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Abstract

In this paper we study parameter estimation problems for the Cox - Ingersoll - Ross (CIR) processes. For the first
time for such models sequential estimation procedures are proposed. In the non-asymptotic setting, the proposed se-
quential procedures provide the estimation with non-asymptotic fixed mean square accuracy. For the scalar parameter
estimation problems non-asymptotic normality properties for the proposed estimators are established even in the cases
when the classical non sequential maximum likelihood estimators can not be calculated. Moreover, the Laplace trans-
formations for the mean observation durations are obtained. In the asymptotic setting, the limit forms for the mean
observation durations are founded and it is shown, that the constructed sequential estimators uniformly converge in
distribution to normal random variables. Then using the Local Asymptotic Normality (LAN) property it is obtained
asymptotic sharp lower bound for the minimax risks in the class of all sequential procedures with the same mean
observation duration and as consequence, it is established, that the proposed sequential procedures are optimal in the
minimax sens in this class.
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1. Introduction

1.1. Motivations

In this paper we consider parameter estimation problems for the Cox-Ingersoll-Ross (CIR) processes defined
through the following stochastic differential equation

dXt = (a − bXt)dt +
√
σXtdWt, X0 = x > 0 , (1.1)

where a > 0, b ∈ R and σ > 0 are fixed parameters and (Wt)t≥0 is a standard Brownian motion. In all these
cases we assume that the diffusion parameter σ is known. Indeed, it can be founded explicitly through the quadratic
characteristic < X >t= σ

∫ t

0
Xsds. In this paper, we consider the estimation problems for the parameters a and b

on the basis of the observations (Xt)t≥0. This model was introduced in [6] as a modification of the well-known the
Vasicek model to describe the dynamics of the interest rates for the bond markets (see also in [24] and the references
therein). Moreover, in [10] such processes were used to introduce some class of the stochastic volatility financial stock
markets, for which later optimal consumption - investment and hedging methods were developed (see, for example, in
[4, 28]). In addition, recently, as it turned out in [31] discrete versions of such models play a key role in the statistical
epidemic analysis. Therefore, for their implementation in practice, one needs to estimate the unknown parameters
with a good admissible accuracy in the non-asymptotic setting. As to the asymptotic setting, recently in [1, 2] the
maximum likelihood estimators are studied for this model in the ergodic and non-ergodic cases. Unfortunately, for
the model of type (1.1) it is not possible to resolve the estimation problem in the framework of the classical non-
asymptotic estimation approach since the usual maximum likelihood estimator is a nonlinear function of observations
of complex nonlinear form. As is shown in [5] to keep the optimality properties for the financial strategies in the
presence of unknown parameters in the market models there is only one way to use sequential analysis methods. It
should be noted, that one of the main properties of sequential estimators is that they provide non-asymptotic fixed
accuracy, in contrast to classical maximum likelihood estimators. It is this property that plays a key role in the
analysis of the optimality of strategies in stochastic volatility financial markets since it allows one to analyse the error
in the deviation of objective functions from their optimal values when unknown parameters are replaced with their
sequential estimators in strategies. Firstly, estimators having the non-asymptotic fixed accuracy were proposed for
the scalar parameter estimation problems in [26, 29] for the model in continuous time and in [3] for the processes
in discrete time in the non-asymptotic setting and in [23] in the asymptotic one. Later, such sequential procedures
were called guaranteed (see, for example, in [18] and the references therein). For the multidimensional parameter,
the sequential fixed accuracy estimation methods were developed in [13, 14, 19] for the observations in discrete
and continuous time respectively. Moreover, as is shown in [21] only sequential procedure can provide guaranteed
estimation property in the non-asymptotic setting for statistical model with dependent observations. So, the main goal
of this paper is to develop guaranteed estimation methods for the coefficients a and b on the basis of the observations
(Xt)t≥0 of the process (1.1).

1.2. Basic tools

To estimate the parameters of the process (1.1) we develop fixed accuracy estimation methods through the sequen-
tial analysis approach firstly proposed in [26, p. 244] and [29] for the scalar Ornstein - Uhlenbeck process. The main
idea is to replace the observation duration in the maximum likelihood estimation (MLE) with a special stopping time
to transform the random denominator in MLE into a non-random constant. It turned out that the estimate thus obtained
possesses very nice non-asymptotic properties, namely it is unbiased and is Gaussian with a known variance which
presents mean square estimation accuracy. More precisely, for the parameter estimation problem for the Ornstein -
Uhlenbeck process

dXt = θXtdt + dWt (1.2)

the Maximum Likelihood Estimator (MLE) for the parameter θ defined as

θ̂T =

∫ T

0
XsdXs∫ T

0
X2

s ds
,

2



is non-linear function of the observations (Xt)0≤t≤T and it is not possible to study its properties in the non-asymptotic
setting, i.e. for any fixed T > 0. In the sequential analysis setting we can transform the random denominator into
non-random fixed threshold replacing the observation duration T with the stopping time defied as

τ∗H = inf
{

t ≥ 0 :
∫ t

0
X2

s ds ≥ H
}
, (1.3)

where H > 0 is some fixed non random arbitrary constant. Using the properties of the stochastic integrals one can
check directly, that θ̂τ∗H is N(θ,H−1) Gaussian random variable for any H > 0. This means, that this sequential
estimator guarantees any mean square non-asymptotic accuracy by choosing the level H > 0. It should be noted,
that this simple way can be used only for the scalar parameter estimation problem. In the case when one has to
estimate a multidimensional parameter, as in the process (1.1) with the unknown parameters a and b, one should use
the two-step estimation method developed in [8, 13, 14, 16] for general stochastic processes in discrete and continuous
time. Later, for the proposed sequential estimation methods asymptotic properties, as H → ∞, were studied (see, for
example, in [15–17, 30]). Moreover, truncated versions of developed sequential estimators were proposed in [19, 20].
Unfortunately, there are still no results on a guaranteed estimation for stochastic differential equations with degenerate
diffusion coefficients.

1.3. Main contributions
In this paper for the first time, the sequential guaranteed methods were developed for the models (1.1) with

the degenerated diffusion coefficient. It turned out, that the scalar sequential estimators for the parameters a and
b are unbiased and have a non-asymptotic Gaussian distribution even in the case when the classical non-sequential
maximal likelihood estimators do not exist. For the vector estimation problem the constructed sequential estimators
have a guaranteed non-asymptotic mean square estimation accuracy as well. Furthermore, in asymptotic setting
through the LAN property and lower bound methods for quadratic risks it is shown, that the proposed sequential
estimators are optimal in the minimax sense. It should be emphasized that also for the first time sharp lower bounds
for stochastic differential equations are obtained in the class of all sequential procedures with an arbitrary stopping
time not exceeding in mean a given fixed value tending to infinity. As a consequence, the optimality properties for
guaranteed estimates are also established in this class. This is an essential new property since usually optimality
properties for guaranteed sequential procedures for continuous time statistical models are obtained only in the class
of sequential procedures having the same rule determining the observation duration. For example, for the model (1.2)
in [26] it is shown that the sequential maximum likelihood estimator θ̂τ∗H is optimal only in the class of sequential
estimators in which the observation duration defined by the stopping time (1.3).

1.4. Organisation of the paper
In Section 2 we develop the scalar sequential estimation methods for the model (1.1). In Section 3 we develop the

two step sequential estimation method for the vector θ = (a, b)> in the model (1.1). In Section 5 we present the results
on LAN properties for the process (1.1). In Section 6 we find conditions on the parameters of the process (1.1) which
provide the optimality properties in minimax sense for the proposed sequential procedures. Appendix contains all the
auxiliary technical results used in the proofs.

2. Scalar sequential procedures

First we consider the the estimation problem for the parameter b in the process (1.1) in the case, when a is known, i.e.
θ = b. Note, that in this case the Maximum Likelihood Estimator (MLE) (see, for example, in [1]) is defined as

θ̂T =
aT − XT + x∫ T

0
Xsds

. (2.1)

In this case this estimator is non a liner function of observations and, therefore, it is not possible to study its non
asymptotic properties, i.e. for fixed duration of the observation 0 < T < ∞. To overcome this difficulty we use the
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approach based on the sequential analysis methods and proposed in [29] for the scalar diffusion process. To this end,
we define the sequential procedure δ∗H = (τ∗H , θ

∗
H) as

τ∗H = inf
{

t :
∫ t

0
Xsds ≥ H

}
and θ∗H =

aτ∗H − Xτ∗H
+ x

H
, (2.2)

where H > 0 is a fixed threshold, which will be clarified later.

