obtained with a minimax space filling algorithm. For each layout, we provide the cor-
rect set of hyperparameter values to the model; these values are described in each test
case. We then reconstruct the initial conditions using GPR and Ny sensors, with N, €
{3,5,10, 15,20, 25,30}. LP relative errors (see equation (4.3)) are computed between the
reconstructed initial condition and the real initial condition. For each number of sensors
N, statistics over the 40 different datasets for these LP errors are summarized in boxplots
(see e.g. Figure 3a). Each box plot shows the median, the first and the third quartiles of
a dataset corresponding to results obtained on the 40 different receiver dispositions. The
dots inside a circle correspond to the median of each boxplot. The black crosses are the
mean of each box plot, which are linked together with the dashed line. The circles are
outliers.

In both cases, the approximated initial position g is recovered by evaluating the WIGPR
Kriging mean at ¢ = 0 over a 3D grid and the initial speed ¥g is recovered by evaluating
the Kriging mean at ¢t = 0 and ¢t = At = 1077 over the same 3D grid: ¥y ~ (7m(-, At) —
m(-,0))/At. Figures are displayed using MATLAB [38].

Numerical indicators For (P;), we indicate in Tables 1 and 2 the distances between
the true physical parameters and the estimated ones, depending on the number of sensors
used. Additionally, for every p € {1,2, 00}, we indicate relative LP reconstruction errors
ep,rel defined below depending on the number of sensors used:

eprel = [[to = tGollp/|[uoll, and ey o = |lvo = ollp/l|vollp- (4.3)
A relative error of over 100% means that ||ug — tol|p = ||uol|p, in which case the trivial
estimator 4 = 0 performs better than the estimator g, in the L? sense. Note that we deal
with three dimensional functions, for which approximation errors are typically larger than
for their one dimensional counterpart. Thus, relatively large errors may still correspond
to pertinent approximations. For (P,) are plotted boxplots of the relative LP errors over
the 40 different sensor layouts, depending on the number of sensors used. Integrals for
the LP error plots are approximated using Riemann sums over 3D grids containing the
support of the integrated functions, with space step dxr = 0.01.
The datasets, the code for generating the datasets and the code for performing WIGPR
are available online at

https://github.com/iain-pl-henderson/wave-gpr

4.1 Test case for k)"

In this test case, vg is assumed null and thus we set k, = 0, which yields ky?¥® = 0. We
thus use kY2"¢ defined in (3.20) for GPR. We use the 1D Matérn kernel (4.1) for k0 in
equation (3.20). The initial condition ug is a radial ring cosine described as follows. We set
z = (0.5,0.5,0.5)T, Ry = 0.15, Ry = 0.3 and A = 5, the corresponding initial conditions
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(a) Test case #1, excerpt of captured signals. Dashed line: noiseless data. Solid line: noisy data.
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(b) Test case #1: True ug (left column) vs WIGPR wg (right column). 15 sensors were used. The
images correspond to the 3D functions evaluated at z = 0.5.
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Figure 2: Visualization of signal and WIGPR results for the test case #1

(IC) are given by vo(x) = 0 and

. on(|x — xf| — Batlizy
ug(z) = Alg, r,)(lz — 25]) (1 +cos ( R20_ Ry : ) .

See Figure 2b, left column, for a graphical representation of ug. See Figure 2a for an
excerpt of the corresponding Kriging database. For problem (P;), the optimization domain
is chosen to be the following hypercube of R®

0= ('TOaRa P 02707 A)
e [0,1]® x [0.03,0.5] x [0.02,2] x [0.1,5] x [0.2,0.8] x [1078,1]. (4.4)

For problem (P), the hyperparameter 6y provided to the model is
0o = (z0, R, (p,0?), ¢, \) = ((0.65,0.3,0.5),0.3,(0.2,3),0.5, 02 ic0), (4.5)

with o2 ;.. = 0.45% = 0.2025. The value of 0.2 provided for p is a visual estimation of the

length scale of ug based on Figure 2b.
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4.1.1 Discussion on the numerical results. For problem (P;), Table 1 shows that
the physical parameters xyp and c are well estimated. The source size parameter R is
overestimated, as could be expected from Section 3.2.5. The relative errors show that
the overall function reconstruction is overall satisfying, with relative errors below 15%
for Ny = 20,25. The noise level o2 . . (whose estimator is 62 .., = A in (4.2)) is often
overestimated. For problem (P) (figures 3a, 3b and 3c), the relative errors stagnate
below 10%. The IQR (interquartile range, i.e. the difference between the 3" and the 1%
quartiles) remains below 2%. This means that for this test case, the reconstruction step

is not very sensitive to the sensors layout when they are scattered as a Latin hypercube.

