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Introduction

Machine learning techniques have proved time and again that they can provide efficient solutions to difficult problems in the presence of field data. A key element to this success is the incorporation of "expert knowledge" in the corresponding statistical models. In many practical applications, this knowledge takes the form of mathematical models which are sometimes already well understood. This is e.g. common when dealing with problems arising from physics, in which case the mathematical models often take the form of Partial Differential Equations (PDEs), such as the wave equation at hand in this article. Because of the broadness of the applications PDEs offer, large efforts have been devoted to studying and solving them, both theoretically [START_REF] Evans | Partial Differential Equations[END_REF] and numerically [START_REF] Grossmann | Numerical treatment of partial differential equations[END_REF]. These equations impose very specific (yet often simple) structures on the observed data which can be very difficult to capture or mimic with general machine learning models.

In this article, we will focus on the linear 3 dimensional homogeneous free space wave equation. This equation is the prototype for describing simple 3D phenomena which propagate at finite speed; although particularly simple in the landscape of PDEs, it is in fact central for many applications emerging from different fields such as acoustics or electromagnetics. The homogeneity assumption is also commonly encountered in physics, when modelling conservation laws. Given that the main structures of the solutions of this PDE are well known, one may thus attempt to incorporate them in the machine learning models that work with such solutions.

The class of models we will deal with is that of Gaussian Process Regression (GPR), which is a Bayesian framework for function regression and interpolation [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF]. It is especially adapted to performing inference in the presence of limited/scattered data, say measurements from a small number of scattered sensors. It is also a "kernel method", meaning that it is built upon a positive semidefinite function, the kernel in question. In the language of Bayesian inference, GPR puts a prior probability distribution on a suitable function space in which the unknown function u is assumed to lie. This prior is then conditioned on available field data involving u thanks to Bayes' law, which in turn provides a posterior probability distribution from which statistical estimators related to u can be computed. The posterior expectation in particular plays the role of an approximant of u while the posterior covariance provides posterior error bounds. In the case of GPR, these prior and posterior distributions are in many ways generalizations to infinite dimensions of the multivariate normal distribution, and are fully specified by a mean and covariance functions. These priors are naturally obtained by modelling u as a sample path of a Gaussian process and we will thus say that we put a Gaussian process (GP) prior over u. Imposing strict linear constraints on a GP prior as well as on the posterior expectation it provides is straightforward in principle; we will apply this observation to the case where the linear constraint is the homogeneous wave equation itself, as in [START_REF] Henderson | Characterization of the second order random fields subject to linear distributional pde constraints[END_REF].

Thus, we will first be concerned with building GP priors which incorporate beforehand the knowledge that the sought function is in fact a solution to the wave equation, thus drastically lowering the dimension of the function space upon which the prior is set. In practice, the main consequence will be that all the possible estimators of u provided by GPR will also be solutions to the same wave equation. Nevertheless, from a random field perspective, it is remarkable that this property will in fact also hold at the level of the sample paths of the GP, when the PDE is understood in the distributional sense ( [START_REF] Henderson | Characterization of the second order random fields subject to linear distributional pde constraints[END_REF], Proposition 4.1). Those covariance formulas are particular cases of general ones first described in [START_REF] Henderson | Characterization of the second order random fields subject to linear distributional pde constraints[END_REF], which take the form of multidimensional convolutions against the PDE's Green's function. They were derived by putting generic Gaussian process priors over the initial conditions of the wave equation and propagating them through the solution map of the said equation, leading to "wave equation-tailored" covariance functions. Though interesting for theoretical purposes, these convolutions are very expensive to evaluate numerically, which constitutes a limitation for their use in GPR. In this article, we explore the particular cases where the initial condition priors are either stationary (Proposition 3.2) or radially symmetric (Proposition 3.3), as then notable simplifications can be obtained. We then study the case of point sources, for which we show that the task of recovering the position of the point source using multilateration (as e.g. in GPS systems, see [START_REF] Fang | Trilateration and extension to global positioning system navigation[END_REF]) is unexpectedly recovered by maximizing the likelihood attached to the GPR models we previously obtained for the wave equation, in the limit of the small source radius (Figure 1). We will also discuss applications in physical parameter estimation and initial condition reconstruction. Recovering the initial position in particular is the purpose of photoacoustic tomography (PAT, [START_REF] Ammari | Mathematical modeling in biomedical imaging II. Optical, ultrasound, and opto-acoustic tomographies[END_REF], Chapter 3), an exercise for which we will provide a simple proof of concept application, in the presence of radial symmetry.

Related literature The idea of solving and "learning" linear ODEs and PDEs thanks to GPR probably goes back to [START_REF] Graepel | Solving Noisy Linear Operator Equations by Gaussian Processes: Application to Ordinary and Partial Differential Equations[END_REF] and has been re-explored ever since. A large part of the subsequent works inspired by [START_REF] Graepel | Solving Noisy Linear Operator Equations by Gaussian Processes: Application to Ordinary and Partial Differential Equations[END_REF] deal with PDEs of the form Lpuq f where f is a partially known interior source term: that is, f and u have the same input space. We will not be interested in this case as we will impose the strict condition that f 0, as is e.g. the case in PAT. In our case, the initial conditions will instead play the role of the source terms. For dealing with interior source terms, see [START_REF] Särkkä | Linear operators and stochastic partial differential equations in Gaussian process regression[END_REF][START_REF] Álvarez | Latent force models[END_REF][START_REF] Álvarez | Linear latent force models using Gaussian processes[END_REF][START_REF] Särkkä | Gaussian process latent force models for learning and stochastic control of physical systems[END_REF][START_REF] López-Lopera | Physically-inspired Gaussian process models for post-transcriptional regulation in drosophila[END_REF][START_REF] Raissi | Machine learning of linear differential equations using Gaussian processes[END_REF][START_REF] Raissi | Numerical Gaussian processes for time-dependent and nonlinear partial differential equations[END_REF] and [START_REF] Alvarado | A latent force model for describing electric propagation in deep brain stimulation: A simulation study[END_REF][START_REF] Alvarado | A three spatial dimension wave latent force model for describing excitation sources and electric potentials produced by deep brain stimulation[END_REF] for subsequent applications to inhomogeneous wave equations. See also [START_REF] Chen | Solving and learning nonlinear PDEs with Gaussian processes[END_REF] for an alternative method applicable to nonlinear PDEs. Compared to these approaches, ensuring (deterministically) the homogeneity constraint f 0 in the wave equation will allow us to drastically reduce the dimensionality of the problem of approximating u given scattered measurements of u.

Ensuring homogeneous PDE constraints on centered GPs is done by appropriately constraining its covariance kernel ( [START_REF] Henderson | Characterization of the second order random fields subject to linear distributional pde constraints[END_REF], Proposition 3.5). Such PDE constrained kernels have been explicitly built for a number of classical PDEs, namely: divergence-free vector fields [START_REF] Narcowich | Generalized Hermite interpolation via matrix-valued conditionally positive definite functions[END_REF][START_REF] Scheuerer | Covariance models for divergence-free and curl-free random vector fields[END_REF], curl-free vector fields [START_REF] Fuselier | Refined error estimates for matrix-valued radial basis functions[END_REF][START_REF] Scheuerer | Covariance models for divergence-free and curl-free random vector fields[END_REF][START_REF] Wahlstrom | Modeling magnetic fields using Gaussian processes[END_REF][START_REF] Jidling | Linearly constrained Gaussian processes[END_REF], the Laplace equation [START_REF] Schaback | Solving the Laplace equation by meshless collocation using harmonic kernels[END_REF][START_REF] Mendes | Bayesian inference in the numerical solution of Laplace's equation[END_REF][START_REF] Albert | Gaussian process regression for data fulfilling linear differential equations with localized sources[END_REF]], Maxwell's equations [START_REF] Lange-Hegermann | Algorithmic linearly constrained Gaussian processes[END_REF], the heat equation in 1D [START_REF] Albert | Gaussian process regression for data fulfilling linear differential equations with localized sources[END_REF] and 2D [START_REF] Ginsbourger | On degeneracy and invariances of random fields paths with applications in Gaussian process modelling[END_REF], Helmholtz' 2D equations [START_REF] Albert | Gaussian process regression for data fulfilling linear differential equations with localized sources[END_REF], and linear solid mechanics [START_REF] Jidling | Probabilistic modelling and reconstruction of strain[END_REF]. See also [START_REF] Vergara | A general framework for SPDE-based stationary random fields[END_REF] where generic PDE-constrained kernels are built under stationarity assumptions. For further discussions and references on PDE constrained random fields, we refer to [START_REF] Henderson | Characterization of the second order random fields subject to linear distributional pde constraints[END_REF], Section 1. This article is the continuation of a previous work [START_REF] Henderson | Characterization of the second order random fields subject to linear distributional pde constraints[END_REF], where we described a covariance kernel tailored to the wave equation at hand in this article. In parallel with homoegeneous PDEs, [START_REF] Lange-Hegermann | Linearly constrained Gaussian processes with boundary conditions[END_REF][START_REF] Gulian | Gaussian process regression constrained by boundary value problems[END_REF][START_REF] Solin | Know your boundaries: Constraining gaussian processes by variational harmonic features[END_REF] enforce homogeneous boundary conditions on the covariance kernel. We finish by mentioning that fine properties of a stochastic three dimensional wave equation are studied in [START_REF] Dalang | Hölder-Sobolev regularity of the solution to the stochastic wave equation in dimension three[END_REF]. The wave equation in [START_REF] Dalang | Hölder-Sobolev regularity of the solution to the stochastic wave equation in dimension three[END_REF] is not homogeneous, and because of the nonlinearity they consider, a precise investigation of the covariance function of the solution process is not considered.

The approach presented in this article falls in the field of Bayesian methods for solving PDE related inverse problems, the literature of which is extensive; see [START_REF] Stuart | Inverse problems: A Bayesian perspective[END_REF][START_REF] Dashti | Map estimators and their consistency in bayesian nonparametric inverse problems[END_REF][START_REF] Cotter | Approximation of Bayesian inverse problems for PDEs[END_REF][START_REF] Dashti | The Bayesian approach to inverse problems[END_REF] and the many references therein. However, the method we adopt here differs from the standard Bayesian inversion methods aforementioned in that we incorporate the PDE constraint beforehand, i.e. directly in the prior; the PDE does not only appear in the likelihood. See [START_REF] Owhadi | Bayesian numerical homogenization[END_REF] for a point of view similar with that of the present article, which uses PDE-tailored GP priors for building optimal finite dimensional approximations of solution spaces of elliptic PDEs.

The inverse problems we will study deal with approximating the initial conditions of (3.1) as well as the related physical parameters (wave speed, source location and source size), given scattered measurements of the solution u. A general methodology for esti-mating the parameters of a linear PDE using GPR is described in [START_REF] Raissi | Machine learning of linear differential equations using Gaussian processes[END_REF], using the forward differential operator. Here we will rather use its inverse, i.e. the Green's function. The task of approximating the initial position in particular is the purpose of photoacoustic tomography (PAT), which is a technique commonly used e.g. in biomedical imaging [START_REF] Ammari | Mathematical modeling in biomedical imaging II. Optical, ultrasound, and opto-acoustic tomographies[END_REF]. See e.g. [START_REF] Kuchment | Mathematics of photoacoustic and thermoacoustic tomography[END_REF][START_REF] Anastasio | Application of inverse source concepts to photoacoustic tomography[END_REF] for details on the standard mathematical techniques and models used in PAT. Note that the solution is often assumed available on a surface enclosing the source [START_REF] Xu | Universal back-projection algorithm for photoacoustic computed tomography[END_REF], in order to use Radon transforms or similar inversion formulas. Our method instead allows the sensors to be arbitrarily scattered. As the corresponding PAT problem becomes ill-posed, we do not aim for a full reconstruction of the initial conditions. Instead, we show that our method amounts to computing an orthogonal projection of the solution over a well-chosen finite dimensional space. Of course, the geometry of the sensor locations plays a crucial role in the accuracy of our model, but the reconstruction formula we introduce remains nonetheless independent of any underlying geometry assumptions. In the two dimensional setting, it is worth noting that [START_REF] Purisha | Probabilistic approach to limited-data computed tomography reconstruction[END_REF] already showed that a GPR methodology based on Radon transforms could be set up for solving x-ray tomography problems in the presence of limited (scattered) data.

Organization of the paper For self-containment, section 2 is dedicated to reminders on (Gaussian) random fields and GPR. Section 3 is dedicated to the study of GP priors tailored to the wave equation. In section 4, we showcase some numerical applications of the previous section on wave equation data. We conclude in section 5. For the sake of readability, all the proofs as well as technical definitions concerning convolutions and tensor products are gathered in the appendix.