Theorem 1. For any a > 0, θ ∈ R and any H > 0 the sequential procedure (2.2) possesses the following properties:

1) Pθ(τ
∗
H < ∞) = 1 ;

2) the sequential estimator θ∗H is normally distributed with parameters

Eθθ
∗

H = θ and Eθ(θ
∗

H − θ)
2 =

σ

H
, (2.3)

where Eθ is the expectation with respect to the distribution Pθ of the process (1.1) with the parameters θ = (a, b)>.

Proof. First note, that Proposition 4 implies the first property, i.e. for any H > 0 the stopping time τ∗H < ∞ Pθ - a.s.
Moreover, from (1.1) we obtain, that

θ∗H =
1
H

(
aτ∗H −

∫ τ∗H

0
(a − θXs)ds −

∫ τ∗H

0

√
σXsdWs

)
= θ −

√
σ

H

∫ τ∗H

0

√
XsdWs .

Then, in view of Lemma 17.4 from [26], the normalized stochastic integral H−1/2
∫ τ∗H

0

√
XsdWs is a N(0, 1) Gaussian

random variable.
Now using Lemma 3, we can calculate the Laplace transformation for the mean observation time of the sequential
procedure δ∗H .

Proposition 1. For any µ > 0 the Laplace transformation of the expected stopping time m(H) = Eθτ
∗
H defined in (2.2)

is represented as

m̂(µ) =

∫ +∞

0
e−µz m(z) dz =

1
µ

∫ +∞

0
Λ(t, µ)dt , (2.4)

where the functions Λ(t, µ) are given in (A.2).

Proof. First of all, note, that for any z > 0

m(z) = Eθτ
∗

z =

∫ +∞

0
Pθ

(
τ∗z > t

)
dt =

∫ +∞

0
Pθ

(∫ t

0
Xudu < z

)
dt . (2.5)

Moreover, note that

Λ(t, µ) = Eθ e−µ
∫ t

0
Xsds

=

∫ 1

0
Pθ

(
e−µ

∫ t

0
Xsds

> y
)

dy = µ

∫ +∞

0
e−µz Pθ

(∫ t

0
Xsds < z

)
dz

and from (2.5) it follows that ∫ +∞

0
Eθ e−µ

∫ t

0
Xsdsdt = µ

∫ +∞

0
e−µz m(z)dz .

This completes the proof.
Now we study the asymptotic properties, as H → ∞, of the observation time τ∗H .
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Theorem 2. For any a > σ/2, any compact set Θ ⊂]0,+∞[ and any r > 0

lim
H→∞

sup
θ∈Θ

Eθ

∣∣∣∣∣∣τ∗HH − 1
I0(θ)

∣∣∣∣∣∣r = 0 , (2.6)

where I0(θ) = a/θ.

Proof. First, setting DT =
∫ T

0
(Xs − I0(θ))ds, we obtain from (1.1), that for any T > 0,

DT =
x − XT

θ
+

√
σ

θ

∫ T

0

√
XsdWs . (2.7)

Now, by [25, Lemma 4.12] and the upper bound (A.6), we have for any m > 1 and θ ∈ Θ,

Eθ D2m
T ≤cm

 x2m + EθX
2m
T

θ2m +

( √
σ

θ

)2m

Eθ

(∫ T

0

√
XsdWs

)2m
≤cm (1 + T m) ,

(2.8)

where cm is some positive constant not depending on θ and T that can change from line to line. Now, for any
T > I−1

0 (θ)H, we have

Pθ

(
τ∗H > T

)
= Pθ

(∫ T

0
Xsds < H

)
= Pθ

(
I0(θ)T + DT < H

)
≤ Pθ(|DT | > I0(θ)T − H) ≤

E|DT |
2m

(I0(θ)T − H)2m ≤
cm(1 + T m)

(T − I−1
0 (θ)H)2m

(2.9)

and for any T < I−1
0 (θ)H,

Pθ(τ
∗

H < T ) =Pθ

(∫ T

0
Xsds > H

)
= Pθ(I0(θ)T + DT > H)

≤ Pθ(|DT | > H − I0(θ)T ) ≤
Eθ|DT |

2m

(H − I0(θ)T )2m ≤
cm(1 + T m)

(I−1
0 (θ)H − T )2m

.

Then, for any 0 < ε < infθ∈Θ I−1
0 (θ) setting T1 = (I−1

0 (θ) + ε)H and T2 = (I−1
0 (θ) − ε)H we obtain, that for θ ∈ Θ

Pθ

(∣∣∣τ∗H
H
− I−1

0 (θ)
∣∣∣ > ε) = Pθ

(
τ∗H > T1

)
+ Pθ

(
τ∗H < T2

)
≤ cm

(1 + Hm)
(εH)2m ,

i.e. for any ε > 0

lim
H→∞

sup
θ∈Θ

Pθ

(∣∣∣∣∣∣τ∗HH − I−1
0 (θ)

∣∣∣∣∣∣ > ε
)

= 0 .

Now, for any H > 1, r > 0, usintg the upper bound (2.9) with m > 2r, we can obtain, that

Eθ(τ
∗

H)r = r
∫ ∞

0
tr−1Pθ(τ

∗

H > t)dt ≤ r
∫ I−1

0 (θ)H+H3/4

0
tr−1dt

+ cm

∫ ∞

I−1
0 (θ)H+H3/4

tm+r−1

(t − I−1
0 (θ)H)2m

dt = (I−1
0 (θ)H + H3/4)r + cmJH ,
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where for some positive constant cm

JH =

∫ ∞

H3/4

(s + I−1
0 (θ)H)m+r−1

s2m ds ≤ cm

(∫ ∞

H3/4

1
sm−r+1 ds + Hm+r−1

∫ ∞

H3/4

1
s2m ds

)

≤ cm

(
1

H3(m−r)/4 +
1

Hm/2−r+1/4

)
→ 0 as H → ∞ .

From this, we can conclude, that for any r > 0

sup
H>1

sup
θ∈Θ

Eθ

(
τ∗H
H

)r

< ∞ ,

i.e. for any r > 0 the family ((τ∗H/H)r)H>1 is uniformly integrable and we obtain (2.6), hence Theorem 2.
It should be noted, that Theorem 1 and Theorem 2 immediately imply the following asymptotic result.

Corollary 1. For any a > σ/2 and any compact set Θ ⊂]0,+∞[

lim
H→∞

sup
θ∈Θ

Eθ

(
ΥH(θ)(θ∗H − θ)

)2
= 1 , (2.10)

where ΥH(θ) =
√

I(θ)Eθτ
∗
H and I(θ) = σ−1I0(θ).

Now we consider the estimation problem for the parameter a in (1.1) when the coefficient b is known, i.e. θ = a. In
this case the Maximum Likelihood estimator is given as

θ̂T =
bT +

∫ T

0
X−1

t dXt∫ T

0
X−1

t dt
. (2.11)

using the same way as in (2.2) we defined the sequential estimation procedure δ∗H = (τ∗H , θ
∗
H) with H > 0 for the

parameter θ as

τ∗H = inf
(
t :

∫ t

0
X−1

s ds ≥ H
)

and θ∗H =
bτ∗H +

∫ τ∗H
0

X−1
s dXs

H
. (2.12)

Firs we study non asymptotic properties properties of this procedures, i.e. for any fixed threshold H > 0.

Theorem 3. For any b ≥ 0, θ > 0 and for any fixed H > 0 the sequential procedure (2.12) possesses the following
properties:

1) Pθ(τ
∗
H < ∞) = 1 ;

2) the sequential estimator θ∗H is normally distributed with parameters

Eθθ
∗

H = θ and Eθ(θ
∗

H − θ)
2 =

σ

H
. (2.13)

Proof. Proposition 5 implies directly the firs point. Moreover, from (1.1) it follwows that

θ∗H = θ +

√
σ

H

∫ τ∗H

0

1√
Xs

dWs .

