Optimal guaranteed estimation methods for the Cox - Ingersoll - Ross models - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Optimal guaranteed estimation methods for the Cox - Ingersoll - Ross models

Résumé

In this paper we study parameter estimation problems for the Cox-Ingersoll-Ross (CIR) processes. For the first time for such models sequential estimation procedures are proposed. In the non-asymptotic setting, the proposed sequential procedures provide the estimation with non-asymptotic fixed mean square accuracy. For the scalar parameter estimation problems non-asymptotic normality properties for the proposed estimators are established even in the cases when the classical non sequential maximum likelihood estimators can not be calculated. Moreover, the Laplace transformations for the mean observation durations are obtained. In the asymptotic setting, the limit forms for the mean observation durations are founded and it is shown, that the constructed sequential estimators uniformly converge in distribution to normal random variables. Then using the Local Asymptotic Normality (LAN) property it is obtained asymptotic sharp lower bound for the minimax risks in the class of all sequential procedures with the same mean observation duration and as consequence, it is established, that the proposed sequential procedures are optimal in the minimax sens in this class.
Fichier principal
Vignette du fichier
Ben-Ngo-Perg-12-01-2023.pdf (240.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03936795 , version 1 (12-01-2023)

Identifiants

  • HAL Id : hal-03936795 , version 1

Citer

Mohamed Ben Alaya, Tram Ngo, Serguei Pergamenchtchikov. Optimal guaranteed estimation methods for the Cox - Ingersoll - Ross models. 2023. ⟨hal-03936795⟩
100 Consultations
132 Téléchargements

Partager

More