Notations Let D be a set, m : D Ñ R and k : D ¢ D Ñ R. Given x D, k x denotes the function y Þ Ñ kpx, yq. If X px 1 , ..., x n q T is a column vector in D n , we denote mpXq the column vector such that mpXq i mpx i q, kpX, Xq the square matrix such that kpX, Xq ij kpx i , x j q and given x D, kpX, xq the column vector such that kpX, xq i kpx i , xq. The variables pr, θ, ϕq, r ¥ 0, θ r0, πs, ϕ r0, 2πs, denote spherical coordinates and S denotes the unit sphere of R 3 . We write dΩ sin θdθdϕ its surface differential element; γ psin θ cos ϕ, sin θ sin ϕ, cos θq T S denotes the unit length vector parametrized by pθ, ϕq.

2 Background on Gaussian process regression 2.1 Random fields, Gaussian processes, positive semidefinite functions Let D be a set. A random field pUpxqq xD is a collection of random variables defined on the same probability space pΩ, F, Pq. It is second order if for all x D, ErU pxq 2 s V. Its sample paths are the deterministic functions x Þ Ñ U pxqpωq, given ω Ω. pUpxqq xD is a GP if for all px 1 , ..., x n q D n , the law of pUpx 1 q, ..., U px n qq T is a multivariate normal distribution. The law of a GP is characterized by its mean and covariance functions ( [START_REF] Janson | Gaussian Hilbert Spaces[END_REF], Section 8), defined by mpxq : ErU pxqs and kpx, x I q CovpU pxq, U px I qq ErU pxqUpx I qs¡ mpxqmpx I q, and we write pUpxqq xD GP pm, kq. Given ω Ω, the associated sample path is the deterministic function U ω : x Þ Ñ U pxqpωq. The mean function can be chosen arbitrarily, but the covariance function has to be symmetric and positive semidefinite, which means that for all px 1 , ..., x n q D n , the matrix pkpx i , x j qq 1¤i,j¤n is symmetric non negative definite ( [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF], Section 4.1). In the rest of the paper, positive semidefinite functions will implicitly be assumed symmetric. The mathematical properties of the GP are encoded in the function k. Furthermore, there is a bijection between positive semidefinite functions and covariance functions of centered GPs ( [START_REF] Janson | Gaussian Hilbert Spaces[END_REF], Theorem 8.2). We will thus focus on the design of positive semidefinite kernels. A covariance kernels is stationary if kpx, x I q only depends on the increment x ¡ x I : kpx, x I q k S px ¡ x I q for some function k S . Common examples of stationary kernels are the squared exponential and Matérn kernels [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF]; see equation (4.1). Informally, if the covariance function of a GP is stationary, then its sample paths "look similar at all locations" ([49], p.4).

Gaussian process regression [49]

2.2.1 Kriging equations. GPs can be used for function interpolation. Let u be a function defined on D for which we know a dataset of values B tupx 1 q, ..., upx n qu.

Conditioning the law of a GP pUpxqq xD GP pm, kq on the data B yields a second GP defined by V pxq : pUpxq|Upx i q upx i q, i 1, ..., nq. Its mean and covariance functions m and k are given by the so-called Kriging equations (2.1) and (2.2). Note X px 1 , ..., x n q T and assume that KpX, Xq is invertible, then [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] 4 mpxq = mpxq kpX, xq T kpX, Xq ¡1 pupXq ¡ mpXqq, (2.1) kpx, x I q = kpx, x I q ¡ kpX, xq T kpX, Xq ¡1 kpX, x I q.

(2.2)

The function m is an estimator of u and for all x in D, mpxq can be used for predicting the value upxq. By construction, for all observation points x i , we have mpx i q upx i q and kpx i , x i q 0. If observing noisy data U i U px i q ε i with pε 1 , ..., ε n q T N p0, σ 2 I n q independent from U , one replaces KpX, Xq with KpX, Xq σ 2 I in the Kriging equations and leaves the other terms kpX, xq unchanged. This amounts to applying Tikhonov regularization on kpX, Xq, which is also relevant for approximating equations (2.1) and (2.2) when kpX, Xq is ill-conditioned. [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF]. Covariance functions are usually chosen among a parametrized family of kernels tk θ , θ Θ R q u. θ contains the hyperparameters of k θ . One then attempts to find the value θ which fits best the observations u obs pu 1 , ..., u n q T , the set of observations of u at locations X px 1 , ..., x n q. This is performed by maximizing the marginal likelihood, which is the probability density of the random vector pUpx 1 q, ..., U px n qq T at point u obs , given θ. Denote ppu obs |θq the associated marginal likelihood at θ, one searches for θ such that θ argmax θΘ ppu obs |θq. Explicitly, assuming that m 0, then we have pUpx 1 q, ..., U px n qq T N p0, k θ pX, Xqq and

Tuning covariance kernels

ppu obs |θq 1 p2πq n{2 det k θ pX, Xq 1{2 e ¡ 1 2 u T obs k θ pX,Xq ¡1 u obs . (2.3)
Equivalently, for noisy observations with identical noise standard deviation σ, set Lpθ, σ 2 q : ¡2 log ppu obs |θq ¡ n log 2π u T obs pk θ pX, Xq σ 2 I n q ¡1 u obs log detpk θ pX, Xq σ 2 I n q.

(2.4)

We call Lpθ, σ 2 q the negative log marginal likelihood, and one may rather attempt to find θ such that θ arg min θΘ Lpθ, σ 2 q. Note that σ can also be interpreted as a hyperparameter and estimated through negative log marginal likelihood minimization. 3 Gaussian process priors for the 3D wave equation 

5 lw 0 dpx, tq R 3 ¢ R ¦ , wpx, 0q u 0 pxq, f t wpx, 0q v 0 pxq dx R 3 . (3.1)
The solution of this problem is unique in the distributional sense ( [START_REF] Duistermaat | Distributions[END_REF] 

dφ C 1 pR 3 q, x 9 F t , φy f t ¢ » R 3 φpxqF t pdxq , (3.3) 
where σ R is the surface measure of the sphere of center 0 and radius R, and x¤, ¤y is the duality bracket between C 1 pR 3 q and its dual. If u 0 C 1 pR 3 q and v 0 C 0 pR 3 q, then w as defined in (3.2) is a pointwise defined function and equation (3.2) reduces to the Kirschoff formula ( [START_REF] Evans | Partial Differential Equations[END_REF], p. 72), which writes in spherical coordinates:

wpx, tq

» S tv 0 px ¡ c|t|γq u 0 px ¡ c|t|γq ¡ c|t|γ ¤ ∇u 0 px ¡ c|t|γq dΩ 4π . (3.4)
3.2 Gaussian process priors for the wave equation 3.2.1 General covariance structure. Suppose that the initial conditions u 0 and v 0 are realizations of two independent centered Gaussian processes, U 0 GP p0, k u q and V 0 GP p0, k v q. That is, u 0 U 0 ω and v 0 V 0 ω for some ω Ω. This assumption is relevant e.g. when u 0 and v 0 are unknown, in which case U 0 and V 0 are interpreted as GP priors over u 0 and v 0 . We will assume that the sample paths of V 0 are continuous and that of U 0 are continuously differentiable, in order to use the formula (3.4) (see [START_REF] Henderson | Characterization of the second order random fields subject to linear distributional pde constraints[END_REF], Section 4.2 for more details and discussions on these assumptions). By solving (3.1), one obtains a time-space random field W px, tq defined by W px, tq : Ω ω Þ ÝÑ pF t ¦ V 0 ω qpxq p 9 F t ¦ U 0 ω qpxq.

(3.5)

The next result, which describes the covariance function of W , is the starting point of this paper.

Proposition 3.1 ([28], Proposition 4.1). Denote z px, tq and z I px I , t I q the space-time variables. Let k u (resp. k v ) be a positive semidefinite function such that the sample paths of the associated GP are continuously differentiable (resp. continuous). In particular, k v C 0 pR 3 ¢ R 3 q and k u px, .q, k u p. , x I q C 1 pR 3 q for all x, x I R 3 . Define then the two functions

k wave v pz, z I q rpF t F t Iq ¦ k v spx, x I q, (3.6) 
k wave u pz, z I q rp 9 F t 9 F t Iq ¦ k u spx, x I q.

(3.7)

piq Then pWpzqq zR 3 ¢R is a centered GP whose covariance kernel is given by k w pz, z I q k wave v pz, z I q k wave u pz, z I q.

(3.8)

(ii) Conversely, any centered second order random field with a.s. continuous sample paths and with covariance function k W has its sample paths solution of the wave equation (3.1) for some u 0 and v 0 , in the sense of distributions, almost surely.

Equation (3.6) is to be understood in the sense of the appendix section A.1, while in practice, equation (3.7) can be computed as rp 9 F t 9 F t Iq ¦ k u spx, x I q f t f t IrpF t F t Iq ¦ k u spx, x I q. The proof of equation (3.8) relies on Fubini's theorem, to permute Er¤s and integrals over the sphere S (see equation (3.4)). To apply Fubini's theorem, one needs the maps px, ωq Þ Ñ V pxqpωq and px, ωq Þ Ñ f x i U pxqpωq, i t1, 2, 3u to be measurable. In our case this property holds, up to a modification, because the random fields V and f x i U pxq are assumed a.s. continuous (see [START_REF] Henderson | Characterization of the second order random fields subject to linear distributional pde constraints[END_REF], Section 2.1.2 for further discussions). Complete expressions of equations (3.6) and (3.7) in terms of integrals of k u , its first derivatives and k v over the unit sphere can be found in [START_REF] Henderson | Characterization of the second order random fields subject to linear distributional pde constraints[END_REF], p. 23. They are derived from the Kirschoff formula (3.4).

Remark 3.1. A more general result holds if one drops the GP assumption over pV 0 pxqq xR 3 and pU 0 pxqq xR 3 . If we only assume that V 0 (resp. U 0 ) is a centered second order random field with a.s. continuous (resp. a.s. continuously differentiable) sample paths and covariance function k v (resp. k u ), then W in equation (3.5) is well-defined, centered, and its covariance function is k w in equation (3.8). Only the Gaussianity of W is lost. Indeed, the proof of Proposition 4.1, [START_REF] Henderson | Characterization of the second order random fields subject to linear distributional pde constraints[END_REF], only uses the aforementioned relaxed assumptions over U 0 and V 0 to obtain the formula (3.8). The Gaussianity of U 0 and V 0 is only used to show that W is also a GP. Non Gaussian (say log normal or exponential) priors are relevant e.g. for modelling nonnegative initial conditions. They are especially interesting for the wave equation because the nonnegativity of the measure F t yields the following remarkable positivity preserving property: if u 0 0 and v 0 ¥ 0, then w in equation (3.2) verifies wpx, tq ¥ 0 for all t ¥ 0.

Observe now that for all z px, tq R 3 ¢ R, we have lk w pz, ¤q 0. Using equation (2.1), one then deduces that all the Kriging mean obtained using the kernel k w always verifies l m 0. For this reason, we call WIGPR ("Wave equation informed GPR") the act of performing GPR with a covariance kernel of the form (3.8). Note that the inheritance of the distributional PDE constraint over the sample paths of the conditioned GP is proved in [START_REF] Henderson | Characterization of the second order random fields subject to linear distributional pde constraints[END_REF], Proposition 3.8.

In applications, a first obstacle of WIGPR is the cost of the evaluation of expressions (3.6) and (3.7), both in computational resources and in memory. Indeed, their computation requires 4-dimensional convolutions. This motivates the study of special cases of expressions (3.6) and (3.7). In the next paragraphs, we focus on stationarity and radial symmetry assumptions.

Stationary initial conditions.

Many standard covariance kernels used for GPR are stationary [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF]. More generally, a centered second order stochastic process is said to be stationary in the wide (or weak) sense if its covariance function is stationary ([49], footnote 2 p. 79). Such stochastic processes play a central role in many different fields such as time series analysis or signal processing [START_REF] Hamilton | Time series analysis[END_REF]. Because of the popularity of such stationary random field models as well as GPR methods based on stationary kernels, we study equation (3.6) when k v is stationary. For conciseness, we restrict ourselves to the case where u 0 0, i.e. k u 0. Proposition 3.2. Assume that k v is continuous and stationary: k v px, x I q k S px ¡ x I q.

(i) Then k wave v is stationary in space and

rpF t F t Iq ¦ k v spx, x I q pF t ¦ F t I ¦ k S qpx ¡ x I q.
(3.9) (ii) Moreover, the measure F t ¦ F t I is absolutely continuous over R 3 . Denoting |h| the Euclidean norm of h R 3 and identifying F t ¦ F t I with its density, we have

pF t ¦ F t Iqphq sgnptqsgnpt I q 8πc 2 |h| 1 c § § |t|¡|t I | § § ,cp|t| |t I |q $ p|h|q. (3.10)
If k u is assumed zero, and if V 0 only satisfies the minimal assumptions of Remark 3.1 as well as wide sense stationarity, then the covariance expression (3.9) still holds for the solution process W in equation (3.5). Formally, one can obtain similar formulas for k wave u by differentiating the formulas above with respect to t and t I , as 9

F t f t F t ( 9 F t ¦ 9
F t I will only be a generalized function though).