Therefore, in view of Lemma 17.4 from [26], the stochastic integral H−1/2
∫ τ∗H

0
X−1/2

s dWs is the N(0, 1) Gaussian
distributed and we obtain our results.
Now, similarly to Proposition 1 and using Lemma 4 we get the following result.
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Proposition 2. For any µ > 0 the Laplace transformation of the expected stopping time m(H) = Eθτ
∗
H defined in

(2.12) is represented as

m̂(µ) =

∫ +∞

0
e−µz m(z) dz =

1
µ

∫ +∞

0
Υ(t, µ)dt , (2.14)

where the function Υ(t, µ) is given in (A.4).

Now we study the asymptotic, as H → ∞ of the sequential procedure (2.12).

Theorem 4. For any b > 0, any compact set Θ ⊂]σ/2,+∞[ and for any r > 0

lim
H→∞

sup
θ∈Θ

Eθ

∣∣∣∣∣∣τ∗HH − I−1
0 (θ)

∣∣∣∣∣∣r = 0 , (2.15)

where I0(θ) = 2b/(2θ − σ).

Proof. From (1.1), by Itô’s formula, we have for any T > 0,

ln XT = ln x +
2θ − σ

2

∫ T

0

(
X−1

t − I0(θ)
)

dt +
√
σ

∫ T

0
X−1/2

t dWt . (2.16)

From here, setting DT =
∫ T

0

(
X−1

t − I0(θ)
)

dt, we get

DT =
2(ln XT − ln x)

2θ − σ
−

2
√
σ

2θ − σ

∫ T

0
X−1/2

t dWt . (2.17)

Now we can deduce, that there exists some constant c > 0, not depending on θ and T that can change from line to
line, such, that for any θ ∈ Θ

Eθ D2
T ≤ c

(
(ln x)2 + Eθ(ln XT )2 +

∫ T

0
EθX

−1
t dt

)
.

Now, taking into account here, that for any ε > 0

sup
x>0

| ln x|
xε + x−ε

< ∞ , (2.18)

we can conclude through (A.6) that there exists some constant c > 0 such that for any T > 0

sup
θ∈Θ

Eθ D2
T ≤ c(1 + T ) . (2.19)

Now, from here, we get, that for any θ ∈ Θ and for T > I−1
0 (θ)H, the probability

Pθ(τ
∗

H > T ) = Pθ

(∫ T

0
X−1

s ds < H
)

= Pθ

(
I0(θ)T + DT < H

)
≤ Pθ

(
|DT | > I0(θ)T − H

)
≤

Eθ D2
T

(I0(θ)T − H)2 ≤
c(1 + T )

(T − I−1
0 (θ)H)2

(2.20)

and for T < I−1
0 (θ)H,

Pθ

(
τ∗H < T

)
= Pθ

(∫ T

0
X−1

s ds > H
)

= Pθ

(
I0(θ)T + DT > H

)
≤ Pθ

(
|DT | > H − I0(θ)T

)
≤

Eθ D2
T

(H − I0(θ)T )2 ≤
c(1 + T )

(I−1
0 (θ)H − T )2

.
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Therefore, setting here T1 = (I−1
0 (θ) + ε)H and T2 = (I−1

0 (θ) − ε)H, we get, that for any 0 < ε < infθ∈Θ I−1
0 (θ) ε > 0

and any θ ∈ Θ

Pθ

(∣∣∣τ∗H
H
− I−1

0 (θ)
∣∣∣ > ε) = Pθ

(
τ∗H > T1

)
+ Pθ

(
τ∗H < T2

)
≤

c (1 + H)
(εH)2 ,

i.e. for any ε > 0

lim
H→∞

sup
θ∈Θ

Pθ

(∣∣∣τ∗H
H
− I−1

0 (θ)
∣∣∣ > ε) = 0 . (2.21)

Now we have to show, that for any r > 0

sup
H>1

sup
θ∈Θ

Eθ

(
τ∗H
H

)r

< ∞ . (2.22)

To this end, note, that

Pθ(τ
∗

H > t) = Pθ

(∫ t

0
X−1

s ds < H
)
≤ Pθ

(∫ t

0
φ(Xs)ds < H

)
, (2.23)

where φ(x) = (1 + x)−1 ≤ 1. Now one needs to use the deviations in the ergodic theorem for the process (1.1). To this
end, we set

∆t(φ) =

∫ t

0

(
φ(Xs) −mθ(φ)

)
ds and mθ(φ) =

∫
R+

φ(x) qθ(x)dx , (2.24)

where
qθ(z) =

βα

Γ(α)
zα−1 e−βz 1{z≥0} , α =

2θ
σ

and β =
2b
σ
. (2.25)

Here 1A is the indicator of the set A. Taking into account here, that α > 1 for θ > σ/2, we obtain that

mθ(φ) >
∫ 2

1

1
1 + x2 qθ(x)dx >

βα

5Γ(α)
e−2β ,

i.e. for any compact set Θ ⊂]σ/2,+∞[ we get m∗ = infθ∈Θ mθ(φ) > 0. Therefore, for t > H/m∗ through the
Chebyshev inequality the last probability in (2.23) can be estimated as

Pθ

(∫ t

0
φ(Xs)ds < H

)
= Pθ

(
tmθ(φ) − H < −∆t(φ)

)
≤ Pθ

(
|∆t(φ)| > tm∗ − H

)
≤

Eθ∆
2q
t (φ)(

tm∗ − H
)2q .

Using here the concentration inequality (4.2), we obtain, that for any q > 1 and t > 1

Pθ(τ
∗

H > t) ≤
cq tq

(tm∗ − H)2q .

Therefore, for any r > 0, θ ∈ Θ and H > 1 using this upper bound for q > 2r, we have

Eθ(τ
∗

H)r = r
∫ ∞

0
tr−1Pθ(τ

∗

H > t)dt ≤ r
∫ H/m

∗
+H3/4

0
tr−1dt

+ cq

∫ ∞

H/m
∗
+H3/4

tq+r−1

(t − H/m∗)2q dt =
(
H/m∗ + H3/4

)r

+ cq

∫ ∞

H3/4

(s + H/m∗)q+r−1

s2m ds ≤ (H/m∗ + H3/4)r +
cq

H3(q−r)/4 +
cq

Hq/2−r+1/4 .

This bound yields immediately, the (A.7). Therefore, the family (τ∗H/H)r
H≥1 is uniformly integrable and the comver-

gence (2.21) implies the property (2.15).
Now the last property in (2.13) implies the following result.
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Corollary 2. For any b > 0, any compact set Θ ⊂]σ/2,+∞[

lim
H→∞

sup
θ∈Θ

Eθ

(
ΥH(θ)(θ∗H − θ)

)2
= 1 , (2.26)

where ΥH(θ) =
√

I(θ)Eθτ
∗
H and I(θ) = σ−1I0(θ).

Remark 1. It should be noted, that in view of Proposition 4 from [2] in the case when a < σ/2 in the model (1.1) the
stochastic integral

∫ t

0
X−1

s ds is not defined for any fixed non random t > 0. Therefore, the non sequential MLE (2.11)
can not be calculated for this case, but in view of Theorem 3 the sequential procedure (2.12) is well defined for any
a > 0.