Nsensors 3 5 10 15 20 25 30 Target
|Zo — 4] | 0.204 | 0.003 | 0.004 | 0.008 | 0.003 | 0.004 | 0.015 0
féu 0.386 | 0.432 | 0.462 | 0.431 | 0.414 | 0.471 | 0.452 0.25
|¢ —c*| | 0.084 | 0.004 | 0.005 | 0.005 | 0.006 | 0.001 | 0.004 0
62 e 0.917 | 0.879 | 0.93 | 0.99 | 0.361 | 0.988 | 0.377 0.2025
p 0.02 | 0.02 | 0.025 | 0.02 | 0.035 | 0.024 | 0.032 ~ 0.05
52 2.367 | 3.513 | 4.903 | 3.168 | 4.446 | 4.619 | 4.79 | Unknown
€ rel 1.275 | 0.157 | 0.128 | 0.168 | 0.11 | 0.103 | 0.248 0
€5 rel 1.056 | 0.095 | 0.082 | 0.124 | 0.088 | 0.064 | 0.213 0
€5 rel 1.037 | 0.132 | 0.128 | 0.198 | 0.136 | 0.101 | 0.321 0

Table 1: Hyperparameter estimation and relative errors, test case #1

4.2 Test case for kYV*® + kyave

For this test case, the initial position is a raised cosine, while the initial speed is a ring
cosine. We set z§* = (0.65,0.3,0.5)T, R, = 0.25, A, = 2.5, a3* = (0.3,0.6,0.7)T,
Y =0.05, Ry = 0.15 and A, = 30. The corresponding IC are given by

m|x—z2*
wl@) = Addio(lz - o) (1 eos <"))

v o2 ( |z —axy* _R{FRy
vo(x) :Avﬂ[R¥,R§](|$—xo*|)<1+COS( ( R%—R‘l’ = .

See Figures 4a and 4b, left columns, for graphical representations of ug and vg. See Figure
5 for a visualization of the database. For problem (P;), the optimization domain is chosen
to be the following hypercube

0 :(xbl’ Ry, (pu, 0'121)a xg, Ry, (pv, 03), c,\)
€[0,1]3 x [0.05,0.4] x [0.02,2] x [0.1,5]
x[0,1]* x [0.05,0.4] x [0.02,2] x [0.1,5] x [0.2,0.8] x [107%,2 x 1072]. (4.6)
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Figure 3: Box plots for the sensibility analysis, test case #1

For problem (P2), the hyperparameter value 6y provided to the model is

6o = ((0.65,0.3,0.5),0.3, (0.06,3), (0.3,0.6,0.7),0.15, (0.025,3.5),0.5, 02;.), (4.7

noise

: 2
with o2 ..

from (Pp).

= 0.0081. The provided values for (py,02) and (py,02) are the estimated values

4.2.1 Discussion of the numerical results. Table 2 shows that the physical param-
eters x, zy and c are well estimated. The source radii R, and R, are overestimated, as
expected from Section 3.2.5. The noise level Ufmise is generally overestimated. The re-
construction of the initial position g yielded satisfactory results with L? and L*® relative
errors below 25%, and an L' relative error below 35% (N, = 10, 15,20, 25, 30). The higher
L' relative error means that the reconstructed function @ is supported on a larger set
than the true function ug, as the L' norm favours sparsity. For the initial speed v, the
numerical indicators are not as good, reaching minimal values for Ny, = 25. The corre-
sponding errors for the L', L? and L® errors are 64%, 28% and 64% respectively. Note
though that Figure 4b (corresponding to Ny = 20) shows that WIGPR still managed to
capture the ring structure of vo; the corresponding L' error for Ny = 20 is 150% (Table 2),
confirming that the misestimated support radius R, is heavily penalized by the L' norm.
The reconstruction of vy for Ny = 30 failed (Table 2). For problem (P), the numerical
indicators are better. For wug, Figures 6a, 6¢ and 6e show that relative error medians
stagnate below 5% for Ny = 15. The corresponding IQR are around 2%. For vy (Figures
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6b, 6d and 6f), the L', L? and L™ relative error medians stagnate at 30%,25% and 40%
respectively. The corresponding IQR stagnate at 10%, 5% and 10% respectively.