We underline that the proof of Point piiq in Proposition 3.2 makes use of the specificities of the dimension 3. First in equation (A.5), where the scalars r 2 cancel each other out; second in (A.7) where an exact antiderivative of the integrated function can be computed. None of these two simplifications hold in higher dimension or in dimension 2, and formulas as simple as equation (3.10) are not expected to hold. Remark 3.2. Expression (3.10) with h x ¡ x I is the covariance kernel of the solution process U with initial condition the "formal" white noise process V 0 with the stationary Dirac delta covariance kernel k v px, x I q δ 0 px ¡ x I q: rpF t F t Iq ¦ k v spx, x I q pF t ¦ F t I ¦ δ 0 qpx ¡ x I q pF t ¦ F t Iqpx ¡ x I q.

(3.11)

Somewhat surprisingly, although formula (3.10) yields a summable function over R 3 when t and t I are fixed, it can not be used for practical computations as the diagonal terms of the related covariance matrices are all singularities: pF t ¦ F t qp0q V... Yet, formula (3.10) may be used together with explicit kernels k S to yield usable expressions. For instance, if

k v px, x I q k S px ¡ x I q C expp¡|x ¡ x I | 2 {2L 2 q, we state without proof that pF t ¦ F t I ¦ k S qphq sgnptt I q c 2π 2 
CL 3 c 2 £ Φ R 1 |h| L ¨¡ Φ R 1 ¡|h| L 2|h| ¡ Φ R 2 |h| L ¨¡ Φ R 2 ¡|h| L 2|h| , (3.12) 
where

h x ¡ x I , Φpsq p2πq ¡1{2 ³ s ¡V expp¡t 2 {2qdt, R 1 c § § |t| ¡ |t I | § § , R 2 cp|t| |t I |q.
Such a kernel always takes finite values: when h goes to 0, the above formula reduces to well defined derivatives.

Although these formulas are interesting in their own right, the study of propagation phenomena is usually done thanks to compactly supported initial conditions, which can never be modelled with wide sense stationary random fields. We partially deal with compactly supported initial conditions in Section 3.2.3, within the context of radial symmetry.

Radially symmetric initial conditions.

Assume that the sample paths of the process V 0 enjoy radial symmetry around some x 0 R 3 . This can be expressed in terms of differential operators in pr, θ, ϕq, the spherical coordinate system around x 0 :

Pptω Ω : f θ V 0 ω 0uq 1, and Pptω Ω : f ϕ V 0 ω 0uq 1.

(3.13)

Then by Proposition 3.5 of [START_REF] Henderson | Characterization of the second order random fields subject to linear distributional pde constraints[END_REF], k v verifies, in the sense of distributions, dx D, f θ pk v px, ¤qq 0 and f ϕ pk v px, ¤qq 0.

(3.14)

Thus, there exists a function k 0 v defined on R ¢ R such that k v px, x I q k 0 v pr 2 , r I2 q, with r |x|, r I |x I | (directly using the squares r 2 and r I2 will simplify computations later on). Similarly, assume that the sample paths of U 0 exhibit radial symmetry and write k u px, x I q k 0 u pr 2 , r I2 q. Because of the generality of Proposition 3.5 from [START_REF] Henderson | Characterization of the second order random fields subject to linear distributional pde constraints[END_REF], the Gaussianity of V 0 and U 0 are not required. Furthermore, the same theorem states that equations (3.13) and (3.14) are in fact equivalent. From the radial representations of k v and k u , we can deduce the following convolution-free formulas for k wave v and k wave u :

Proposition 3.3. Set K v pr, r I q ³ r 0 ³ r I 0 k 0 v ps, s I qdsds I . Then for all z px, tq R 3 ¢ R and z I px I , t I q R 3 ¢ R, k wave v pz, z I q sgnptt I q 16c 2 rr I ε,ε I t¡1,1u εε I K v pr εc|t|q 2 , pr I ε I c|t I |q 2 ¨, (3.15) 
k wave u pz, z I q 1 4rr I ε,ε I t¡1,1u pr εc|t|qpr I ε I c|t I |q ¢ k 0 u pr εc|t|q 2 , pr I ε I c|t I |q 2 ¨. (3.16)
The expressions (3.15) and (3.16) are interesting in that they are much easier and faster to compute than (3.6) and (3.7), which require to compute convolutions.

3.2.4

Compactly supported initial conditions. Suppose that v 0 is compactly supported on a ball Bpx 0 , Rq. The Strong Huygens Principle for the 3 dimensional wave equation ( [START_REF] Evans | Partial Differential Equations[END_REF], p. 80) states that F t ¦ v 0 is supported on the spherical shell Bpx 0 , R c|t|qzBpx 0 , pR¡c|t|q q, where x : maxp0, xq. From a GP modelling perspective, assuming that SupppV 0 q Bpx 0 , Rq amounts to imposing that V 0 pxq 0 a.s. if x Bpx 0 , Rq. This is equivalent to VarpV 0 pxqq k v px, xq 0 since V 0 is assumed centered. The same reasoning in terms of support can be applied to u 0 and U 0 . In the next proposition, we explore the consequences of such compactness assumptions on the radial formulas (3.15) and (3.16). The new formulas are readily deduced from Proposition 3.3, but we state them on their own as they are the ones used in Section 4.

Proposition 3.4. Let R v ¡ 0 and R u ¡ 0. Let α p0, 1q and φ α : R Ñ r0, 1s be a C 1 decreasing function such that φ α psq 1 if s α and φ α psq 0 if s ¥ 1. Set the truncated kernels k Rv v px, x I q k 0,Rv v pr 2 , r I2 q k 0 v pr 2 ,
r I2 q1 r0,Rvs prq1 r0,Rvs pr I q, (3.17)

k Ru u px, x I q k 0,Ru u pr 2 , r I2 q k 0 u pr 2 , r I2 qφ r{R u ¨φ r I {R u ¨.
(3.18)

Assume now that V 0 GP p0, k Rv v q and U 0 GP p0, k Ru u q. Then, defining the function K v pr, r I q ³ r 0 ³ r I 0 k 0 v ps, s I qdsds I , the two following formulas hold

k wave v pz, z I q sgnptt I q 16c 2 rr I ¢ ε,ε I t¡1,1u εε I K v ¡ min pr εc|t|q 2 , R 2 v ¨, min pr I ε I c|t I |q 2 , R 2 v ¨©, (3.19) 
k wave u pz, z I q 1 4rr I ¢ ε,ε I t¡1,1u pr εc|t|qpr I ε I c|t I |qk 0,Ru u pr εc|t|q 2 , pr I ε I c|t I |q 2 ¨.
(3.20)

Notice that the truncated kernels k Rv v and k Ru u are the covariance kernels of the truncated processes V 0 trunc pxq 1 r0,Rvs p|x ¡ x 0 |qV 0 pxq and U 0 trunc pxq φ |x ¡ x 0 |{R u ¨U 0 pxq respectively. For k Ru u , the truncation procedure has to be sufficiently smooth to compute . Such compactly supported kernels may lead to sparse covariance matrices which may then be used for computational speedups (a topic we leave aside in this article).

p 9 F t ¦ 9 F t Iq ¦ k Ru u ,

3.2.5

Estimation of physical parameters. The wave kernel (3.8), using for k u and k v radially symmetric kernels supported in Bpx u 0 , R u q and Bpx v 0 , R v q respectively, has for hyperparameters θ pc,

x u 0 , R u , θ k 0 u , x v 0 , R v , θ k 0 v q Among those, pc, x u 0 , R u , x v 0 , R v q all corre-
spond to physical parameters. Their estimation via likelihood maximisation is numerically investigated in Section 4. Note that finding the correct radii R u and R v is not a well posed problem: if SupppU 0 q Bpx u 0 , R u q then SupppU 0 q Bpx u 0 , αR u q for any α ¥ 1 and αR u is also a suitable candidate for R u . This is discussed in Section 4.

Remark 3.3 (GPR, radial symmetry and the 1D wave equation). It is known that the radially symmetric 3D wave equation is equivalent to the 1D wave equation, by introducing wpr, tq rwpx, tq, r |x|. However, the joint problem of approximating a radially symmetric solution w of Problem (3.1) with GPR and searching for the correct source location parameters px u 0 , R u , x v 0 , R v q cannot be reduced to the one dimensional case, as the source centers x u 0 and x v 0 both lie in R 3 .

The Point Source limit

The case of the point source deserves a study on its own as it plays a central role for linear PDEs, both in theory [START_REF] Duffy | Green's functions with applications[END_REF] and in applications. For the wave equation, modelling the source term as a point source (i.e. a Dirac mass) is relevant in a number of real life cases: a localized detonation in acoustics, an electric point source in electromagnetics, a point mass in mechanics and so forth. In this section, we will not make use of the Kriging equations (2.1) and (2.2) as reconstructing an initial condition that is a point source is actually of little interest. Also, reconstructing the wave equation's Green's function thanks to a pointwise approximation such as GPR is expected to yield poor results because this Green's function in particular is not even defined pointwise: it is a family of singular measures, see equation (3.3). However, estimating the physical parameters attached to it, essentially the position parameter x 0 , is a relevant question and an attainable goal. This is the topic of this section, where we study the behaviour of the log marginal likelihood that comes with WIGPR when the initial condition reduces to a point source. On a more general level, this section also serves as an illustration of the very explicit links one may draw between classical PDE based models and Bayesian kernel methods using physics informed kernels. We will restrict ourselves to the case u 0 0 in equation (3.1) and thus focus on the kernel k wave v pz, z I q. We begin by clarifying the setting in which we will work.

Setting, assumptions and objectives.

(i) Note x 1 , ..., x q the q sensor locations and assume that we have N time measurements in r0, T s corresponding to times 0 t 1 ... t N T for each sensor; we have overall n N q pointwise observations of a function w that is a solution of the problem (3.1). The space-time observation locations px i , t j q are stored in a vector Z pZ 1 | ¤ ¤ ¤ |Z q q T where Z i : ppx i , t 1 q, ..., px i , t N qq corresponds to the i th sensor. The observations are then stored in the column vector w obs pwpZ 1 q|...|wpZ q qq T .

(ii) We assume that the initial condition v 0 corresponding to w is almost a point source:

in particular it is supported on a small ball Bpx ¦ 0 , R ¦ q where R ¦ 3 1.

(iii) We are interested in finding x ¦ 0 , the correct source location. To do so, we study the log marginal likelihood associated to the observations w obs , using a covariance kernel associated to initial conditions truncated around a ball Bpx 0 , Rq to be estimated. Set first k R x 0 px, x I q : p4πR 3 {3q ¡2 k v px, x I q1 Bpx 0 ,Rq pxq1 Bpx 0 ,Rq px I q where k v is a given a covariance function. The pre-factor p4πR 3 {3q ¡2 is an anticipation of the upcoming Proposition 3.5.

We will then use the wave kernel

k wave,R x 0 ppx, tq, px I , t I qq rpF t F t Iq ¦ k R x 0 spx, x I q. (3.21)
We then view px 0 , Rq as hyperparameters of k wave,R

x 0

, and we denote px ¦ 0 , R ¦ q the real source position and size.

(iv) We assume that except for x 0 , all the other hyperparameters θ of k wave,R

x 0 are fixed.

In particular, we assume that R R ¦ and c c ¦ , where c ¦ is the true celerity parameter appearing in the wave equation.

In that framework, the log-marginal likelihood ppw obs |θq only depends on x 0 . We thus write K x 0 : k wave,R

x 0 pZ, Zq and Lpθ, λq Lpx 0 , λq, λ being a Tikhonov regularization parameter (see equation (3.22) 

below). The log-marginal likelihood then writes

Lpθ, λq Lpx 0 , λq w T obs pK x 0 λI n q ¡1 w obs log detpK x 0 λI n q.

(3.22)

3.3.2 Level sets of Lpx 0 , λq and GPS localization. In Figure 1, we provide a 3 dimensional image which displays the numerical values of the map x 0 Þ Ñ Lpx 0 , λq that are below a suitable threshold, on a test case. This figure constitutes visual evidence that in the limit R Ñ 0, recovering a point source location from minimizing the log marginal likelihood provided by the kernel (3.21) reduces to the classic true-angle multilateration method used for example in GPS systems (see e.g. [START_REF] Fang | Trilateration and extension to global positioning system navigation[END_REF]). In this localization method, the user who is located on a sphere (Earth) sends signals to satellites gravitating around the Earth. From the corresponding time measurements, the distance between the satellite and the user is deduced, which in turn defines a sphere (one for each satellite) on which the user is located. The location of the user lies at the intersection of those spheres, and the Earth. At least three satellites are needed for this intersection to be reduced to a point. On Figure 1, three facts in particular are noteworthy; our task will be to explain them mathematically. First, as a function of x 0 , Lpx 0 , λq reaches local minima over the whole surface of spheres centered on each sensor. Second, at the intersection of two of those spheres, the local minima are smaller. Third, the spheres all intersect at a single point x ¦ 0 , which is the global minima of Lpx 0 , λq and the real source location.