3. Multidimensional sequential estimation method

In this section we consuder the estimation problem for the two dimension parameter θ = (a, b)>. To this end we
rewrite the process (1.1) as

dXt = g>t θdt +
√
σXtdWt , (3.1)

where gt =
(
1 , −Xt

)>. In this section we assume, that b > 0 and a > σ/2. Then, in view of the results from [1] the
random matrix

Gt =

∫ t

0
X−1

s gsg
>

s ds =


∫ t

0
X−1

s ds −t

−t
∫ t

0
Xsds

 (3.2)

possesses the following asymptotic property

lim
t→∞

1
t
Gt = F =

 f1 −1

−1 f2

 Pθ − a.s. , (3.3)

where f1 = 2b/(2a − σ) and f2 = a/b. It should be noted, that the matrix F is positive defined. To construct the
fixed accuracy estimator for the vector θ we use the two-step sequential fixed accuracy estimation method developed
in [14, 16] for multidimensional parameter estimation problems under scalar observations in continuous time. To this
end, we fixe a non random sequence of non-decreasing positive numbers (κn)n≥1 for which

ρ =
∑
n≥1

1
κn
< ∞ . (3.4)

Now for any z > 0 we set

tz = inf
{

t ≥ 0 :
∫ t

0
X−1

s |gs|
2ds ≥ z

}
, (3.5)

where inf{∅} = +∞ and |x| is the usual euclidean norm of the vector x = (x1, x2), i.e. |x|2 = x2
1 + x2

2. In the sequel we
denote by tn = tκn

. Now on the set {tn < +∞} we defined the sequential MLE as

θ̂tn
= G+

tn

∫ tn

0
X−1

s gsdXs (3.6)

and the matrix G+ = G−1 if the inverse matrix G−1 exists and G+ = 0 otherwise. So, on the first step we constructed
the sequence of the sequential procedures

(
δn = (tn, θ̂tn

)
)

n≥1
. Now on the second step, using these procedures we will

construct a sequential aggregation estimation procedure which will be defined as weighted sum of the estimators (3.6).
To this end, first we set the random weight coefficient as

bn =
1

|G−1
tn
| κn

1{λmin(Gtn
)>0} , (3.7)
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where |G| is the euclidean norm of the matrix G, i.e. |G|2 = tr GG> and λmin(G) is the minimal eigenvalue of the matrix
G, i.e.

λmin(G) = min
z∈R2,z,0

z>Gz
|z|2

.

Now using these coefficients, we define the stopping time as

υ∗H = inf

k ≥ 1 :
k∑

n=1

b2
n ≥ H

 , (3.8)

where inf{∅} = +∞ and H > 0 is a positive non random threshold which will define the non-asymptotic mean square
estimation accuracy as for the procedures (2.2) and (2.12). Now on the set {υ∗H < +∞} we define the sequential
estimator as

θ∗H =


υ∗H∑
n=1

b2
n


−1 υ∗H∑

n=1

b2
n θ̂tn

. (3.9)

So, we obtain agregated two-step sequential procedure

δ∗H =
(
τ∗H , θ

∗

H

)
and τ∗H = tυ∗H . (3.10)

First, we study this procedure in non-asymptotic setting, i.e. for any fixed H > 0.

Theorem 5. For any b > 0 and a > σ/2 and for any H > 0 the procedure (3.10) has the following properties

τ∗H < +∞ Pθ − a.s. (3.11)

and
Eθ |θ

∗

H − θ|
2 ≤ ρ

σ

H
, (3.12)

where the coefficient ρ is defined in (3.4).

Proof. Note, that the stopping time (3.5) can be rewritten as

tn = inf
{
t ≥ 0 : tr Gt ≥ κn

}
. (3.13)

Therefore, the property (3.3) implies immediately, that tn < ∞ a.s. for any n ≥ 1 and

lim
n→∞

tn

κn
=

1
trF

=
(2a − σ)b

2a2 + 2b2 − aσ
Pθ − a.s. (3.14)

Moreover, from this and the definition (3.7) it follows, that

lim
n→∞

bn = b∗ Pθ − a.s. , (3.15)

where

b∗ =
1

|F−1| trF
=

(
a
κb

+
2b
σ

)−1 (
a2

b2 + 2 +
4b2

σ2 κ2
)−1/2

> 0 and κ =
σ

2a − σ
. (3.16)

i.e.
∑

n≥1 b2
n = +∞ and, therefore, the stopping time (3.8) is finite, i.e. υ∗H < ∞ Pθ a.s. for any H > 0 which implies

immediately the property (3.11). Now we study the estimation accuracy for the procedure (3.10). To this end note,
that on the set {det Gn > 0} the sequential MLE (3.6) can be represented as

θ̂tn
= G−1

tn

∫ tn

0
X−1

s gsdXs = θ +
√
σG−1

tn
ηtn

and ηtn
=

∫ tn

0
X−1/2

s gsdWs . (3.17)

10



It should be noted here, that the definition (3.5) and the properties of the stochastic integrals yield

Eθ |ηtn
|2 = Eθ

∫ tn

0
X−1

s |gs|
2ds = κn . (3.18)

Furthermore, in view of (3.17) we can represent the estimator (3.9) in the following form

θ∗H =

∑υ∗H
n=1 b2

n θ̂tn∑υ∗H
n=1 b2

n

= θ +
√
σ

∑υ∗H
n=1 bnξn∑υ∗H

n=1 b2
n

and ξn = bnG−1
tn
ηtn

. (3.19)

Taking into account here the definition (3.7) and the the property (3.18), we get, that

Eθ |ξn|
2 ≤

1
κ2

n

Eθ |ηtn
|2 =

1
κn
.

Finally, from here through the Cauchy - Schwarz - Bunyakovsky inequality and the definition (3.8), we find

Eθ

∣∣∣θ∗H − θ∣∣∣2 ≤ σEθ

∑υ∗H
n=1 |ξn|

2∑υ∗H
n=1 b2

n

≤ σ
1
H

∑
n≥1

Eθ |ξn|
2 ≤ σ

1
H

∑
n≥1

1
κn

= ρ
σ

H
.

This implies Theorem 5.
Now, to study asymptotic properties for the sequential procedure (3.10) we chose the sequence (κn)n≥1 as

κn =

 H , for n ≤ n∗H ;

κ∗n , for n > n∗H ,
(3.20)

where n∗H = LH H and LH ≥ 1 is slowly increasing function, i.e.

lim
H→∞

LH = +∞ and lim
H→∞

LH

Hδ
= 0 for any δ > 0 . (3.21)

Moreover, (κ∗n)n≥1 is a increasing sequence such, that for all n it is bounded from below as κ∗n ≥ n and for some µ > 1
and 0 < % < 1,

lim sup
n→∞

n−µ κ∗n < ∞ and lim sup
n→∞

n−%
n∑

k=1

1√
κ∗k

< ∞ . (3.22)

For example, we can take n∗H = H ln H and κ∗n = nµ for some µ > 1.

Theorem 6. For any compact set Θ ⊂]σ/2,+∞[×]0,+∞[ for the duration time in the sequential procedure (3.10)
defined through the sequence (3.20) - (3.22) for any r > 0 the following limit property holds true

lim
H→∞

sup
θ∈Θ

Eθ

∣∣∣∣∣∣τ∗HH − 1
trF

∣∣∣∣∣∣r = 0 , (3.23)

where the matrix F is defined in (3.3).

Proof. First of all, we prove that for any ε > 0,

lim
H→∞

sup
θ∈Θ

Pθ

(∣∣∣τ∗H
H
−

1
trF

∣∣∣ > ε) = 0. (3.24)

To do so, we see that

Pθ

(∣∣∣τ∗H
H
−

1
trF

∣∣∣ > ε) = Pθ

(∣∣∣τ∗H
H
−

1
trF

∣∣∣ > ε, υ∗H ≤ n∗H

)
+ Pθ

(∣∣∣τ∗H
H
−

1
trF

∣∣∣ > ε, υ∗H > n∗H

)
11



≤ Pθ

(∣∣∣ tH

H
−

1
trF

∣∣∣ > ε) + Pθ

(
υ∗H > n∗H

)
, (3.25)

where tH = inf
{
t ≥ 0 :

∫ t

0
X−1

s |gs|
2ds ≥ H

}
. Considering the first probability in this inequality, we have

Pθ

(∣∣∣ tH

H
−

1
trF

∣∣∣ > ε) = Pθ

(
tH > T1(H)

)
+ Pθ

(
tH < T2(H)

)
,

where T1(H) = ((trF)−1 + ε)H, T2(H) = ((trF)−1 − ε)H and 0 < ε < (trF)−1. On the one hand, we have

Pθ

(
tH > T1(H)

)
= Pθ

(
tr

(
GT1(H)

T1(H)
− F

)
< −

ε(trF)2

1 + εtrF

)
≤ Pθ

(∣∣∣tr (
GT1(H)

T1(H)
− F

) ∣∣∣ > ε∗)
where ε∗ = infθ∈Θ ε(trF)2/(1 + εtrF). Using here the definition of the matrix F in (3.3), we get, that

Pθ

(
tH > T1(H)

)
≤ Pθ

(∣∣∣ ∫ T1(H)

0

(
X−1

s − f1
)

ds
∣∣∣ > T1(H)ε∗/2

)
+ Pθ

(∣∣∣ ∫ T1(H)

0

(
Xs − f2

)
ds

∣∣∣ > T1(H)ε∗/2
)
.