Naensors 3 5 10 15 20 25 30 Target
|20 — 8% | 0.163 | 0.144 | 0.013 | 0.024 | 0.023 | 0.033 | 0.015 0
R, 04 | 0274 | 0.384 | 0.309 | 0.352 | 0.286 | 0.313 0.25
|2y —xg*| | 0.163 | 0.18 | 0.035 | 0.028 | 0.037 | 0.006 | 0.05 0
R, 0252 | 0.166 | 0.313 | 0.356 | 0.348 | 0.266 | 0.339 0.15
le—c*| | 0.165 | 0.156 | 0.028 | 0.036 | 0.042 | 0.011 | 0.04 0
62 .. | 0.0178 | 0.0184 | 0.0188 | 0.0161 | 0.0187 | 0.0145 | 0.0116 | 0.0081
Pu 0.034 | 0.069 | 0.102 | 0.027 | 0.031 | 0.061 | 0.034 ~0.05
62 4649 | 4472 | 4575 | 2493 | 0.678 | 3.272 | 2541 | Unknown
Py 0.057 | 0.027 | 0.044 | 0.053 | 0.085 | 0.022 | 0.012 ~0.02
62 391 | 2538 | 3.05 | 1.545 | 4.886 | 3.575 | 4.346 | Unknown
el 2414 | 1.676 | 0.243 | 0.311 | 0.358 | 0.315 | 0.317 0
€3 el 1.276 | 1.053 | 0.174 | 0.223 | 0.228 | 0.261 | 0.205 0
et | 0732 | 0.608 | 0136 | 0.174 | 0.231 | 0.212 | 0.228 0
€ vl 2.865 | 2796 | 1.315 | 142 | 151 | 0.645 | 9.784 0
€} el 1.492 | 1.812 | 0.694 | 0.616 | 0.736 | 0.284 | 35.75 0
ey 1.083 | 1.608 | 0.817 | 0.763 | 0.845 | 0.635 | 2416.682 0

Table 2: Hyperparameter estimation and relative errors, test case #2
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(b) True vy vs WIGPR wvg. The images correspond to the 3D solutions evaluated at z = 0.7.

Figure 4: Test case #2: top and lateral view of the reconstructions of uy (Figure 4a) and

vo (Figure 4b) provided by WIGPR, in comparison with ug and vg. Left columns: true
IC. Right columns: WIGPR IC reconstructions. 20 sensors were used
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Figure 5: Test case #2, excerpt of captured signals. Dashed line: noiseless data. Solid
line: noisy data.
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Figure 6: Box plots for the sensibility analysis, test case#2
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5 Conclusion and perspectives

In Section 3, we described several covariance models tailored to the wave equation; they
are particular cases of general ones first derived in a previous work. They correspond
to the cases where either wide sense stationarity or radial symmetry assumptions over
the initial conditions hold. In addition, the sample paths of the associated random fields
(not necessarily Gaussian) are a.s. solution to the homogeneous wave equation. These
covariances fully specify centered Gaussian process priors, which can then be used in
the context of Gaussian process regression (WIGPR). In that framework, the physical
parameter of the PDE system (e.g. source location or wave celerity) can be interpreted
as hyperparameters of the WIGPR prior, as in [47]. We then showed that in the limit
of the small source radius, the multilateration method for point source localization was
naturally recovered by the hyperparameter estimation step of WIGPR. We furthermore
showed that WIGPR, naturally provides a reconstruction of the initial conditions of the
wave equation, as should be expected when putting probability priors over them.

The radial symmetry WIGPR formulas from Section 3 were then showcased in Section
4, where two practical questions were tackled. First, WIGPR can correctly estimate
certain physical parameters attached to the corresponding wave equation, namely the
wave speed and source position. When these parameters are well estimated, WIGPR is
capable of providing non trivial reconstructions of the initial condition, which we studied in
terms of L', L? and L* relative errors. We furthermore observed that the reconstruction
step was not very sensitive to the layout of the sensors, assuming that the correct set of
hyperparameters is provided to the model.