On our way to explaining these three facts, we begin with a convergence statement describing the point source limit, from a covariance point of view. Proposition 3.5. Let k be a continuous positive semidefinite function defined on R 3 ¢R 3 and let x 0 R 3 . For R ¡ 0, define k R x 0 its truncation around x 0 by k R x 0 px, x I q kpx, x I q1 Bpx 0 ,Rq pxq1 Bpx 0 ,Rq px I q{p4πR 3 {3q 2 . Let t, t I R. Then pF t F t Iq ¦ k R x 0 defines an absolutely continuous Radon measure over R 3 ¢ R 3 . Furthermore we have the following weak-convergence in the space of Radon measures (i.e. the dual of C c pR 3 ¢ R 3 q, the latter space being the space of continuous functions over R 3 ¢ R 3 with compact support):

rpF t F t Iq ¦ k R x 0 s CcpR 3 ¢R 3 q I ÝÝÝÝÝÝÝÑ RÑ0 kpx 0 , x 0 q ¢ pτ x 0 F t q pτ x 0 F t Iq, (3.23) 
where τ x µ, the translation of µ by x, is defined by

³ f pyqτ x µpdyq : ³ f px yqµpdyq.
As before, the kernel k R x 0 of Proposition 3.5 is the covariance kernel of the truncated process V 0 trunc pxq 1 Bpx 0 ,Rq pxqV 0 pxq{p4πR 3 {3q. The limit object we obtain in equation (3.23) is not a function but a singular measure, and thus it cannot be a covariance function. This means that we do not obtain a Gaussian process in the point source limit. More precisely, the Gaussian process associated to the covariance function k wave,R

x 0 degenerates into a Gaussian measure [START_REF] Bogachev | Gaussian measures. Number 62 in Mathematical Surveys and Monographs[END_REF] over the locally convex space C c pR 3 ¢R 3 q when R goes to zero, though we leave aside this observation for now. On a formal level though, Proposition 3.5 provides an entry point for studying the log marginal likelihood (3.22) associated with the kernel (3.21) when R is small. Indeed, Proposition 3.5 states that for small values of R, the kernel (3.21) behaves like a rank one kernel, i.e. a kernel of the form kpz, z I q f pzqfpz I q for some particular function f . This observation will prove to be enough for explaining the patterns observed in Figure 1. The source is located at the intersection of spheres centered at the sensor locations.

Properly dealing with the limit R Ñ 0 implies that we use a mathematical framework compatible with general Radon measures, as indicated by Proposition 3.5. This also implies an additional layer of technicality. Instead, we introduce regularized (mollified) versions of both the limit object in Proposition 3.5 and Lpx 0 , λq, and study these regularized terms. This is the content of Propositions 3.6 and 3.7, which are statements on the regularized log marginal likelihood L reg px 0 , λq introduced in equation (3.24). Note however that proving a rigorous mathematical statement linking the behaviours of Lpx 0 , λq and L reg px 0 , λq is an open question.

Point source mollification.

We start with regularizing F t thanks to a mollifier φpxq on R 3 which we choose to be radially symmetric as in [START_REF] Evans | Measure theory and fine properties of functions[END_REF], section 4.2.1. Define φ R pyq φpy{Rq{R 3 , then a C V c regularization of F t is obtained by setting f R t pxq : pF t ¦ φ R qpxq for all x in R 3 . As F t , f R t exhibits radial symmetry. We will next use the following regularizations: Note k reg x 0 ppx, tq, px I , t I qq : f R t px ¡ x 0 qf R t I px I ¡ x 0 q, which plays the role of a regularized version of the limit measure in Proposition 3.5. The same proposition states that in some sense, when R approaches 0, k wave,R

x 0 is close to k reg x 0 . Denote also F x 0 : pF 1 x 0 | ¤ ¤ ¤ |F q x 0 q T , with F i x 0 : pf R t 1 px i ¡ x 0 q, ..., f R t N px i ¡ x 0 qq.
The covariance matrix corresponding to the hyperparameter x 0 is then given by K reg

x 0 k reg x 0 pZ, Zq F x 0 F T x 0 .
In particular it is rank one.

We also assume that wpx i , t j q can be approximated by wpx i , t j q f R t j px i ¡ x ¦ 0 q as in the point source limit, v 0 δ x ¦ 0 and in that case we would have wpx i , t j q pF t j ¦ v 0 qpx i q F t j px i ¡ x ¦ 0 q (forgetting for a second that F t is not defined pointwise). We thus introduce the column vector of "approximated observations" W wpx i , t j q ¨i,j and we assume that W is ordered as W pW 1 | ¤ ¤ ¤ |W q q T where W i corresponds to the i th sensor:

W i p wpx i , t 1 q, ..., wpx i , t N qq R N .
We may then introduce the "regularized" log marginal likelihood built by replacing k with k reg

x 0 and w obs by W :

L reg px 0 , λq : W T pK reg x 0 λI n q ¡1 W log detpK reg x 0 λI n q, (3.24) 
where we recall that K reg

x 0 k reg x 0 pZ, Zq F x 0 F T x 0 .
We will then study L reg px 0 , λq in the place of Lpx 0 , λq; as stated before, we expect that Lpx 0 , λq behaves similarly to L reg px 0 , λq, although proofs of such statements are lacking for the moment. We begin with a proposition which describes the asymptotic behaviour of L reg px 0 , λq in the limit of λ Ñ 0. This limit corresponds to noiseless observations, and the limit object in Proposition 3.6 provides an explanation of the patterns of Figure 1.

Proposition 3.6 (Asymptotic behaviour of L reg px 0 , λq when λ Ñ 0). Let ε ¡ 0 and

E ε : tx 0 R 3 : ||F x 0 || 2 R n ¡ εu. Define the correlation coefficient between F x 0 and W by rpx 0 q CorrpF x 0 , W q xF x 0 , W y R n {p||W|| R n ||F x 0 || R n q. We set rpx 0 q 0 if F x 0 0.
Then we have the following pointwise convergence:

dx 0 R 3 , § § λL reg px 0 , λq ¡ ||W|| 2 R n 1 ¡ rpx 0 q 2 ¨ § § O λÑ0 pλ log λq,
and the uniform convergence on E ε sup

x 0 Eε § § λL reg px 0 , λq ¡ ||W|| 2 R n 1 ¡ rpx 0 q 2 ¨ § § O λÑ0 pλ log λq.
The set E ε is the set of values of x 0 for which the vectors F x 0 are uniformly large enough for the Euclidean norm. This is interpreted by saying that the elements x 0 of E ε are potential source positions for which the chosen sensor locations should capture a signal with sufficient L 2 energy (at least ε across all sensors) over the window r0, T s, should the source be located at x 0 . Loosely speaking, such locations x 0 are "visible" candidate source positions. From a covariance perspective, we have that ρpK reg x 0 q ||F x 0 || 2 R n , where ρ denotes the spectral radius.

Remark 3.4. In the proof of Proposition 3.6, the determinant term in (3.24) has no influence in the limit object and only pollutes the rate of convergence. Discarding it leads to a O λÑ0 pλq rate of convergence.

It also makes sense to inspect the case N Ñ V, which is the content of the next proposition; the obtained limit object is similar to that of Proposition 3.6. The limit N Ñ V corresponds to having the sampling frequency of the sensors go to infinity. In this case, the discrete objects in Proposition 3.6 behave as Riemann sums if the time steps t k are equally spaced and we obtain integrals in the limit N Ñ V. Notation wise, we highlight the dependence in N in L reg px 0 , λq by noting it instead L N reg px 0 , λq.

Proposition 3.7 (Asymptotic behaviour of L N reg px 0 , λq when N Ñ V). Define the following vector valued functions in L 2 pr0, T s, R q q: dt r0, T s, I w ptq : wpx 1 , tq, ..., wpx q , tq ¨T , dt r0, T s, I x 0 ptq : f R t px 1 ¡ x 0 q, ..., f R t px q ¡ x 0 q ¨T . Denote || ¤ || L 2 and x, y L 2 the norm and the dot product of the usual Euclidean structure of L 2 pr0, T s, R q q. Assume that the observations are such that ||I w || L 2 ¡ 0. Introduce then the correlation function, defined whenever ||I x 0 || L 2 ¡ 0:

r V px 0 q : xI w , I x 0 y L 2 ||I w || L 2 ||I x 0 || L 2 . (3.25) 
Assume that for all k t1, ..., N u, t k T pk ¡ 1q{pN ¡ 1q, i.e. the t k are equally spaced in r0, T s. Then for all x 0 such that ||I x 0 || L 2 $ 0, we have the following pointwise convergence

at x 0 λ N L N reg px 0 , λq ÝÝÝÝÑ N ÑV ||I w || 2 L 2 1 ¡ r V px 0 q 2 ¨
qλ log λ.

(3.26)

3.3.4 Discussion: location of the point source. Propositions 3.6 and 3.7 enable us to explain the patterns observed in Figure 1 where the correct source position is located at the intersection of spheres centered on receivers. For that purpose, we analyze the limit term in Proposition 3.6 (the same can be done with the one in Proposition 3.7). We denote Lpx 0 q the said limit object from Proposition 3.6:

Lpx 0 q ||W|| 2 R n 1 ¡ rpx 0 q 2 ¨ ||W|| 2 R n £ 1 ¡ °q i1 xF i x 0 , W i y R n ¨2 ||W|| 2 R n ||F x 0 || 2 R n .
Note T i the time of arrival of the point source wave at sensor i:

|x i ¡ x ¦ 0 | c ¦ T i .
Define also S i : Spx i , cT i q, the sphere centered on x i , and A i the thin spherical shell of thickness 2R that surrounds S i , given by A i : Bpx 0 , cT i RqzBpx 0 , cT i ¡ Rq. Then: (i) Lpx 0 q reaches a local minima over the whole sphere S i . When x 0 is located inside A i , the subvectors W i and F i x 0 of W and F x 0 respectively become almost colinear because f R t is radially symmetric. They become exactly colinear when x 0 S i . This maximizes the term xF i x 0 , W i y in virtue of the Cauchy-Schwarz inequality. When x 0 lies in one and only one of those spherical shells A i , the other terms xF j x 0 , W j y are all zero.

(ii) The local minima of Lpx 0 q located at the intersection of two or more spheres S i are smaller. More generally, when I is a subset of t1, ..., qu and when x 0 iI A i z jI A j , the term °iI xF i x 0 , W i y is (almost) maximized while °jI xF j x 0 , W j y 0, which explains why the intersection of spheres are darker coloured than the other parts of the spheres in Figure 1.

(iii) The spheres S i intersect at a single point, which is exactly x ¦ 0 as well as the global minima of Lpx 0 q. The quantity rpx 0 q reaches a global maximum when all subvectors W i and F i x 0 are colinear, which is the case only when x 0 i S i . When there are at least 4 sensors, the intersection of all the spheres i S i is reduced to at most one point. Recall that we have assumed that c c ¦ : this implies that x ¦ 0 i S i , and thus the minimum of

Lpx 0 q is located at x 0 x ¦ 0 .
Note that if the speed c in k R

x 0 does not correspond to the real speed c ¦ , the intersection i S i will be empty. Additionally, from an optimization point of view, numerically solving inf x 0 Lpx 0 , λq is obviously highly non convex and none of our numerical experiments lead to the correct solution.

Initial condition reconstruction and error bounds

3.4.1 Initial condition reconstruction procedure. Consider a set of space locations px i q 1¤i¤q and moments pt j q 1¤j¤N (imagine q sensors each collecting measurements at time t j for all j). Consider now the following inverse problem: Build an approximation of u 0 and v 0 from a finite set of measurements twpx i , t j qu i,j where pw, u 0 , v 0 q are subject to (3.1). (3.27) We now show that WIGPR provides an answer to the problem (3.27). This is not surprising, because the covariance models described in the previous section were derived by putting GP priors over u 0 and v 0 .

As already observed in Section 3.2.1, performing GPR on any data with kernel (3.8) automatically produces a prediction m that verifies l m 0 in the sense of distributions.

Therefore, this function m is the solution of the Cauchy problem (3.1) for some initial conditions ũ0 and ṽ0 : mpx, tq pF t ¦ ṽ0 qpxq p 9 F t ¦ ũ0 qpxq.