Now the upper bounds (2.9) and (2.20) implies directly lim
H→∞

sup
θ∈Θ

Pθ

(
tH > T1(H)

)
= 0. Similarly, we can deduce, that

lim
H→∞

sup
θ∈Θ

Pθ

(
tH < T2(H)

)
= 0. Therefore,

lim
H→∞

sup
θ∈Θ

Pθ

(∣∣∣ tH

H
−

1
trF

∣∣∣ > ε) = 0 . (3.26)

For the last probability in (3.25), note that the property (3.21) and Lemma 8 implies directly, that for any r > 1

lim
H→∞

Hr sup
θ∈Θ

Pθ

(
υ∗H > n∗H

)
= 0 . (3.27)

From (3.26) and (3.27), we obtain (3.24). Now, one needs to show, that for any r > 0

lim sup
H→∞

sup
θ∈Θ

Eθ

(τ∗H)r

Hr < +∞ . (3.28)

To do this, note, that
Eθ (τ∗H)r ≤ Eθ tr

H + Eθ (τ∗H)r 1{υ∗H>n∗H }
. (3.29)

Now, to estimate the first expectation we set

M(H) = γ−1
θ

H + H3/4 and γθ = mθ(φ) +
a
b
, (3.30)

where the term mθ(φ) is given in (2.24) and φ(x) = (1 + x)−1. Now note, that

tr Gt ≥

∫ t

0
φ(Xs)ds +

∫ t

0
Xsds = γθt + ∆t(φ) + Dt ,

where Dt =
∫ t

0
(Xs − a/b)ds and ∆t(φ) is defined in (2.24). So,

Eθ tr
H = r

∫ ∞

0
tr−1Pθ(tH > t) dt = r

∫ ∞

0
tr−1Pθ(tr Gt < H)dt

≤M(H)r + r
∫ ∞

M(H)
tr−1Pθ

(
|∆t(φ)| + |Dt | > γθt − H

)
dt .

12



Using here the upper bounds (2.8) and (4.2) with q > 2r, we obtain that for some positive constant cq and for H > 1

Eθ tr
H ≤ M(H)r + cq

∫ ∞

M(H)

tq+r−1

(t − γ−1
θ H)2q

dt ≤ M(H)r + cq

∫ ∞

H3/4

xq+r−1 + Hq+r−1

x2q dx

= M(H)r + cq
1

H3(q−r)/4 + cq
1

Hq/2−r+1/4 .

This implies directly, that for any r > 0

sup
H≥1

sup
θ∈Θ

Eθtr
H

Hr < ∞ . (3.31)

Moreover, to study the last expectation in (3.29) note, that

Eθ (τ∗H)r 1{υ∗H>n∗H }
=

∑
n≥n∗H

Eθ tr
n+11{υ∗H=n+1} ≤

∑
n≥n∗H

√
Eθ t2r

n+1

√
Pθ

(
υ∗H > n

)
.

Using here the bound (3.31) and the first condition in (3.22) in view of Lemma 8 we obtain, that for any q > 1 and
sufficiently large H, for which LH > u∗

sup
θ∈Θ

Eθ (τ∗H)r 1{υ∗H>n∗H }
≤ c

∑
n≥n∗H

nrµ Lq
H Hq/2 + n%q

(n − u∗H)q . (3.32)

Note here, that for any 0 < B < q − 1∑
n≥n∗H

nB

(n − u∗H)q ≤ c
(

1
Hq−B−1(LH − u∗)q−B−1 +

1
Hq−B−1(LH − u∗)q−1

)
.

Therefore, choosing in (3.32) q > (2rµ + 2)/(1 − %) we obtain, that

lim sup
H→∞

sup
θ∈Θ

Eθ (τ∗H)r 1{υ∗H>n∗H }
< ∞ .

Hence, Theorem 6.

Theorem 7. For any compact set Θ ⊂]σ/2,+∞[×]0,+∞[ the sequential procedure (3.10) defined through the se-
quence (3.20) - (3.22)

lim sup
H→∞

sup
θ∈Θ

Eθ

∣∣∣ΥH(θ)(θ∗H − θ)
∣∣∣2 ≤ 2 , (3.33)

where ΥH(θ) = I1/2(θ)
√

Eθτ
∗
H , I(θ) = F/σ and the matrix F is defined in (3.3).

Proof. First of all we represent the normalized deviation ΨH = ΥH(θ)
(
θ∗H − θ

)
in the following form

ΨH = ΨH1{υ∗H≤n∗H }
+ ΨH1{υ∗H>n∗H }

:= Ψ1,H + Ψ2,H . (3.34)

Note, that on the set {υ∗H ≤ n∗H} the first term in this equality can be represented as

Ψ1,H =

√
Eθτ

∗
H F1/2 G−1

tH
ηtH

, ηtH
=

∫ tH

0
X−1/2

s gsdWs

and the stopping time tH is defined in (3.5). Moreover, note that on this set

Ψ1,H =

√
trF Eθτ

∗
H

H
F̃−1/2 η̃H +

√
Eθτ

∗
H

H
F1/2

(
G̃−1

H − F̃−1
)
η̃H ,
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where G̃H = GtH
/H, F̃ = F/trF and η̃H = ηtH

/
√

H. Note here, that Eθ η̃H η̃
>
H = Eθ G̃H , and, moreover, using here the

Burkholder - Gandy inequality (see, for example, in [27], p.75) and the definition (3.5) we obtain, that for any r > 2

η∗r = sup
H≥1

sup
θ∈Θ

Eθ |̃ηH |
r < ∞ . (3.35)

It should be noted also here, that on the set {υ∗H ≤ n∗H} in view of the definitions (3.8) and (3.20) we obtain, that

H ≤
n∗H∑
j=1

b2
j =

n∗H
|G̃−1

H |
2
,

i.e. the norm |G̃−1
H |

2 ≤ LH and, therefore,

|G̃−1
H − F̃−1| ≤

√
LH |F̃

−1| |G̃H − F̃| .

On the set {υ∗H ≤ n∗H} we can write
Ψ1,H = F̃−1/2 η̃H + ∆1,H ,

where in view of Lemma 7 and the upper bound (3.35) the last term is such, that for any r > 1

lim
H→∞

sup
θ∈Θ

Eθ |∆1,H |
r = 0 .

Moreover, taking into account, that Eθ |F̃
−1/2 η̃H |

2 = tr (F̃−1Eθ G̃H), we obtain, that

lim sup
H→∞

sup
θ∈Θ

Eθ |Ψ1,H |
2 ≤ lim

H→∞
sup
θ∈Θ

Eθ |F̃
−1/2 η̃H |

2 = 2 .

Finally, to study the last term in (3.34) note, that from (3.19) by Cauchy–Bunyakovsky–Schwarz inequality

|θ∗H − θ|
4 ≤ σ2

(∑υ∗H
n=1 bn|ηtn

|/κn

)4

(∑υ∗H
n=1 b2

n

)4 ≤
σ2

H2

∑
n≥1

|̃ηtn
|2

κn


2

,

where η̃tn
= ηtn

/
√
κn. Therefore, using (3.35) we can obtain, that

Eθ |θ
∗

H − θ|
4 ≤

σ2

H2

∑
n,l≥1

Eθ |̃ηtn
|2 |̃ηtl

|2

κnκl
≤
σ2

H2

∑
n,l≥1

√
Eθ |̃ηtn

|4
√

Eθ |̃ηtl
|4

κnκl
≤
σ2η∗4
H2 ρ2 .