Future possible investigations concern the practical use of the more general formula
(3.8) without any radial symmetry assumptions, e.g. for PAT applications. To compute
the convolutions efficiently, one may then resort to multidimensional fast Fourier trans-
forms. Moreover, in this first study, we have only used simple methods for GP numerical
evaluation. More advanced GP techniques such as inducing points [45] should now be
used to handle large datasets such as the ones we have used in Section 4. The case of the
two dimensional wave equation is also of practical interest, e.g. in oceanography [35], and
presents many different properties when compared to its 3D counterpart ([18], p. 80). It
would thus deserve a theoretical and practical study in its own right when coupled with
GPR.

Finally, the surprising link drawn between our GPR method and the multilateration lo-
calization method suggests that other very explicit links should exist between well-chosen
kernel methods and traditional mathematical or numerical methods tailored to given phys-
ical models. This is certainly an important direction of research, where GPR stands out
as a favourable environment through which the communities of machine learning and
mathematical physics may be brought together.
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A Appendix

A.1 Convolution and tensor product with measures

This section follows [28], Section 2.2. Given a measure y and a function f over R?, their
convolution y # f is the following map (if well-defined):

0) = | - yu(ay). (A1)
Rd

If o is an absolutely continuous measure whose density is some other function g (i.e.
w(dy) = g(y)dy), then (u = f)(x) reduces to the usual function convolution (g * f)(x).

If 4 and v are two measures defined over D; ¢ R% and Dy < R, their tensor product
u®v (i.e. the product measure) is the measure over D x Dy characterized by the following

property:
f F(,9) (1 @ ) (dr, dy) = J F () (de)(dy), (A2)
'Dl ><'D2 Dz Dl

for all continuous and compactly supported function f '. A more general measure theoretic
definition of ;1 ® v exists, but it is really equation (A.2) that we will use.

Finally, details on the definition of tensor product and convolution with continuous linear
forms over C™ (D) spaces (which are necessary for the abstract definition of F % ug and
(Fy ® Fyy) * ky) are given in [28], Section 2.2.

A.2 Proofs

Proof of Proposition 3.2. (i) : Assume for simplicity that ¢ = 1. Using the definition of
the convolution against the measure F; @ Fy (see e.g. [56], Exercise 26.1 p. 282),

[(F; ® Fy) = ky|(z,2) = J k(x — s1,2" — s9)dFy(s1)dFy(s2)
R3 xR3
= J ks(z — 2’ — s1 + s2)dFy(s1)dFy(s2).
R3 xR3

But S is invariant under the change of variable S 3 v — —~ and thus for any continuous
function f, SRg s9)dFy(s2) S]RS —$9)dFy(s2). This yields

[(F; ® Fy) # ky](z,2") = L@XRS ks(x — 2’ — 81 — s2)dFy(s1)dFy (s2).

'For this characterization to hold, y and v should be assumed Radon, see [28] for further details.
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Applying the definition of the convolution of measures (see e.g. [8], p. 101) to F} % Fy,
(i Fy k)W) = [ kst = 9)d(Fi= Fo)(o)
R
= J J ks(h — s1 — s2)dFy(s1)dFy(s2).
R3 JR3

Setting h = x — 2’ finishes the proof of Point (i).

(77) : Without loss of generality we assume that ¢ = 1. The computation is carried out
in the Fourier domain. Recall that F; and Ft are tempered distributions whose Fourier
transforms are given by ([16], equation (18.12) p. 294)

sin(ct|€])
cl¢]
We then obtain that ([16], Theorem 14.33)
sin(t|€]) sin(t'[€]) _ cos(al€]) —cos(bE])
BE gAY

with a =t —t/,b =t +t. We then compute the inverse Fourier transform of the quantity
above. Let h € R3. In spherical coordinates, noting the unit vectors v, = h/|h| and

v = &/IEl = &/r, we define f, by

) +00 27 T
fa(h) :J iy S]] e f J f D) o pdbdsdr  (A5)
R3 €] 0 o Jo r

+a0 .
= J COS(CLT)J R gy
0 S

F(F)(©) = and  F(F})(&) = cos(ct[¢]). (A-3)