(3.28)

These initial conditions are simply given by ũ0 pxq mpx, 0q and ṽ0 pxq f t mpx, 0q. If the data twpx i , t j qu i,j on which GPR is performed is comprised of observations of a function w that is another solution of problem (3.1), the initial conditions pũ 0 , ṽ0 q can be understood as approximations of the initial conditions pu 0 , v 0 q corresponding to w. More precisely, following Section 2.2.3, we have m p F pwq and thus ũ0 pxq mpx, 0q p F pwqpx, 0q dx R 3 ,

(3.29) ṽ0 pxq f t mpx, 0q f t p F pwqpx, 0q p F pf t wqpx, 0q dx R 3 , (3.30) 
where F denotes the finite dimensional space Spanpk w pz 1 , ¤q, ..., k w pz n , ¤qq and p F is the orthogonal projector on F with reference to the Hilbert space structure of H kw . Here, z m is of the form z m px i , t k q R 4 . This use of WIGPR provides a flexible framework for tackling the problem (3.27), as the sensors are not constrained in number or location by any integration formula such as Radon transforms. Taking a look at equations (3.29) and (3.30), we can qualitatively discuss the matter of optimal sensor locations for WIGPR. Indeed, we expect that m will provide a better approximation of w when the functions k w pz i , ¤q i1,...,n are as orthogonal as possible in H kw , since m is an orthogonal projection on F with reference to the H kw inner product. The optimal situation is when given two different sensors x i and x j , the following should hold for most times t k , t l :

xk w ppx i , t k q, ¤q, k w ppx j , t l q, ¤qy H kw k w ppx i , t k q, px j , t l qq 3 1.

(3.31)

A close inspection of the explicit covariance expressions (equations p52q and p53q from [START_REF] Henderson | Characterization of the second order random fields subject to linear distributional pde constraints[END_REF])

shows that the property (3.31) can be obtained for most times t k and t l when the sensors are far apart from each other, as soon as the kernels k u and k v are such that kpx, x I q ÝÑ 0 when |x ¡ x I | ÝÑ V (which is common, see e.g. the kernel (4.1)). Computing optimal sensor locations and obtaining quantitative guaranties of the accuracy of the reconstruction provided by WIGPR is a hard question left for future research.

3.4.2 Time-dependent error bounds in terms of the initial condition reconstructions. Now that we have showed that WIGPR provides approximations of the initial conditions of (3.1), we underline the fact that these initial condition reconstructions induce a control of the spatial error between the target function u and the Kriging mean m, at all times. Indeed, we have the following L p control in terms of the initial condition reconstruction error. Given p r1, Vs, denote W 1,p pR 3 q the Sobolev space of functions f L p pR 3 q whose weak derivatives f x i f, 1 ¤ i ¤ d, exist and lie in L p pR 3 q. Proposition 3.8. For any p r1, Vs and any pair v 0 L p pR 3 q, u 0 W 1,p pR 3 q we have the following L p estimates for all t R:

||F t ¦ v 0 || p ¤ |t| ||v 0 || p , (3.32) 
|| 9 F t ¦ u 0 || p ¤ ||u 0 || p C p c|t| ||∇u 0 || p , (3.33) 
where Equations (3.32) and (3.33) are simple stability estimates for the 3D wave equation, although we have not found them in that form in the literature (notably the explicit control constants |t| and C p c|t|). They fall in the category of Strichartz estimates with L p control for the space variable and L V control for the time variable. We thus provide a proof of Proposition 3.8.

C p ¡ ³ S |γ| p q dΩ{4π © 1{p ¤ 3 1{q ¤ 3, 1{p 1{q 1 pC V 1, C 1 ¤ 1q.
Equation (3.34) shows that L p approximations of the initial conditions provide an L p control between the solution w and the approximation m, for any time t. This is one reason why in our numerical applications (Section 4), we focus on initial condition reconstruction.

When c is unknown and estimated by ĉ through maximizing the log marginal likelihood, we have instead (highlighting the dependence in c by writing

F c t σ c|t| {4πc 2 t) ||wp¤, tq¡ mp¤, tq|| p ||F c t ¦ u 0 ¡ F ĉ t ¦ ũ0 9 F c t ¦ v 0 ¡ 9 F ĉ t ¦ ṽ0 || p ||F c t ¦ pu 0 ¡ ũ0 q pF c t ¡ F ĉ t q ¦ ũ0 9 F c t ¦ pv 0 ¡ ṽ0 q p 9 F c t ¡ 9 F ĉ t q ¦ ṽ0 || p ,
and thus and/or v 0 . We leave such results to the interested reader.

||wp¤, tq ¡ mp¤, tq|| p ¤|t| ||v 0 ¡ ṽ0 || p ||u 0 ¡ ũ0 || p C p c|t| ||∇pu 0 ¡ ũ0 q|| p ||pF c t ¡ F ĉ t q ¦ ũ0 || p ||p 9 F c t ¡ 9 F ĉ t q ¦ ṽ0 || p . ( 3 

Numerical experiments

In this section, we showcase WIGPR on functions w that are solutions of Problem (3.1), using the kernels (3.19) and (3.20) separately as well as together, as in equation (3.8).

The goal is twofold: reconstructing the target function w, which more or less amounts to reconstructing its initial conditions (Proposition 3.8), and estimating the physical parameters attached. Note that with badly estimated physical parameters, the reconstruction step is more or less bound to fail, especially with inaccurate wave speed c and/or source centers x u 0 and x v 0 . Running an extensive numerical study of the capabilities and limitations of WIGPR is a large task in itself. For the time being we will settle for simple test cases; in particular we only consider compactly supported and radially symmetric initial conditions, for which we can use the formulas (3.19) and (3.20) which can be evaluated numerically with a low computational cost. We will denote with a star the corresponding true source position

x ¦ 0 and celerity c ¦ . whereas their starless counterpart will denote the hyperparameters of the WIGPR kernels. The estimated hyperparameters will be denoted with a hat, e.g. ĉ.

Two test cases for WIGPR are considered here. A first test case for k wave u described in Subsection 4.1, for which u 0 $ 0 and v 0 0. This would correspond to PAT, though real life PAT test cases would be very unlikely to enjoy radial symmetry properties. A second test case for k wave u k wave v described in Subsection 4.2, for which u 0 $ 0 and v 0 $ 0. For each test case, the full procedure described below is performed.

Numerical simulation and database generation Given initial conditions u 0 and v 0 , we numerically simulate the solution w over a given time period. We use a basic two step explicit finite difference time domain (FDTD) numerical scheme for the wave equation as described in [START_REF] Bilbao | Wave and Scattering Methods for Numerical Simulations[END_REF], equation A.24, over the cube r0, 1s 3 . We also use first order Engquist-Majda transparent boundary conditions [START_REF] Engquist | Absorbing boundary conditions for the numerical simulation of waves[END_REF], in order to mimic a full space simulation.

We use a sample rate SR 200 Hz (time step ∆t 1{200 s), a space step ∆x 43 mm, and a wave speed c ¦ 0.5 m{s. The simulation duration is T 1.5 s. 30 sensors are scattered in the cube r0.2, 0.8s 3 using a Latin hypercube repartition and a minimax space filling algorithm. Signal outputs correspond to time series for each sensor, with a sample rate of 50 Hz, so 75 data points altogether spanned over the time interval r0, T s for each sensor. This leads to 30 ¢ 75 2250 observations. Each signal is then polluted by a centered Gaussian white noise with standard deviation σ noise 0.45 (resp. 0.09) for the test case #1 (resp. test case #2). These values correspond to around 10% of the maximal amplitude of the signals, see Figures 2a and5.

Perform WIGPR on simulated data We perform WIGPR on portions of the dataset obtained above, using the kergp package [START_REF] Deville | kergp: Gaussian Process Laboratory[END_REF] from R [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF]. For that we use kernels (3.19) and/or (3.20) which are "fast" to evaluate, with K v and k 0 u both 1D 5{2¡Matérn kernels.

This Matérn kernel is stationary and writes, in term of the increment

h x ¡ x I , k 5{2 phq σ 2 1 |h|{ρ |h| 2 {3ρ 2 ¨exp ¡ |h|{ρ ¨. (4.1) 
It has two hyperparameters on its own, ρ and σ 2 . ρ is the length scale of the kernel (4.1) and should correspond to the typical variation length scale of the function approximated with GPR; σ 2 is the variance of the kernel. We tackle two different questions related to WIGPR which are respectively the estimation of physical parameters and the sensitivity to sensor locations.

(P 1 ) We first study how well the physical parameters pc ¦ , x ¦ 0 , R ¦ q can be estimated with WIGPR. For this, we first select N s time series corresponding to the first N s sensors with N s t3, 5, 10, 15, 20, 25, 30u. The corresponding Kriging database contains 75 ¢ N s data points. For this database, we perform negative log marginal likelihood minimization to estimate the corresponding hyperparameters, which are

θ 5 px u 0 , R u , θ k 0 u , c, λq R 8 if v 0 0 and u 0 $ 0, px u 0 , R u , θ k 0 u , x v 0 , R v , θ k 0 v , c, λq R 14 if v 0 $ 0 and u 0 $ 0. (4.2)
λ corresponds to σ 2 in Section 2.2.2, and is viewed as an additional hyperparameter in the log marginal likelihood. We use a COBYLA optimization algorithm to optimize Lpθ, λq and a multistart procedure with n mult 100 different starting points. That is, 100 different values of θ 0 are scattered over an hypercube H R 8 or H R 14 , and the COBYLA log marginal likelihood optimization procedure is run using each value of θ 0 as a starting point. The resulting hyperparameter value providing the minimal negative log marginal likelihood is selected. The multistart procedure mitigates the risk of getting stuck in local maxima. COBYLA is a gradient-free optimization method used in kergp and is available in the nloptr package from R. We then reconstruct the initial conditions using WIGPR, which we evaluate in terms of the indicators in equation (4.3).

(P 2 ) Next, we study the sensibility of the reconstruction step with respect to the sensor locations. Consider 40 different Latin hypercube layouts of the 30 sensors, each obtained with a minimax space filling algorithm. For each layout, we provide the correct set of hyperparameter values to the model; these values are described in each test case. We then reconstruct the initial conditions using GPR and N s sensors, with N s t3, 5, 10, 15, 20, 25, 30u. L p relative errors (see equation (4.3)) are computed between the reconstructed initial condition and the real initial condition. For each number of sensors N s , statistics over the 40 different datasets for these L p errors are summarized in boxplots (see e.g. Figure 3a). Each box plot shows the median, the first and the third quartiles of a dataset corresponding to results obtained on the 40 different receiver dispositions. The dots inside a circle correspond to the median of each boxplot. The black crosses are the mean of each box plot, which are linked together with the dashed line. The circles are outliers.

In both cases, the approximated initial position ũ0 is recovered by evaluating the WIGPR Kriging mean at t 0 over a 3D grid and the initial speed ṽ0 is recovered by evaluating the Kriging mean at t 0 and t ∆t 10 ¡7 over the same 3D grid: ṽ0 p mp¤, ∆tq ¡ mp¤, 0qq{∆t. Figures are displayed using MATLAB [START_REF][END_REF].

Numerical indicators For (P 1 ), we indicate in Tables 1 and2 the distances between the true physical parameters and the estimated ones, depending on the number of sensors used. Additionally, for every p t1, 

A relative error of over 100% means that ||u 0 ¡ ũ0 || p ¥ ||u 0 || p , in which case the trivial estimator û0 0 performs better than the estimator ũ0 , in the L p sense. Note that we deal with three dimensional functions, for which approximation errors are typically larger than for their one dimensional counterpart. Thus, relatively large errors may still correspond to pertinent approximations. For (P 2 ) are plotted boxplots of the relative L p errors over the 40 different sensor layouts, depending on the number of sensors used. Integrals for the L p error plots are approximated using Riemann sums over 3D grids containing the support of the integrated functions, with space step dx 0.01.

The datasets, the code for generating the datasets and the code for performing WIGPR are available online at https://github.com/iain-pl-henderson/wave-gpr

Test case for k wave u

In this test case, v 0 is assumed null and thus we set k v 0, which yields k wave v 0. We thus use k wave u defined in (3.20) for GPR. We use the 1D Matérn kernel (4.1) for k 0 u in equation (3.20). The initial condition u 0 is a radial ring cosine described as follows. We set x ¦ 0 p0.5, 0.5, 0.5q T , R 1 0.15, R 2 0.3 and A 5, the corresponding initial conditions 

u 0 pxq A1 rR 1 ,R 2 s p|x ¡ x ¦ 0 |q £ 1 cos ¢ 2πp|x ¡ x ¦ 0 | ¡ R 1 R 2 2 q R 2 ¡ R 1 .
See Figure 2b, left column, for a graphical representation of u 0 . See Figure 2a for an excerpt of the corresponding Kriging database. For problem (P 1 ), the optimization domain is chosen to be the following hypercube of R 8 θ px 0 , R, ρ, σ 2 , c, λq r0, 1s 3 ¢ r0.03, 0.5s ¢ r0.02, 2s ¢ r0.1, 5s ¢ r0.2, 0.8s ¢ r10 ¡8 , 1s.