From this and Theorem 6 it follows immediately, that

lim sup
H→∞

sup
θ∈Θ

Eθ|ΨH |
4

ρ2 < ∞ ,

where in this case in view of the definition (3.20)

ρ = ρ(H) =
∑
n≥1

1
κn
≤ LH +

∑
n≥1

1
κ∗n
.

As to the last term in (3.34) we note, that

Eθ|Ψ2,H |
2 ≤

√
Eθ|ΨH |

4
√

Pθ

(
υ∗H > n∗H

)
.

Now, the property (3.27) and the last condition in (3.21) yield immediately

lim sup
H→∞

sup
θ∈Θ

Eθ|Ψ2,H |
2 = 0 .

Hence, Theorem 7.
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4. Concentration inequalities for the CIR models.

In this section we study the properties of the deviation in the ergodic theorem for the process (1.1). To this end for
any continuous and bounded R+ → R function φ we set

∆T (φ) =

∫ T

0

(
φ(Xt) −mθ(φ)

)
dt , (4.1)

where mθ(φ) =
∫
R+

φ(z) qθ(z)dz, the ergodic density is defined in (2.25).

Theorem 8. For any compact set Θ ⊂]σ/2,+∞[×]0,+∞[, for any m > 1 and any continuous and bounded R+ → R
function φ

sup
T≥0

sup
θ∈Θ

Eθ |∆T (φ)|2m

1 + T m < ∞ . (4.2)

Proof. We use the method proposed in [9]. According to this method we need to find a bounded solution y(x) of the
differential equation

σ

2
x ẏ(x) + (a − bx)y(x) = φ̃(x) and φ̃(x) = φ(x) −mθ(φ) . (4.3)

One can check directly by taking derivative of the Leibniz rule, that in this case a solution can be represented as

y(x) = −
2

σ xα

∫ +∞

x
φ̃(u) uα−1 e−β(u−x) du , α =

2a
σ

and β =
2b
σ
. (4.4)

It is clear, that the function φ̃(u) is bounded, i.e.

sup
u∈R+

|φ̃(u)| ≤ 2φ∗ and φ∗ = sup
u∈R+

|φ(u)| .

we can obtain, that there exists some positive constant c > 0 such that for all x ≥ 1

|y(x)| ≤
4φ∗
σxα

∫ +∞

x
uα−1 e−β(u−x) du ≤

2αφ∗
σxα

∫ +∞

0
zα−1 e−βz dz +

2α φ∗
σx

∫ +∞

0
e−βz dz ,

i.e. supx≥1 |y(x)| < ∞. In the case, when 0 < x < 1 taking into account, that∫ +∞

0
φ̃(u) uα−1 e−βu du =

∫ +∞

0
φ(u) uα−1 e−βu du −mθ(φ)

∫ +∞

0
uα−1 e−βu du = 0 ,

we can rewrite the solution (4.4) as

y(x) =
2eβx

σ xα

∫ x

0
φ̃(u) uα−1 e−βu du .

So, for 0 < x < 1

|y(x)| ≤
4φ∗ eβ

σ xα

∫ x

0
uα−1 e−βu du ≤

4φ∗ eβ

σα
,

i.e. sup0≤x≤1 |y(x)| < ∞ and, therefore,
y∗ = sup

x∈R+

|y(x)| < ∞ .

In view of the Ito formula for the function V(u) =
∫ u

0
y(x)dx and the equation (4.3), we obtain, that

∆T (φ) = V(XT ) − V(X0) −
√
σ

∫ T

0
y(Xt)

√
Xt dWt .
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Using now the moment inequality (A.6), we get, that for any m ≥ 1

sup
T>0

sup
θ∈Θ

Eθ|V(XT )|2m ≤ y2m
∗

sup
T>0

sup
θ∈Θ

EθX
2m
T < ∞ .

Moreover, from the moment bound for the stochastic integrals [25, Lemma 4.12] we obtain, that for any θ ∈ Θ

Eθ

(∫ T

0
y(Xt)

√
Xt dWt

)2m

≤ (m(2m − 1))m T m−1 y2m
∗

∫ T

0
EθX

m
t dt .

Using here again the upper bound (A.6) we get the property (4.2), hence Theorem 8.

Remark 2. It should be noted, that we can’t obtain the exponential bound as in [9].

5. LAN properties for the CIR models.

Let Pθ be the probability measure induced by the CIR process (1.1) on the canonical space (C,B), where C = C(R+,R)
denotes the space of continuous R+ → R functions and B is the cylinder σ - field in this space. Moreover, for any
T > 0, we denote by Pθ,T restriction of the measure Pθ on the on the cylinder field BT in space of continuous
[0,T ] → R functions C[0,T ], i.e. this is the distribution of the process (Xt)t∈[0,T ]. First we recall, that a family of
probability measures (Pθ,T )θ∈Θ,T>0 with Θ ⊆ Rk is called to satisfy the Local Asymptotic Normality condition (LAN)
at a point θ0 ∈ Θ if there exist scale k × k matrix ϕT going to zero as T → ∞ such that for any u ∈ Rk for which the
point θ̃ = θ0 + ϕT u belongs to Θ, the Radon - Nikodym derivative has the following asymptotic representation

ln
dPθ̃,T

dPθ0,T
= u> ξT −

|u|2

2
+ rT (u) , (5.1)

where | · | is the euclidean norm in Rk,

ξT

L(Pθ0 ,T )
−−−−−−→

T→∞
N(0, 1k) and sup

|u|≤u
∗

|rT (u)|
Pθ0 ,T
−−−−→
T→∞

0 for any u∗ > 0 .

Here, 1k is the identity matrix of order k. It should be noted, that for the process (1.1) (see, for example, in [25] p.
297) in C[0,T ] the logarithm of the Radon -Nikodym derivative is given as

ln
dPθ,T

dPθ0,T
= ln

dPθ,T

dPθ0,T
(X) =

∫ T

0

a − a0 − (b − b0)Xt

σXt
dXt −

1
2σ

∫ T

0

(a − bXt)
2 − (a0 − b0Xt)

2

Xt
dt ,

where θ = (a, b)> and θ0 = (a0, b0)>. Note, that on the process (1.1) with θ = θ0 this derivative can be represented as

ln
dPθ,T

dPθ0,T
=

∫ T

0

a − a0 − (b − b0)Xt√
σXt

dWt −
1

2σ

∫ T

0

(a − a0 − (b − b0)Xt)
2

Xt
dt . (5.2)

Setting here the vector zt =
(
X−1/2

t , −X1/2
t

)>
, we obtain, that

ln
dPθ,T

dPθ0,T
= (θ − θ0)>UT −

1
2σ

(θ − θ0)>GT (θ − θ0) , (5.3)

where UT = σ−1/2
∫ T

0
X−1/2

t gtdWt, the matrix GT and the vector gt are given in (3.2).
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Theorem 9. The family of probability measures (Pθ,T )θ∈Θ ,T>0 given by (5.5) with the parameter set

Θ ⊆ {(a, b) : a > σ/2 , b > 0} =]σ/2 , +∞[×]0 , +∞[

satisfies the LAN condition at any interior point θ0 from Θ with scaling factor

ϕT =
1
√

T
I−1/2(θ0) and I(θ0) = σ−1 F , (5.4)

where the matrix F is defined in (3.3).

Proof. First, note, that the property (3.3) through the central limit theorem given by Y.A. Kutoyants (see [22, Theorem
1.19]) implies, that

1
√

T
UT

L(Pθ0 ,T )
−−−−−−→

T→∞
N

(
0, I(θ0)

)
.

Using this and the propertiy (3.3) in (5.3), we obtain the LAN condition with the normalized 2 × 2 matrix ϕT defined
in (5.4).
If in (5.2) a = a0, then

ln
dPθ,T

dPθ0,T
= −(b − b0) UT −

(b − b0)2

2
< U >T , (5.5)

where

UT = σ−1/2
∫ T

0

√
XtdWt and < U >T = σ−1

∫ T

0
Xtdt .

Now we study the properties of the density (5.5) as T → ∞.