F(Fy = Fy)(§) = F(E) () F (Fy)(§) =

Above, we used the spherical coordinate change ¢ = rvy,d¢é = r2sinfdfdodr. We now
make use of radial symmetry in the interior integral, as follow. Note e3 the third vector of
the canonical basis of R3 and M an orthogonal matrix such that M~;, = e3. We perform
the change of variable 4/ = M+, using that MS := {M~,y € S} = S and that the
corresponding Jacobian is equal to 1:

J IRy gy — J MY My gy = J eI Mn) gy (A.6)
S MS S
_ J cirlhlves) oy — 27rf et eos(0) gin (9)de
S 0
ir|h|cos(6) ™ irlh| _ o—ir|h] in{(r|h|)
e e e sin{r
" [ ir|h| ]0 " ir|h| " rihl A
and thus
£.(B) — 4 JOO cos(ar)sin(lhlr) r’ sin(([] + a)r) +sin((|h] = a)r)
0 r|h| 0 2r|h|
_ 21 © sin(ar)  sin(fr) dr, (A.8)
|h] Jo r r
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with o = |h| + a, 8 = |h| — a. Finally, we have the Dirichlet integral
o
J Mdr = sgn(a)z. (A.9)
0 T 2

We define the function f; exactly as f,, and compute it by replacing a by b in every step
above. Putting (A.4), (A.8) and (A.9) together, the inverse Fourier transform of F(F}* Fy)
is an absolutely continuous measure whose density f is given by

f(h) = (2;)3;(]0&(}14) — fo(h)) = 1671r|h| (sgn(|h| +t—t) +sgn(|h| -t +t)
— sgn(|h| +t +t') —sgn(|h| — ¢ — t')) (A.10)
1 !
= Toa KU 6, (A.11)

K(|h|,t,t') is defined in equation (A.11). Note that K(|h|,—t,t') = —K(|h|,t,t') and
likewise with ¢/, thus K (|hl|,t,t") = sgn(t)sgn(t)K(|h|,T,T") with T = |t|, T’ = |t|. Using
the symmetries in ¢ and ¢’ in equation (A.10) and the fact that sgn(s) = 1 if s > 0, we
obtain

K(|h,T,T') = sgu(|h| + T = T"]) + sgn(|h| — |T — T"|)
—sgn(lh| + T +T') —sgn(|h| =T - T")
=1+sgn(|h| = |T -T'|) =1 —sgn(|h| =T —T")
= sgn(|h| — |T = T'|) —sgn(|h| — T = T"). (A.12)

From equation (A.12), one checks that K(|h|,T,T") = 0 if |h| < |T=T"| or |h| > T+T" and
K(|p,T,T") = 2if [T = T'| < |h| < T +T". Thus, K(|h|,T,T") = 2 x Lyr—r 7+ (|R])-
Identifying the measure F; = Fy with its density, we obtain

sgn(t)sgn(t)

(Ft * Ft’)(h) = 87T|h| [‘|t\f|t’|

] 1 (A13

which concludes the proof. ]

Proof of Proposition 3.3. Without loss of generality, we assume that ¢ = 1 and zg = 0.
We first derive expression (3.15). Let f be a function defined on Ry and g the function
defined on R? by g(z) = f(|z|?). Let F be an antiderivative of f and let x € R3. As
in (A.6), let M be an orthogonal matrix such that M(z/|z|) = e3 and use the change of
variable 7/ = M~. As MS = S, we have

(Fir9)@) = 1 [ g —mmiae = L [ f(a—trPie
T Js

drt Jg

| el 2 =21 i

t
_ L f<|w|2 . 2|t||x|<x,MTv'>)dQ'
4 Jars ||
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t
= = | £0el? & =2lliaien. )i
¢ 21 T

= f(z|* + % — 2|t||z| cos(0)) sin(h)dhd¢
47'[' 0=0

_ J f(|x|2 2 2t]|] cos(8)) sin(0)do
2 Jo=o

t o=
— " \rqz? 2_o9
T F (el + € = 2lellelcos@) |

sgn(t)
= " (Fal +1t%) = F((lal = 1))