(

For problem (P 2 ), the hyperparameter θ 0 provided to the model is θ 0 px 0 , R, pρ, σ 2 q, c, λq pp0.65, 0.3, 0.5q, 0.3, p0.2, 3q, 0.5, σ 2 noise q, 4.1.1 Discussion on the numerical results. For problem (P 1 ), Table 1 shows that the physical parameters x 0 and c are well estimated. The source size parameter R is overestimated, as could be expected from Section 3.2.5. The relative errors show that the overall function reconstruction is overall satisfying, with relative errors below 15%

for N s 20, 25. The noise level σ 2 noise (whose estimator is σ2 noise λ in (4.2)) is often overestimated. For problem (P 2 ) (figures 3a, 3b and 3c), the relative errors stagnate below 10%. The IQR (interquartile range, i.e. the difference between the 3 rd and the 1 st quartiles) remains below 2%. This means that for this test case, the reconstruction step is not very sensitive to the sensors layout when they are scattered as a Latin hypercube. For this test case, the initial position is a raised cosine, while the initial speed is a ring cosine. We set x u¦ 0 p0.65, 0.3, 0.5q T , R u 0.25, A u 2.5, x v¦ 0 p0.3, 0.6, 0.7q T , R v 1 0.05, R v 2 0.15 and A v 30. The corresponding IC are given by 6 9 9 9 9 8 9 9 9 9 7

N
u 0 pxq A u 1 r0,Rus p|x ¡ x u¦ 0 |q £ 1 cos ¢ π|x¡x u¦ 0 | Ru , v 0 pxq A v 1 rR v 1 ,R v 2 s p|x ¡ x v¦ 0 |q £ 1 cos ¢ 2π |x¡x v¦ 0 |¡ R v 1 R v 2 2 Rv 2 ¡R v 1 .
See Figures 4a and4b, left columns, for graphical representations of u 0 and v 0 . See Figure 5 for a visualization of the database. For problem (P 1 ), the optimization domain is chosen to be the following hypercube

θ px u 0 , R u , pρ u , σ 2 u q, x v 0 , R v , pρ v , σ 2 v q, c
, λq r0, 1s 3 ¢ r0.05, 0.4s ¢ r0.02, 2s ¢ r0.1, 5s ¢r0, 1s 3 ¢ r0.05, 0.4s ¢ r0.02, 2s ¢ r0.1, 5s ¢ r0.2, 0.8s ¢ r10 ¡8 , 2 ¢ 10 ¡2 s. For problem (P 2 ), the hyperparameter value θ 0 provided to the model is θ 0 pp0.65, 0.3, 0.5q, 0.3, p0.06, 3q, p0.3, 0.6, 0.7q, 0.15, p0.025, 3.5q, 0.5, σ 2 noise q, (4.7) with σ 2 noise 0.0081. The provided values for pρ u , σ 2 u q and pρ v , σ 2 v q are the estimated values from (P 1 ).

4.2.1 Discussion of the numerical results. Table 2 shows that the physical parameters x u 0 , x v 0 and c are well estimated. The source radii R u and R v are overestimated, as expected from Section 3.2.5. The noise level σ 2 noise is generally overestimated. The reconstruction of the initial position u 0 yielded satisfactory results with L 2 and L V relative errors below 25%, and an L 1 relative error below 35% (N s 10, 15, 20, 25, 30). The higher L 1 relative error means that the reconstructed function ũ0 is supported on a larger set than the true function u 0 , as the L 1 norm favours sparsity. For the initial speed v 0 , the numerical indicators are not as good, reaching minimal values for N s 25. The corresponding errors for the L 1 , L 2 and L V errors are 64%, 28% and 64% respectively. Note though that Figure 4b (corresponding to N s 20) shows that WIGPR still managed to capture the ring structure of v 0 ; the corresponding L 1 error for N s 20 is 150% (Table 2), confirming that the misestimated support radius R v is heavily penalized by the L 1 norm.

The reconstruction of v 0 for N s 30 failed ( 

Conclusion and perspectives

In Section 3, we described several covariance models tailored to the wave equation; they are particular cases of general ones first derived in a previous work. They correspond to the cases where either wide sense stationarity or radial symmetry assumptions over the initial conditions hold. In addition, the sample paths of the associated random fields (not necessarily Gaussian) are a.s. solution to the homogeneous wave equation. These covariances fully specify centered Gaussian process priors, which can then be used in the context of Gaussian process regression (WIGPR). In that framework, the physical parameter of the PDE system (e.g. source location or wave celerity) can be interpreted as hyperparameters of the WIGPR prior, as in [START_REF] Raissi | Machine learning of linear differential equations using Gaussian processes[END_REF]. We then showed that in the limit of the small source radius, the multilateration method for point source localization was naturally recovered by the hyperparameter estimation step of WIGPR. We furthermore showed that WIGPR naturally provides a reconstruction of the initial conditions of the wave equation, as should be expected when putting probability priors over them. The radial symmetry WIGPR formulas from Section 3 were then showcased in Section 4, where two practical questions were tackled. First, WIGPR can correctly estimate certain physical parameters attached to the corresponding wave equation, namely the wave speed and source position. When these parameters are well estimated, WIGPR is capable of providing non trivial reconstructions of the initial condition, which we studied in terms of L 1 , L 2 and L V relative errors. We furthermore observed that the reconstruction step was not very sensitive to the layout of the sensors, assuming that the correct set of hyperparameters is provided to the model.

Future possible investigations concern the practical use of the more general formula (3.8) without any radial symmetry assumptions, e.g. for PAT applications. To compute the convolutions efficiently, one may then resort to multidimensional fast Fourier transforms. Moreover, in this first study, we have only used simple methods for GP numerical evaluation. More advanced GP techniques such as inducing points [START_REF] Candela | A unifying view of sparse approximate Gaussian process regression[END_REF] should now be used to handle large datasets such as the ones we have used in Section 4. The case of the two dimensional wave equation is also of practical interest, e.g. oceanography [START_REF] Lannes | Derivation of asymptotic two-dimensional timedependent equations for surface water wave propagation[END_REF], and presents many different properties when compared to its 3D counterpart ( [START_REF] Evans | Partial Differential Equations[END_REF], p. 80). It would thus deserve a theoretical and practical study in its own right when coupled with GPR.

Finally, the surprising link drawn between our GPR method and the multilateration localization method suggests that other very explicit links should exist between well-chosen kernel methods and traditional mathematical or numerical methods tailored to given physical models. This is certainly an important direction of research, where GPR stands out as a favourable environment through which the communities of machine learning and mathematical physics may be brought together.

Applying the definition of the convolution of measures (see e.g. [START_REF] Bogachev | Gaussian measures. Number 62 in Mathematical Surveys and Monographs[END_REF], p. 101) to Above, we used the spherical coordinate change ξ rγ, dξ r 2 sin θdθdϕdr. We now make use of radial symmetry in the interior integral, as follow. Note e 3 the third vector of the canonical basis of R 3 and M an orthogonal matrix such that M γ h e 3 . We perform the change of variable γ I M γ, using that M S : tMγ, γ Su S and that the corresponding Jacobian is equal to 1: We define the function f b exactly as f a , and compute it by replacing a by b in every step above. Putting (A.4), (A.8) and (A.9) together, the inverse Fourier transform of FpF t ¦F t Iq is an absolutely continuous measure whose density f is given by

F t ¦ F t I, pF t ¦ F t I ¦ k S qphq » R 3 k S ph ¡ sqdpF t ¦ F t Iqpsq » R 3 » R 3 k S ph
f phq 1 p2πq 3 1 2 f a phq ¡ f b phq ¨ 1 16π|h| ¡ sgnp|h| t ¡ t I q sgnp|h| ¡ t t I q ¡ sgnp|h| t t I q ¡ sgnp|h| ¡ t ¡ t I q © (A.10) : 1 16π|h|
Kp|h|, t, t I q.

(A.11) Kp|h|, t, t I q is defined in equation (A.11). Note that Kp|h|, ¡t, t I q ¡Kp|h|, t, t I q and likewise with t I , thus Kp|h|, t, t I q sgnptqsgnpt I qKp|h|, T, T I q with T |t|, T I |t I |. Using the symmetries in t and t I in equation (A.10) and the fact that sgnpsq 1 if s ¡ 0, we obtain Kp|h|, T, T I q sgnp|h| |T ¡

T I |q sgnp|h| ¡ |T ¡ T I |q ¡ sgnp|h| T T I q ¡ sgnp|h| ¡ T ¡ T I q 1 sgnp|h| ¡ |T ¡ T I |q ¡ 1 ¡ sgnp|h| ¡ T ¡ T I q sgnp|h| ¡ |T ¡ T I |q ¡ sgnp|h| ¡ T ¡ T I q.
(A.12) From equation (A.12), one checks that Kp|h|, T, T I q 0 if |h| |T ¡T I | or |h| ¡ T T I and Kp|h|, T, T I q 2 if |T ¡ T I | |h| T T I . Thus, Kp|h|, T, T I q 2 ¢ 1 r|T¡T I |,T T I s p|h|q. Identifying the measure F t ¦ F t I with its density, we obtain pF t ¦ F t Iqphq sgnptqsgnpt I q

8π|h| 1 § § |t|¡|t I | § § ,|t| |t I | % p|h|q, (A.13)
which concludes the proof.

Proof of Proposition 3.3. Without loss of generality, we assume that c 1 and x 0 0.

We first derive expression (3.15). Let f be a function defined on R and g the function defined on R 3 by gpxq f p|x| 2 q. Let F be an antiderivative of f and let x R 3 . As in (A.6), let M be an orthogonal matrix such that M px{|x|q e 3 and use the change of variable γ I M γ. As M S S, we have

pF t ¦ gqpxq 1 4πt » S gpx ¡ tγqt 2 dΩ t 4π » S f p|x ¡ tγ| 2 qdΩ t 4π » S f p|x| 2 t 2 ¡ 2|t|xx, γyqdΩ t 4π » M S f ¢ |x| 2 t 2 ¡ 2|t||x| f x |x| , M T γ I p dΩ I t 4π » S f p|x| 2 t 2 ¡ 2|t||x|xe 3 , γyqdΩ t 4π » 2π ϕ0 » π θ0 f p|x| 2 t 2 ¡ 2|t||x| cospθqq sinpθqdθdϕ t 2 » π θ0 f p|x| 2 t 2 ¡ 2|t||x| cospθqq sinpθqdθ t 4|x||t| F p|x| 2 t 2 ¡ 2|t||x| cospθqq % θπ θ0 sgnptq 4|x| ¡ F pp|x| |t|q 2 q ¡ F pp|x| ¡ |t|q 2 q © sgnptq 4|x| εt¡1,1u
εF pp|x| ε|t|q 2 q. We apply twice result (A.14) on k v : first by setting gpx I q k 0 v p|x¡tγ| 2 , |x I | 2 q where x ¡tγ is fixed, which integrates to F psq kp|x ¡tγ| 2 , sq. Second, by setting gpxq kp|x| 2 , p|x I | ε|t I |q 2 q where |x I | ε I |t I | is fixed, which integrates to F psq K v ps, p|x I | ε I |t I |q 2 q. In detail, we obtain

rpF t F t Iq ¦ k v spx, x I q 1 4πt 1 4πt I » S » S k 0 v p|x ¡ tγ| 2 , |x I ¡ t I γ I | 2 qt I 2 dΩ I t 2 dΩ 1 4πt sgnpt I q 4|x I | » S εI t¡1,1u ε I kp|x ¡ tγ| 2 , p|x I | ε I |t I |q 2 qt 2 dΩ sgnptt I q 16rr I ε,ε I t¡1,1u εε I K v pr ε|t|q 2 , pr I ε I |t I |q 2 ¨, (A.16)
which is exactly equation (3.15). By replacing k 0 v with k 0 u , we can then use this result to compute rp 9 F t 9 F t Iq ¦ k u spx, x I q f t f t IrpF t F t Iq ¦ k u spx, x I q.

(A.17)

First, we compute it for t $ 0 and t I $ 0 by differentiating (A.16) with reference to t and t I , using that for t $ 0, d|t|{dt sgnptq and dsgnptq{dt 0. This yields rp 9

F t 9 F t Iq ¦ k u spx, x I q 1 4rr I ε,ε I t¡1,1u
pr ε|t|qpr I ε I |t I |qk 0 u pr ε|t|q 2 , pr I ε I |t I |q 2 ¨.

(A.18)

For the case where either t 0 or t I 0, note first from equation (A.3) that Fp 9 F 0 qpξq 1 and thus 9

F 0 δ 0 , the Dirac mass at 0, which is the neutral element for the convolution. Therefore, when we have both t 0 and t I 0: rp 9 F 0 9 F 0 q ¦ k u spx, x I q rpδ 0 δ 0 q ¦ k u spx, x I q rδ p0,0q ¦ k u spx, x I q k u px, x I q, which is also the result provided by (A.18) evaluated at t t I 0. When t I 0 and t $ 0, we still have d|t|{dt sgnptq and dsgnptq{dt 0, yielding rp 9 F t 9 F 0 q ¦ k u spx, x I q rp 9 F t δ 0 q ¦ k u spx, x I q f t rpF t δ 0 q ¦ k u spx,

x I q f t » R 3 » R 3 k 0 u p|x ¡ y| 2 , |x I ¡ y I | 2 qF t pdyqδ 0 pdy I q f t 1 4πt » S k 0 u p|x ¡ tγ| 2 , |x I | 2 qt 2 dΩ f t sgnptq 4r εt¡1,1u ε kppr ε|t|q 2 , |x I | 2 q 1 2r εt¡1,1u pr ε|t|qk 0 u ppr ε|t|q 2 , |x I | 2 q.
which is also the result provided by (A.18) evaluated at t I 0. The same arguments apply to show that expression (A.18) is valid when t 0 and t I $ 0. Therefore the expression (A.18) is valid whatever the value of t, t I R.