Theorem 10. For any fixed a0 > σ/2 the family of probability measures (Pθ,T )θ∈Θ ,T>0 with

Θ ⊆ {(a0, b) : b > 0} = {a0}×]0,+∞[

given by (5.5) satisfies the LAN condition at any interior point θ0 in Θ with scaling factor

ϕT =
1√

I(θ0)T
and I(θ0) =

a0

σb0
. (5.6)

Proof. The proof is straightforward by [2, Proposition 3] and the central limit theorem given by Y.A. Kutoyants (see
[22, Theorem 1.19]), that

1
T

∫ T

0
Xtdt

Pθ0 ,T
−−−−→
T→∞

a0

b0
and

1
√

T

∫ T

0

√
XtdWt

L(Pθ0 ,T )
−−−−−−→

T→∞
N

(
0,

a0

b0

)
.

Using these properties in (5.5), we obtain the LAN condition with the scaler coefficient ϕT defined in (5.6).
Furthermore, we note, that if in (5.2) the parameter b = b0, we get

ln
dPθ,T

dPθ0,T
= (a − a0) UT −

(a − a0)2

2
< U >T , (5.7)

where

UT = σ−1/2
∫ T

0
X−1/2

t dWt and < U >T = σ−1
∫ T

0

1
Xt

dt .

We need to study the asymptotic properties of the density (5.7) as T → ∞.
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Theorem 11. For any fixed b0 > 0 the family of probability measures (Pθ,T )θ∈Θ ,T>0 with

Θ ⊆ {(a, b0) : a > σ/2} =]σ/2,+∞[×{b0}

given by (5.7) satisfies the LAN condition at any interior point θ0 in Θ with scaling factor

ϕT =
1√

I(θ0)T
and I(θ0) =

2b0

σ(2a0 − σ)
. (5.8)

Proof. The proof is straightforward by [2, Proposition 4] and the central limit theorem given by Y.A. Kutoyants (see
[22, Theorem 1.19]) that

1
T

∫ T

0

1
Xt

dt
Pθ0 ,T
−−−−→
T→∞

2b0

2a0 − σ
and

1
√

T

∫ T

0
X−1/2

t dWt

L(Pθ0 ,T )
−−−−−−→

T→∞
N

(
0,

2b0

2a0 − σ

)
.

Using these properties in (5.7), we obtain the LAN condition with the scaler coefficient ϕT defined in (5.8).

Remark 3. Note here, that as we will see below the functions I(θ0) defined in (5.4), (5.6) and (5.8) define the lower
bounds for the quadratic corresponding risk. According to the general optimal statistic decision theory such functions
are called the Fisher information (see, for example, in [11], Theorem 12.1 for quadratic loss functions).

6. Optimality properties for sequential procedures

Let now θ0 ∈ Θ ⊂ Rk and γ > 0 such that {|θ − θ0| ≤ γ} ⊆ Θ. We denote by HT (θ0, γ) the local class of sequential
procedures δT = (τ , θ̂τ) such that

sup
|θ−θ0 |<γ

Eθτ ≤ T . (6.1)

Inspired by the ideas from [7, Corollary 2], we prove the following theorem.

Proposition 3. Assume that, LAN holds for θ0 from Θ with the scale matrix of the form ϕT = (I(θ0)T )−1/2, where I(θ0)
is some positive defined matrix. Then, for any γ > 0 for which {|θ − θ0| ≤ γ} ⊆ Θ,

lim
T→∞

inf
δ∈HT (θ0,γ)

sup
|θ−θ0 |<γ

Eθ |ϕ
−1
T (̂θτ − θ)|

2 ≥ k . (6.2)

Proof. Suppose that we are given the positive constants ε, δ and γ arbitrarily small. Let us denote

JT (θ) = Eθ |ϕ
−1
T (̂θτ − θ)|

2

and θ̃ = θ0 + ϕT u where u = (u1, . . . , uk)>. Since ϕT tends to zero matrix as T tends to infinity, then for arbitrary fixed
constant b > 1 there exists T0 = T0(γ,b) > 0 such that θ̃ ∈ {|θ − θ0| ≤ γ} for all T > T0 and |ul| ≤ b for ` ∈ {1, . . . , k}.
Therefore,

J∗T = sup
|θ−θ0 |<γ

JT (θ) ≥ sup
u:|ul |≤b, ∀`

JT (̃θ) ≥
1

(2b)k

∫
[−b,b]k

JT (̃θ)dku

=
1

(2b)k

∫
[−b,b]k

Eθ̃|u + ητ|
2 dku and ητ = ϕ−1

T (θ0 − θ̂τ) . (6.3)

Let now K ≥ 2 and 0 < ε < 1 be some fixed integers. Then, setting ti = (iε)2T , we can estimate J∗T from below as

J∗T ≥
K∑

i=1

1
(2b)k

∫
[−b,b]k

Eθ̃|u + ητ|
21Ai

dku and Ai = {ti−1 < τ ≤ ti} .
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From LAN property (5.1), the Randon-Nikodym derivative is given by

ρT (u) =
dPθ̃,T

dPθ0,T
= eu>ξT−

|u|2
2 +rT (u) ,

where ξT weakly under the distribution L(Pθ0,T
) tends to N(0, 1k) as T → ∞ and for any u∗ > 0

sup
|u|≤u

∗

|rT (u)|
Pθ0 ,T
−−−−→
T→∞

0 . (6.4)

It is clear, that
dPθ̃,ti

dPθ0,ti

= ρti
(iεu) . (6.5)

So,
Eθ̃|u + ητ|

21Ai
= Eθ0

|u + ητ|
21Ai

ρti
(iεu) .

Moreover, setting

ρ∗t (u) = eu>ξt−
|u|2

2 = e
|ξ|2t
2 −

|u−ξt |
2

2 , (6.6)

we obtain, that

J∗T ≥
K∑

i=1

1
(2b)k Eθ0

1Ai
e−r∗ti

∫
[−b,b]k

|u + ητ|
2ρ∗t (iεu)dku

=

K∑
i=1

1
(2b)k Eθ0

1Ai
e−r∗ti

+|ξti
|2/2

∫
[−b,b]k

|u + ητ|
2 e−

|iεu−ξti
|2

2 dku

=

K∑
i=1

1
(2b)k Eθ0

1Ai
e−r∗ti

+|ξti
|2/2

∫
Di

|v + η̃τ|
2 e−

(iε|u|)2
2 dkv , (6.7)

where r∗t = sup
|u|≤bK |rt(u)|, η̃τ = ητ + ξti

/iε and

Di = [−b − ξti,1
/iε,b − ξti,1

/iε] × · · · × [−b − ξti,k
/iε,b − ξti,k

/iε] .

Here (ξt,l)1≤l≤k are the components of the vector ξt, i.e. ξti
= (ξti,1

, . . . , ξti,k
)>. Now we note that on the set

Di = ∩k
l=1

{
|ξti,l
| ≤ iε(b −

√
b)

}
(6.8)

the last integral in (6.7) can be estimated from below as∫
Di

|u + η̃τ|
2 e−

(iε|u|)2
2 dku ≥

∫
[−
√

b,
√

b]k
|u + η̃τ|

2 e−
(iε|u|)2

2 dku . (6.9)

Using here the Anderson inequality (see, for example, in [11], p.155), we get∫
[−
√

b,
√

b]k
|u + η̃τ|

2 e−
(iε|u|)2

2 dku ≥
∫

[−
√

b,
√

b]k
|u|2 e−

(iε|u|)2
2 dku .

Taking into account, that for b→ ∞∫
[−
√

b,
√

b]k
|u|2 e−

(iε|u|)2
2 dku→

∫
Rk
|u|2 e−

(iε|u|)2
2 dku =

k(
√

2π)k

(iε)2+k =
k

(iε)2

∫
Rk

e−
(iε|u|)2

2 dku , (6.10)
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we obtain, that for any 0 < ν < 1 there exists some b0 = b0(ν) such that for any b ≥ b0

J∗T ≥ k(1 − ν)
K∑

i=1

1
(2b)k(iε)2 Eθ0

1Ai∩Di
e−r∗ti

+|ξti
|2/2

∫
Rk

e−
(iε|u|)2

2 dku .