=S P+ <)), (A14

4|.1‘| ee{—1,1}

Introduce now the functions

/r,/

k(r,r') == J Ko(r,s)ds and  K(r,7') := J f E2(s, s')ds'ds. (A.15)
0 J0

0
We apply twice result (A.14) on ky: first by setting g(2') = kO(|z — |2, |2|?) where z —ty
is fixed, which integrates to F(s) = k(|z —tv|?, s). Second, by setting g(z) = k(|z|?, (|| +
e[t')?) where |2'|+€'|t'| is fixed, which integrates to F(s) = K (s, (|2/|+&'[t'|)?). In detail,
we obtain

[(F; ® Fy) # ky](z,2") =

f f (|2 — ty]2, |2 — ' 2)t2dQt2dQ

Art Anct!
1 sga(t)
_ 1 sen( f Tl =ty 2, (2] + £ ))2) 20
e'e{— 11}
sgn(tt’) ) )
= 6 D1 e Ko ((r+elt)? (¢ + €D, (A16)
e,e’e{-1,1}

which is exactly equation (3.15). By replacing kU with k0, we can then use this result to
compute

[(F, @ Ey) # ku](z, 2") = 6,00 [(F, @ Fy) % ky](z, 2'). (A.17)
First, we compute it for ¢t # 0 and ¢’ # 0 by differentiating (A.16) with reference to ¢ and
t', using that for ¢ # 0, d|t|/dt = sgn(t) and dsgn(t)/dt = 0. This yields
[(F@Fy) * ku (2, 2")

= 41 Z (r+5|t|)(r'+5'|t’|)k8((r+€|t|)2,(r’+5'|t’|)2). (A.18)

/
e,e’e{—1,1}

For the case where either t = 0 or ¢’ = 0, note first from equation (A.3) that F(Fo)(€) =1
and thus Fy = &g, the Dirac mass at 0, which is the neutral element for the convolution.
Therefore, when we have both ¢t = 0 and ¢’ =

[(F0 ® Fp) * k] (,2") = [(80 @ d0) * kul (2, 2") = [80,0) * kul(z,2") = ku(z,a),
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which is also the result provided by (A.18) evaluated at ¢ = ¢’ = 0. When ¢’ = 0 and
t # 0, we still have d|t|/dt = sgn(t) and dsgn(t)/dt = 0, yielding

(1 ® Fo) * k] (2, 2') = [(Fy @ 6o) * ku] (w,2") = A[(F ® &) * ku] (. 2")

o] | K=yl = P ana)
R

1
- J k(|2 — ]2, |2 [2) 120

=80 St el )
r ee{—1,1}

=0 D) DR el P,

ee{—1,1}

which is also the result provided by (A.18) evaluated at t' = 0. The same arguments apply
to show that expression (A.18) is valid when ¢t = 0 and ' # 0. Therefore the expression
(A.18) is valid whatever the value of ¢,¢ € R. O

Proof of Proposition 3.4. When using the kernel kg’RV, we can directly use equation (3.15)
by substituting K, with K& (r,7") := § k9T (s, 8')dsds' and observing that for all
rr =0,

KR" 7" 7“ f f k:ORV (s,8")dsds' = (mln( 2,R3),min (TIZ’Rx%))

which directly proves (3.19). Additionally, (3.20) is only a substitution of k0 with ko™

n (3.16): all the mathematical steps are justified as ¢ € C*(R,). O

Proof of Proposition 3.5. The proof is carried out by direct computations. First, equation
(3.4) yields

dQdY
(4m)?

The integrated function in equation (A.19) is piecewise continuous over R? x R? and the
integral in (A.19) is well defined, whatever the values of x and 2’. Let f be a continuous
compactly supported function on R3 x R3. We define

[(Fi@F) « K J(wa!) =t | K o = cltbya’ = el ) (A.19)

In:={(F @ Fy) = kg, [)/(4nR?/3)?,

and wish to show that Ir — k(zo, x0){Tze Ft ® Tz, Fy, f) when R — 0. Using equation (52)
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from [28] and Fubini’s theorem, we have

1
In = JRS @ aF @ Fy) « k(oo
3 X
1 J R , ;o dQdSY ,
=0 fx,a:'tt'f kg (x — c|tly, " —c|t']y dxdx
B2 Jusga 7N J oo i = Al Gy

1
- (3mR3)2 i Lxs JR3><R3 (f(x7x,)kfbo (el = el
dQdsY

x 1o, r)(lz = cltly — zo|) Lo, gy (|2" — c|t']y — $0|)> dzds’ @n)?