Proof of Proposition 3.4. When using the kernel k 0,Rv v , we can directly use equation (3.15) by substituting

K v with K Rv v pr, r I q : ³ r 0 ³ r I 0 k 0,Rv v
ps, s I qdsds I and observing that for all r, r I ¥ 0,

K Rv v pr 2 , r I2 q : » r 2 0 » r I2 0 k 0,Rv v ps, s I qdsds I K v ¡ min r 2 , R 2 v ¨, min r I2 , R 2 v ¨©
which directly proves (3.19). Additionally, (3.20) is only a substitution of k 0 u with k 0,Ru u in (3.16): all the mathematical steps are justified as φ C 1 pR q.

Proof of Proposition 3.5. The proof is carried out by direct computations. First, equation (3.4) yields

rpF t F t Iq ¦ k R x 0 spx, x I q tt I » S¢S k R
x 0 px ¡ c|t|γ, x I ¡ c|t I |γ I q dΩdΩ I p4πq 2 .

(A. [START_REF] Evans | Measure theory and fine properties of functions[END_REF] The integrated function in equation (A. [START_REF] Evans | Measure theory and fine properties of functions[END_REF]) is piecewise continuous over R 3 ¢ R 3 and the integral in (A. [START_REF] Evans | Measure theory and fine properties of functions[END_REF]) is well defined, whatever the values of x and x I . Let f be a continuous compactly supported function on R 3 ¢ R 3 . We define I R : xpF t F t Iq ¦ k R x 0 , f y{p4πR 3 {3q 2 , and wish to show that I R Ñ kpx 0 , x 0 qxτ x 0 F t τ x 0 F t I, f y when R Ñ 0. Using equation p52q from [START_REF] Henderson | Characterization of the second order random fields subject to linear distributional pde constraints[END_REF] and Fubini's theorem, we have

I R 1 p 4 3 πR 3 q 2 » R 3 ¢R 3 f px, x I qrpF t F t Iq ¦ k R x 0 spx, x I qdxdx I 1 p 4 3 πR 3 q 2 » R 3 ¢R 3 f px, x I qtt I » S¢S k R x 0 px ¡ c|t|γ, x I ¡ c|t I |γ I q dΩdΩ I p4πq 2 dxdx I 1 p 4 3 πR 3 q 2 tt I » S¢S » R 3 ¢R 3 £ f px, x I qk x 0 px ¡ c|t|γ, x I ¡ c|t I |γ I q ¢ 1 r0,Rs p|x ¡ c|t|γ ¡ x 0 |q1 r0,Rs p|x I ¡ c|t I |γ I ¡ x 0 |q dxdx I dΩdΩ I p4πq 2 .
The first indicator function restricts the integration domain of x to Bpx 0 c|t|γ, Rq, and symmetrically for the second indicator function and x I . For x in Bpx 0 c|t|γ, Rq, in spherical coordinates around x 0 c|t|γ, write x x 0 c|t|γ Rργ x with ρ r0, 1s, γ x S and associated surface differential element dΩ x . We do symmetrically for x I Bpx 0 c|t I |γ I , Rq, which yields The integration domain above is a compact subset of R 10 . Since f is continuous and k is assumed continuous in the vicinity of px 0 , x 0 q, Lebesgue's dominated convergence theorem can be applied when R Ñ 0, which yields I R ÝÝÝÑ RÑ0 tt I kpx 0 , x 0 q » S¢S f px 0 c|t|γ, x 0 c|t I |γ I q dΩdΩ I p4πq 2 ¢ ¢ 3 » 1 0 ρ 2 dρ 2 kpx 0 , x 0 qxτ x 0 F t τ x 0 F t I, f y.

which concludes the proof.

Proof of Proposition 3.6. Suppose first that ||F x 0 || 2 R n 0. Then by definition, rpx 0 q 0 and L reg px 0 , λq ||W|| 2 R n {λ n log λ which indeed shows that § § λL reg px 0 , λq ¡ ||W|| 

pK reg x 0 λI n q ¡1 1 λ I n ¡ 1 λ 2 F x 0 F T x 0 1 1 λ F T x 0 F x 0 1 λ ¡ I n ¡ F x 0 F T x 0 λ ||F x 0 || 2 R n © .
The determinant term in equation (3.24) is also easily derived. Indeed, F x 0 F T x 0 has only one non zero eigenvalue equal to ||F x 0 || 2 R n , since pF x 0 F T x 0 qF x 0 F x 0 pF T x 0 F x 0 q ||F x 0 || 2 R n F x 0 : log detpK reg x 0 λI n q pn ¡ 1q log λ logpλ ||F x 0 || 2 R n q.

(A.21) (The same argument shows that ρpK reg

x 0 q ||F x 0 || 2 R n .) Thus, L reg px 0 , λq W T pK reg x 0 λI n q ¡1 W log detpK reg

x 0 λI n q 1 λ ¢ ||W|| 2 R n ¡ xF x 0 , W y 2 R n λ ||F x 0 || 2 R n pn ¡ 1q log λ logpλ ||F x 0 || 2 R n q ||W|| 2 R n λ ¢ 1 ¡ xF x 0 , W y 2 R n ||W|| 2 R n pλ ||F x 0 || 2 R n q pn ¡ 1q log λ logpλ ||F x 0 || 2 R n q.
Therefore,

λL reg px 0 , λq ¡ ||W|| 2 R n p1 ¡ rpx 0 q 2 q ||W|| 2 R n ¢ xF x 0 , W y 2 R n ||W|| 2 R n ||F x 0 || 2 R n ¡ xF x 0 , W y 2 R n ||W|| 2 R n pλ ||F x 0 || 2 R n q (A.22)
pn ¡ 1qλ log λ λ logpλ ||F x 0 || 2 R n q. Moreover, for the term in equation (A.22) which is multiplied by ||W|| 2 R n ,

xF x 0 , W y 2 R n ||W|| 2 R n ||F x 0 || 2 R n ¡ xF x 0 , W y 2 R n ||W|| 2 R n pλ ||F x 0 || 2 R n q xF x 0 , W y 2 R n ||W|| 2 R n ¢ 1 ||F x 0 || 2 R n ¡ 1 λ ||F x 0 || 2 R n xF x 0 , W y 2 R n ||W|| 2 R n λ ||F x 0 || 2 R n pλ ||F x 0 || 2 R n q ¤rpx 0 q 2 λ λ ||F x 0 || 2 R n ¤ λ ||F x 0 || 2 R n ¤ λ ε , (A.23)
and obviously, since λ ¥ 0, xF x 0 , W y 2

R n ||W|| 2 R n ||F x 0 || 2 R n ¡ xF x 0 , W y 2 R n ||W|| 2 R n pλ ||F x 0 || 2 R n q ¥ 0. (A.24)
Also, one sees that F x 0 0 as soon as sup i |x 0 ¡ x i | ¡ cT R, ie x 0 is too far from the receivers for them to capture non zero signal during the time interval r0, T s. and is thus bounded on R 3 by some constant M ¡ 0. Using this together with equations (A.23) and (A.24) inside equation (A.22), and assuming that λ ¤ 1 yields § § λL reg px 0 , λq ¡ ||W|| 2 R n p1 ¡ rpx 0 q 2 q § § ¤ λ ε ||W|| 2 R n pn ¡ 1q|λ log λ| λ logpM 1q, which shows the uniform convergence statement as well as the pointwise one (together with (A.20)).

Proof of Proposition 3.7. In all concerned mathematical objects, we highlight the N dependency with an exponent, i.e. W N , F N x 0 , etc. We use the exact same tools as in the previous proof, namely that we the following equality holds:

L N reg px 0 , λq ||W N || 2 R n λ ¢ 1 ¡ xF N x 0 , W N y 2 R n ||W N || 2 R n λ ||F N x 0 || 2 R n ¨ pn ¡ 1q log λ logpλ ||F N x 0 || 2 R n q. But we also have ||W N || 2
R n °q i1 °N k1 wpx i , t k q 2 , ||F N x 0 || 2 R n °q i1 °N k1 f R t k px i ¡ x 0 q 2 and xF N x 0 , W N y R n °q i1 °N k1 f R t k px i ¡ x 0 q wpx i , t k q. Since the time steps are equally spaced, we can study the limit N Ñ V of the above objects thanks to Riemann sums. When N Ñ V,

1 N ||W N || 2 R n ÝÑ q i1 » T 0 wpx i , tq 2 dt ||I w || 2 L 2 , (A.25) 1 N ||F N x 0 || 2 R n ÝÑ q i1 » T 0 f t px i ¡ x 0 q 2 dt ||I x 0 || 2 L 2 , (A.26) 1 N xW N , F N x 0 y R n ÝÑ q i1 » T 0 wpx i , tqf t px i ¡ x 0 qdt xI w , I x 0 y L 2 .
(A.27)

Assume that x 0 is such that ||I x 0 || L 2 $ 0, then because of equation (A.26), the quantity ||F N x 0 || R n is bounded from below by a constant C ¡ 0 for sufficiently large N (say C ||I x 0 || L 2 {2). From the three equations above, we then have the following convergence:

xF N x 0 , W N y 2

R n ||W N || 2 R n pλ ||F N x 0 || 2 R n q p 1 N xF N x 0 , W N y R n q 2 1 N ||W N || 2 R n p λ N 1 N ||F N x 0 || 2 R n q ÝÝÝÝÑ N ÑV
r V px 0 q.

(A.28)

Likewise, since n qN , when N Ñ V we have that pn ¡ 1q log λ N

1 N logpλ ||F x 0 || 2 R n q pNq ¡ 1q log λ N log N N 1 N log ¡ λ N 1 N ||F x 0 || 2 R n © ÝÝÝÝÑ N ÑV q log λ.
which, together with equation (A.28), shows the announced result. This finishes the proof.

3. 1 xx f 2 yy f 2 zz

 12 General solution to the wave equation Denote the 3D Laplace operator ∆ f 2 and the d'Alembert operator with the box symbol, l c ¡2 f 2 tt ¡ ∆ with constant wave speed c ¡ 0. Consider then the following initial value problem in the free space R 3

Figure 1 :

 1 Figure 1: Negative log marginal likelihood as a function of x 0 R 3 . Are only represented values of the negative log marginal likelihood that are below 2.035 ¢ 10 9 . There only remains thin spherical shells. Red crosses: sensor locations. Black cross: source position. The source is located at the intersection of spheres centered at the sensor locations.

  Assume that the correct speed c is known and plugged in k w , equations (3.32) and (3.33) then lead to the following L p error estimate between the target w and its approximant m: ||wp¤, tq ¡ mp¤, tq|| p ¤ |t| ||v 0 ¡ ṽ0 || p ||u 0 ¡ ũ0 || p C p c|t| ||∇pu 0 ¡ ũ0 q|| p , (3.34) where ũ0 and ṽ0 are defined in (3.29) and (3.30), and m is given in equation (3.28).

21

 21 

  (a) Test case #1, excerpt of captured signals. Dashed line: noiseless data. Solid line: noisy data. Test case #1: True u 0 (left column) vs WIGPR u 0 (right column). 15 sensors were used. The images correspond to the 3D functions evaluated at z 0.5.

Figure 2 :

 2 Figure 2: Visualization of signal and WIGPR results for the test case #1

(4. 5 )

 5 with σ 2 noise 0.45 2 0.2025. The value of 0.2 provided for ρ is a visual estimation of the length scale of u 0 based on Figure2b.

( 4 . 6 )Figure 3 :

 463 Figure 3: Box plots for the sensibility analysis, test case #1

  True u 0 vs WIGPR u 0 . The images correspond to the 3D solutions evaluated at z 0.5. True v 0 vs WIGPR v 0 . The images correspond to the 3D solutions evaluated at z 0.7.

Figure 4 :

 4 Figure 4: Test case #2: top and lateral view of the reconstructions of u 0 (Figure 4a) and v 0 (Figure 4b) provided by WIGPR, in comparison with u 0 and v 0 . Left columns: true IC. Right columns: WIGPR IC reconstructions. 20 sensors were used.

Figure 5 :Figure 6 :

 56 Figure 5: Test case #2, excerpt of captured signals. Dashed line: noiseless data. Solid line: noisy data.

e

  ir|h|xM T γ I ,γ h y dΩ I » S e ir|h|xγ I ,M γ h y dΩ I α |h| a, β |h| ¡ a. Finally, we have the Dirichlet integral

(A. 14 )

 14 Introduce now the functions kpr, r I q : » r I 0 k 0 v pr, sqds and K v pr, r I q : ps, s I qds I ds.(A.[START_REF] Duffy | Green's functions with applications[END_REF] 

f

  px 0 c|t|γ Rργ x , x 0 c|t I |γ I Rρ I γ x Iq ¢ kpx 0 Rργ x , x 0 Rρ I γ x Iq ¢ 9ρ 2 dρρ I2 dρ I dΩ x dΩ x I p4πq 2

  F pu ¡ mq, where p F stands for the orthogonal projection operator on F : Spanpkpx 1 , ¤q, ..., kpx n , ¤qq with reference to the inner product of H k . If in particular m 0, then m p F puq. Likewise, equation (2.2) amounts to kpx, ¤q P F upkpx, ¤qq.

	2.2.3 The RKHS point of view. The Kriging equations (2.1) and (2.2) can alterna-
	tively be viewed as orthogonal projections of u in a suitable Hilbert space. Given a positive
	semidefinite kernel k defined on a set D, one may build a Reproducing Kernel Hilbert Space
	(RKHS) of functions defined on D, which we denote by H k ([6], Theorem 3). The inner product of H k verifies the reproducing property [59]: xkpx, ¤q, kpx I , ¤qy H k kpx, x I q. One
	may then formulate the following regularized interpolation problem [21, 59]	
	inf vH k	||v|| H k s.t. vpx i q upx i q di t1, ..., nu.	(2.5)
	Then m in equation (2.1) is the unique solution of (2.5). One can also show [59] that
	equation (2.1) amounts to m m p Viewing the Kriging mean as an orthogonal projection over a finite
	dimensional deterministic space is reminiscent of Fourier series or Galerkin reconstruction
	approaches.		

  F t f t F t ,[START_REF] Duistermaat | Distributions[END_REF], equation(18.16) p. 297), understood as a continuous linear form over C 1 pR 3 q. Details on the definition of the convolution F t ¦v 0 are given in Section A.1, while 9 F t ¦ u 0 is effectively computed as9 F t ¦ u 0 f t pF t ¦ v 0 q.

	Explicitly, F t and 9 F t are defined by
	F t	σ c|t| 4πc 2 t	,	and
					, p. 164). It can be
	extended to all t R and is represented as follow ([16], p. 295)
		wpx, tq pF t ¦ v 0 qpxq p 9 F t ¦ u 0 qpxq,	dpx, tq R 3 ¢ R.	(3.2)
	pF t q tR is the Green's function of the wave equation ([15], p. 202). For fixed t, F t is a
	singular measure, meaning that it has no density with reference to the Lebesgue measure.

9

F t is F t 's "time derivative" (formally,

9 

  zq VarpV pzqq 0 as soon as pr ¡ c|t|q 2 ¡ R 2

which requires to differentiate k Ru u . In contrast, we used a blunt truncation for k Rv v . Strictly speaking, the sample paths of V 0 trunc pxq are not continuous and Proposition 3.1 cannot be used on this GP. However, as discussed in [28], Section 4.2.1, it is easily checked that for V 0 trunc pxq, all the computations leading to equation (3.6) still hold, and thus equation (3.19) also holds. We also observe that such compactly supported kernels can never be stationary as their sample paths are compactly supported. Using equation (3.19), one can indeed check that k wave v pz, v , ie V pzq 0 a.s. and likewise for k wave u : this is the expression of the strong Huygens principle on the kernels k wave v and k wave u

  2, Vu, we indicate relative L p reconstruction errors e p,rel defined below depending on the number of sensors used: e u p,rel ||u 0 ¡ ũ0 || p {||u 0 || p and e v p,rel ||v 0 ¡ ṽ0 || p {||v 0 || p .

Table 1 :

 1 Hyperparameter estimation and relative errors, test case #1

	sensors | x0 ¡ x ¦ 0 | 0.204 0.003 0.004 0.008 0.003 0.004 0.015 3 5 10 15 20 25 30 Ru 0.386 0.432 0.462 0.431 0.414 0.471 0.452 |ĉ ¡ c ¦ | 0.084 0.004 0.005 0.005 0.006 0.001 0.004	Target 0 0.25 0
	σ2 noise	0.917 0.879 0.93	0.99 0.361 0.988 0.377	0.2025
	ρ	0.02	0.02 0.025 0.02 0.035 0.024 0.032	0.05
	σ2	2.367 3.513 4.903 3.168 4.446 4.619 4.79 Unknown
	e u 1,rel e u 2,rel e u V,rel	1.275 0.157 0.128 0.168 0.11 0.103 0.248 1.056 0.095 0.082 0.124 0.088 0.064 0.213 1.037 0.132 0.128 0.198 0.136 0.101 0.321	0 0 0
	4.2 Test case for k wave u	k wave v

Table 2 )

 2 . For problem (P 2 ), the numerical indicators are better. For u 0 , Figures6a, 6c and 6eshow that relative error medians stagnate below 5% for N s ¥ 15. The corresponding IQR are around 2%. For v 0 (Figures6b, 6d and 6f), the L 1 , L 2 and L V relative error medians stagnate at 30%, 25% and 40% respectively. The corresponding IQR stagnate at 10%, 5% and 10% respectively.

	N sensors |x u 0 ¡ x u 0 ¦ | 0.163 0.144 0.013 0.024 0.023 0.033 0.015 3 5 10 15 20 25 30 Ru 0.4 0.274 0.384 0.309 0.352 0.286 0.313 |x v 0 ¡ x v 0 0.05 ¦ | 0.163 0.18 0.035 0.028 0.037 0.006 Rv 0.252 0.166 0.313 0.356 0.348 0.266 0.339 |ĉ ¡ c ¦ | 0.165 0.156 0.028 0.036 0.042 0.011 0.04	Target 0 0.25 0 0.15 0
	σ2 noise	0.0178 0.0184 0.0188 0.0161 0.0187 0.0145	0.0116	0.0081
	ρu	0.034	0.069	0.102	0.027	0.031	0.061	0.034	0.05
	σ2 u	4.649	4.472	4.575	2.493	0.678	3.272	2.541	Unknown
	ρv	0.057	0.027	0.044	0.053	0.085	0.022	0.012	0.02
	σ2 v	3.91	2.538	3.05	1.545	4.886	3.575	4.346	Unknown
	e u 1,rel e u 2,rel e u V,rel e v 1,rel e v 2,rel e v V,rel	2.414 1.276 0.732 2.865 1.492 1.083	1.676 1.053 0.608 2.796 1.812 1.608	0.243 0.174 0.136 1.315 0.694 0.817	0.311 0.223 0.174 1.42 0.616 0.763	0.358 0.228 0.231 1.51 0.736 0.845	0.315 0.261 0.212 0.645 0.284 0.635 2416.682 0.317 0.205 0.228 9.784 35.75	0 0 0 0 0 0

Table 2 :

 2 Hyperparameter estimation and relative errors, test case #2 25

  ¡ s 1 ¡ s 2 qdF t ps 1 qdF t Ips 2 q.Setting h x ¡ x I finishes the proof of Point piq. piiq : Without loss of generality we assume that c 1. The computation is carried out in the Fourier domain. Recall that F t and9 F t are tempered distributions whose Fourier transforms are given by ([START_REF] Duistermaat | Distributions[END_REF], equation (18.12) p. 294)FpF t ¦ F t Iqpξq FpF t qpξqFpF t Iqpξq sinpt|ξ|q sinpt I |ξ|q |ξ| 2 ¡ t I , b t t.We then compute the inverse Fourier transform of the quantity above. Let h R 3 . In spherical coordinates, noting the unit vectors γ h h{|h| and γ ξ{|ξ| ξ{r, we define f a by

			FpF t qpξq sinpct|ξ|q c|ξ|	and Fp 9 F t qpξq cospct|ξ|q.	(A.3)
	We then obtain that ([16], Theorem 14.33)	
						cospa|ξ|q ¡ cospb|ξ|q 2|ξ| 2	. (A.4)
	with a t f a phq	» » V R 3 e ixh,ξy cospa|ξ|q |ξ| 2 dξ cosparq » e ir|h|xγ,γ h y dΩdr. » V 0 » 2π 0	» π 0	e irxh,γy cosparq r 2 r 2 sin θdθdϕdr	(A.5)
		0	S		

  2 R n § § O λÑ0 pλ log λq. Now, let ε ¡ 0 and assume that ||F x 0 || 2 R n ¥ ε. We first deal with the first term in equation (3.24). Using the Sherman-Morrison formula ([43], Section 2.7.1), we may invert

		(A.20)
	pK reg x 0	λI n q explicitly:

  Thus the functionx 0 Þ ÝÑ ||F x 0 || 2 R n is zero outside of a compact set. It is obviously continuous on R 3

  Proof of Proposition 3.8. We have pF t ¦ v 0 qpxq t ³ S v 0 px ¡ c|t|γqdΩ{4π, where dΩ{4π is the normalized Lebesgue measure on the unit sphere S. Assume first that p r1, Vr. Jensen's inequality on the functiont Þ ÝÑ |t| p yields ||F t ¦ v 0 || p p t p » R 3 |pF t ¦ v 0 qpxq| p dx |t| p F t ¦ u 0 qpxq f t pF t ¦ u 0 qpxq f t ∇u 0 px ¡ c|t|γq dΩ 4π : I 1 pxq I 2 pxq.The functions I 1 and I 2 are defined in the equation above. We have || 9 F t ¦ u 0 || p ||I 1 I 2 || p ¤ ||I 1 || p ||I 2 || p . As in (A.29), ||I 1 || p ¤ ||u 0 || p . From Jensen's inequality, Next, we use Hölder's inequality in R 3 : |γ ¤∇u 0 | ¤ |∇u 0 | p ¢|γ| q with 1{p 1{q 1, where |v| p p|v 1 | p |v 2 | p |v 3 | p q 1{p and likewise for |v| q . Thus, ||I 2 || p p ¤ c p |t| p which yields equation (3.32). Finally, the case p V is trivial. Equation (3.34) is then the result of equations (3.32) and (3.33) applied to the function wpx, tq ¡ mpx, tq rF t ¦ pv 0 ¡ ṽ0 qspxq r 9 F t ¦ pu 0 ¡ ũ0 qspxq.

	which yields equation (3.32). Next,				
	p 9		»	S	£ t u 0 px ¡ c|t|γq dΩ 4π	» t	S »	u 0 px ¡ c|t|γq dΩ 4π
	||I 2 || p p |ct| p	»	R 3	§ § § § §	»	S	γ ¤ ∇u 0 px ¡ c|t|γq dΩ 4π	§ § § § § p	dx ¤ |ct| p	»	R 3	»	S	|γ ¤ ∇u 0 px ¡ c|t|γq| p dΩ 4π	dx.
	¤ c p |t| p		» »	R 3 S |γ| p » S q	|∇u 0 px ¡ c|t|γq| p p ¢ |γ| p q » R 3 |∇u 0 px ¡ c|t|γq| p p dx	dΩ 4π dΩ 4π c p |t| p dx	£ »	S	|γ| p q	dΩ 4π	||∇u 0 || p p .
			¤ |t| p ¤ » S ||v 0 || p » R 3 » S p dΩ |v 0 px ¡ c|t|γq| p dΩ 4π 4π |t| p ||v 0 || p p ,	» dx |t| p R 3 § § § § » S v 0 px ¡ c|t|γq dΩ 4π » S » R 3 |v 0 px ¡ c|t|γq| p dx dΩ § p § § § dx 4π (A.29)
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A Appendix

A.1 Convolution and tensor product with measures

This section follows [START_REF] Henderson | Characterization of the second order random fields subject to linear distributional pde constraints[END_REF], Section 2.2. Given a measure µ and a function f over R d , their convolution µ ¦ f is the following map (if well-defined):

If µ is an absolutely continuous measure whose density is some other function g (i.e.

µpdyq gpyqdy), then pµ ¦ f qpxq reduces to the usual function convolution pg ¦ f qpxq.

If µ and ν are two measures defined over D 1 R d 1 and D 2 R d 2 , their tensor product µν (i.e. the product measure) is the measure over D 1 ¢D 2 characterized by the following property:

for all continuous and compactly supported function f 1 . A more general measure theoretic definition of µ ν exists, but it is really equation (A.2) that we will use.

Finally, details on the definition of tensor product and convolution with continuous linear forms over C m pDq spaces (which are necessary for the abstract definition of 9 F t ¦ u 0 and p 9 F t 9 F t Iq ¦ k u ) are given in [START_REF] Henderson | Characterization of the second order random fields subject to linear distributional pde constraints[END_REF], Section 2.2.

A.2 Proofs

Proof of Proposition 3.2. piq : Assume for simplicity that c 1. Using the definition of the convolution against the measure F t F t I (see e.g. [START_REF] Treves | Topological Vector Spaces, Distributions and Kernels[END_REF], Exercise 26.1 p. 282),

But S is invariant under the change of variable S γ Þ ÝÑ ¡γ and thus for any continuous

k S px ¡ x I ¡ s 1 ¡ s 2 qdF t ps 1 qdF t Ips 2 q.

1 For this characterization to hold, µ and ν should be assumed Radon, see [START_REF] Henderson | Characterization of the second order random fields subject to linear distributional pde constraints[END_REF] for further details.