The first indicator function restricts the integration domain of = to B(zg + c|t|y, R), and
symmetrically for the second indicator function and z’. For x in B(zg + c|t|y, R), in
spherical coordinates around zg + c|t|y, write = = z¢ + c|t|y + Rpy, with p € [0,1],
vz € S and associated surface differential element d€2,. We do symmetrically for 2’ €
B(zo + c|t’|Y/, R), which yields

1 r1
In=tt js i L . Nl (f(mo T clthy + R o + clt']y! + Rolyar)
X X 0 JO

A, A9, dQdSY
(4m)?  (4m)*

x k(zo + Rpye, zo + RP'%')) x 9p*dpp™dp’

The integration domain above is a compact subset of R1°. Since f is continuous and k is
assumed continuous in the vicinity of (g, zg), Lebesgue’s dominated convergence theorem
can be applied when R — 0, which yields

SN dQdsY 1 2
! A 2
IR 7ot H{@o, o) SxS o ety zo = ) (4m)? ) (3L P dp)

= k‘(l’(}, xO)<TmOFt ® TrOFt’7 f>
which concludes the proof. O

Proof of Proposition 3.6. Suppose first that ||Fy|[%. = 0. Then by definition, r(z¢) = 0
and Lyeg(70, ) = ||[W||2./A + nlog A which indeed shows that

ALreg(z0, A) — ||[W][&n| = Ors0(Alog A). (A.20)

Now, let ¢ > 0 and assume that ||Fy||[3. > e. We first deal with the first term in
equation (3.24). Using the Sherman—Morrison formula ([43], Section 2.7.1), we may invert
(Kze + A,) explicitly:

1 1 F,FL 1 F, FF
(K5 M ™ = Sl = S5 T = 30 sy )
A N1+ 3FLFyy A A+ || Faollgn
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The determinant term in equation (3.24) is also easily derived. Indeed, Fy, FZ; has only one
non zero eigenvalue equal to || Fy||3., since (Fy, FL)Fyy = Fy (FL

zoL zg o 900) = ||Fwo||]%{"F9€0:
log det(KL® + AI,) = (n— 1) log A + log(A + || Fio | |- (A.21)
(The same argument shows that p(Ky®) = ||Fy,||%n.) Thus,

Lreg(z0,\) = WT(KLE + XL,) "W + log det (KL + A1)

1 (F, W>2n>
= —[[W|E: — 2B ) 4 (n — 1) log A + log(A + || Fip |3
(W10 = T8 )+ (0= ) 1og + log(A+ 11 )
[[W][&n ( (Fag, W)gn ) 2
= 1-— + (n—1)log A + log(A + || Fyy IR )-
A W& (A + {1 Fio | [fen) o

Therefore,

ALreg (0, A) = [[W|[En (1 = 7(20)*)

<Fa: 7W>2n <Fx 7W>2"
- IIWIIﬁn< s SL%: S 0 . (A.22)
W lgn [ Fxollgn — [IWIGn (A + [ Fxol|n)
+ (n— DXlog A + Mog(A + || Fr ||3n).
Moreover, for the term in equation (A.22) which is multiplied by ||W]| |%§n,
FoWhe (e oo 1 1)
WEnllFeol1Rn W [Rn (X + [ Fa | [3n) WEn \Fsllgn A+ [Frllfn
_<F9607W>]%£” A
IWIEn [ Faollfn A+ [ Fag |10)
<r(xg)? A < A < A (A.23)

A1 Faplffn 1 Fallfn — €
and obviously, since A = 0,

<F:B07 W>]%{" _ <F207 W>I%§”
W 1 Exol[Fn [TV 11 (X + 11 Fi [[n)

> 0. (A.24)

Also, one sees that Fy, = 0 as soon as sup; |xg — x;| > ¢I' + R, ie x¢ is too far from the
receivers for them to capture non zero signal during the time interval [0,7"]. Thus the
function xg — ||Fy,|[3n is zero outside of a compact set. It is obviously continuous on R3
and is thus bounded on R? by some constant M > 0. Using this together with equations
(A.23) and (A.24) inside equation (A.22), and assuming that A < 1 yields

A
[ALreg(20, A) = [[W|[fn (1 = r(20)*)] < gllwllﬁn + (n —1)[Alog Al + Alog(M + 1),

which shows the uniform convergence statement as well as the pointwise one (together
with (A.20)). O
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Proof of Proposition 3.7. In all concerned mathematical objects, we highlight the N de-
pendency with an exponent, i.e. W&, FN etc. We use the exact same tools as in the

To?
previous proof, namely that we the following equality holds:
,CN ( )\) — ||WN||I%§" 1— < xo’ WN>R"
e A WA R (X + [[E 7))
R xo | IR™

+ (n —1)log A + log(\ + ||Fg£\g||]%§n)

But we also have |[[WN|[2, = 7, 3L, d(wi, tx)% |FN |13 = X, Yl S8 (@i — w0)?
and (FN Wy = 31, fo:l ftl:(xi — xo)w(x;, t). Since the time steps are equally
spaced, we can study the limit N — oo of the above objects thanks to Riemann sums.
When N — o0,

WY — 3 [ e, 02t = 1B, (4.25)
i 0
1 N2 ! T 2 2
P — 3 [ ol = w0t = 1 o (A.26)
i=1
1 q T
NV EDn — 3w flas = o)t = Loy (A2
i=1+0

Assume that xg is such that ||I;,||r2 # 0, then because of equation (A.26), the quantity
|EN||rn is bounded from below by a constant C' > 0 for sufficiently large N (say C =
||1zo|122/2). From the three equations above, we then have the following convergence:

< $07WN>]R" _ ( < z‘o?WN>Rn)
IWNEn A+ IFREn) W0 (R + RN EXIRn) N—o0

Too(Z0)- (A.28)

Likewise, since n = qIN, when N — o0 we have that

(n—1)logA 1
o+ o log (A || Fi |[n)

N N
(Ng—1)logA logN 1 A 9
- + o log (L4 1Pl ) log \.
N TN gy NH zol e oo 1108
which, together with equation (A.28), shows the announced result. O
Proof of Proposition 3.8. We have (Fy = vo)(x) = t §vo(x — c[t|y)dQ/4m, where d/4m is

the normalized Lebesgue measure on the umt sphere S. Assume first that p € [1, +o0].
Jensen’s inequality on the function ¢ — |¢t[P yields

p

dQ
||Ft*vo||p=tpf |(F} # vo)(x)|Pdx = |t|p ‘j 0 :c—c|t|’y) dz

ﬂmffwMHWW|(Mﬂmeww—¢MWx

< P P P A .29
[ ol = ool (4.29)
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which yields equation (3.32). Next,

. df2
(Fi # uo)(x) = 04(Fy * ug)(x) = 0y (t L uo(x — C|t|7)47r)
ds2 ds?
= J uo(z — c|t|'y)4— + tf —cy - Vug(x — c|tly)— =: Li(z) + L2(x).
S ™ S 47
The functions I; and I are defined in the equation above. We have ||E} * uol|, = ||I1 +

Lll, < [[]]p + [/ 12]]p- As in (A.29), ||11]]p < ||uollp- From Jensen’s inequality,

p

dQ?
dx < |ct|pf f |y - Vug(z — c|t]y)|P——dx.
R3 JS

dS)
|IP = |ctlP . —clt R
12215 = et ngUSv Vuo(w = clth) - =

Next, we use Holder’s inequality in R3: |y Vug| < [Vuglp x 7| with 1/p+1/g = 1, where
1]y = ([v1]P + |v2|P + |v3]P)"/P and likewise for |v|,. Thus,

dQ
Ity < @t [ [ 19uote = el x s

dQ) d)
< PP p — c|t]y)|Pdz— = cP|t|P P b
[ oty [ 190G = e = 1 ( L|w|q4ﬂ)||wo||p

which yields equation (3.32). Finally, the case p = +0 is trivial. Equation (3.34) is then
the result of equations (3.32) and (3.33) applied to the function

w(z,t) —m(z,t) = [F, * (vo — 0)](2) + [F} * (uo — 10)](2).

This finishes the proof. O
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