Moreover, taking into account here, that in Pθ0,t
probability r∗t → 0 as t → ∞, we deduce, that for any 1 ≤ i ≤ K

lim
T→∞

Eθ0
1Ai∩Di

e|ξti
|2/2

(
1 − e−r∗ti

)
= 0 .

Therefore, there exists some T0 = T0(ν, b) such that for T ≥ T0

J∗T ≥ k(1 − ν)
K∑

i=1

1
(2b)k(iε)2 Eθ0

1Ai∩Di
e|ξti
|2/2

∫
Rk

e−
(iε|u|)2

2 dku − ν .

Moreover, we can estimate this term from below as

J∗T ≥ k(1 − ν)
K∑

i=1

!
(2b)k(iε)2 Eθ0

1Ai∩Di
e|ξti
|2/2

∫
Di

e−
(iε|u|)2

2 dku − ν

= k(1 − ν)
K∑

i=1

1
(2b)k(iε)2

∫
[−b ,b]k

Qi,u(Ai ∩ Di) dku − ν . (6.11)

where the measure Qi,u is defined as
Qi,u(A) = Eθ0

1A ρ
∗

ti
(iεu) . (6.12)

It should be noted that generally speaking this measure is not probabilistic, but it can be approximated by a proba-
bilistic one in the following sens.

Lemma 1. For any set A ∈ Fti
, 1 ≤ i ≤ K and b > 1

lim
T→∞

∫
[−b,b]k

∣∣∣∣Pθ̃,ti
(A ∩ Di) −Qi,u(A ∩ Di)

∣∣∣∣ dku = 0 . (6.13)

Proof. Taking into account, that for any set A the measure Qi,u(A ∩ Di) is bounded, it suffices to show that for any
u ∈ [−b,b]k

lim
T→∞

∣∣∣∣Pθ̃,ti
(A ∩ Di) −Qi,u(A ∩ Di)

∣∣∣∣ = 0 . (6.14)

Indeed, let now Gti
= {r∗ti ≤ α} for some α > 0. Note, that the property (6.4) implies, that for any α > 0 and any

u ∈ [−b,b]k

lim
T→∞

Qi,u(Di ∩Gc
ti
) = 0 .

Moreover, from (6.5) we get, that for any L > 1

Pθ̃,ti
(Gc

ti
) = Eθ0

1Gc
ti
ρti

(iεu) ≤ LPθ0,ti
(Gc

ti
) + Eθ0

1{ρti
(iεu)>L}ρti

(iεu) = LPθ0,ti
(Gc

ti
) + 1 − Eθ0

1{ρti
(iεu)≤L}ρti

(iεu) .

Note here, that for any u ∈ Rk

ρti
(iεu)

L(Pθ0 ,T )
−−−−−−→

T→∞
ρ∗,i = eiεu>ξ

∗
−

(iε)2 |u|2
2 and ξ∗ ∼ N(0, 1k) .

Therefore, taking into account, that Eρ∗,i = 1, we obtain, that

lim sup
T→∞

Pθ̃,ti
(Gc

ti
) ≤ 1 − Eθ0

1{ρ
∗,i≤L}ρ∗,i → 0 as L→ ∞ ,
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i.e. limT→∞ Pθ̃,ti
(Di ∩Gc

ti
) = 0. Therefore, for (6.14) it suffices to show, that

lim
α→0

lim sup
T→∞

∣∣∣∣Pθ̃,ti
(A ∩ Di ∩Gti

) −Qi,u(A ∩ Di ∩Gti
)
∣∣∣∣ = 0 .

This follows from the fact that on the intersection Di ∩Gti
the difference between the densities (6.5) and (6.6) can be

estimated as
|ρti

(iεu) − ρ∗ti (iεu)| ≤ e(iε)2b2
(eα − 1)→ 0 as α→ 0 .

This implies the limit 6.14.
Therefore, the lower bound (6.11) and Lemma 1 yield, that there exists T1 = T1(ν,b) ≥ T0 such that for any b ≥ b0
and T ≥ T1

J∗T ≥ k (1 − ν)
K∑

i=1

1
(2b)k(iε)2

∫
[−b,b]k

Pθ̃,ti
(Ai ∩ Di) dku − ν (6.15)

Now we study the last pprobability.

Lemma 2. For any 1 ≤ i ≤ K

lim
b→∞

lim sup
T→∞

1
(2b)k

∫
[−b,b]k

Pθ̃,ti
(Dc

i ) dku = 0 . (6.16)

Proof. To this end we show, that for any b > 1 and 1 ≤ i ≤ K

lim inf
T→∞

1
(2b)k

∫
[−b,b]k

Pθ̃,ti
(Di) dku ≥

b −
√

b
b

iε
√

2π

k ∫
[−
√

b,
√

b]k
e−

(iε)2 |u|2
2 dku . (6.17)

To do this, first note that for any u s.t. |ul| ≤ b, ∀l

Pθ̃,ti
(Di) ≥ Eθ0

e−r∗tiρ∗ti
(iεu)1Di

.

Taking into account, that in view of the dominated convergence theorem

lim
T→∞

Eθ0
(1 − e−r∗ti )ρ∗ti (iεu)1Di

= 0 ,

we obtain, that for any ν > 0 and sufficiently large T

1
(2b)k

∫
[−b,b]k

Pθ̃,ti
(Di)d

ku ≥
1

(2b)k Eθ0
1Di

∫
[−b,b]k

ρ∗ti
(iεu)dku − ν .

Using here the representation (6.6) in the same way as in (6.9) we get, that

1
(2b)k

∫
[−b,b]k

Pθ̃,ti
(Di)d

ku ≥
1

(2b)k Eθ0
1Di

e
|ξti
|2

2

∫
[−
√

b,
√

b]k
e−

(iε)2 |u|2
2 dku − ν .

Taking into account here, that ξti converges in law to a standard normal vector then

lim
T→∞

1
(2b)k Eθ0

1Di
e
|ξti
|2

2 =

 iε(b −
√

b)
√

2πb

k

,

we obtain the bound (6.17). Taking into account, that the right side of this inequality tends to 1 as b → ∞ we obtain
Lemma 2.
Note now, that using this lemma in (6.15) we deduce, that there exists b1 = b1(ν) such that for any b ≥ b1 there exists
T2 = T2(ν,b) ≥ T1 such that for any T ≥ T2

J∗T ≥ k (1 − 2ν)
K∑

i=1

1
(2b)k(iε)2

∫
[−b,b]k

Pθ̃,ti
(Ai) dku − ν
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≥
k (1 − 2ν)

(2b)k

∫
[−b,b]k

K∑
i=1

Eθ̃,ti

1

(
√
τ/
√

T + ε)2
1Ai

dku − ν

=
k (1 − 2ν)

(2b)k

∫
[−b,b]k

Eθ̃

1

(
√
τ/
√

T + ε)2
1{τ≤(εK)2T } d

ku − ν . (6.18)

Note, here, that

Eθ̃

1

(
√
τ/
√

T + ε)2
1{τ≤(εK)2T } ≥ Eθ̃

1

(
√
τ/
√

T + ε)2
−

1
ε2 Pθ̃

(
τ > (εK)2T

)
.

Using here the Jensen and the Chebychev inequalities and the condition (6.1), we obtain, that

Eθ̃

1

(
√
τ/
√

T + ε)2
1{τ≤(εK)2T } ≥

1

(Eθ̃

√
τ/
√

T + ε)2
−

1
ε4K2 ≥

1
(1 + ε)2 −

1
ε4K2 .

Using this estiamate in (6.18), we obtain, that

J∗T ≥
k(1 − 2ν)
(1 + ε)2 −

k
ε4K2 − kν .

Taking here the limits limν→0 limε→0 limK→∞ lim infT→∞, we get the lower bound (6.2).
Note, that to study asymptotic optimality properties for some sequential procedure δ∗H = (τ∗H , θ

∗
H) usually one considers

the following class

ΞH =

{
δ = (τ, θ̂τ) : sup

θ∈Θ

Eθτ

Eθτ
∗
H
≤ 1

}
, (6.19)

where H > 0 is some non random procedure indexing parameter such that for any θ ∈ Θ the expectation Eθ τ
∗
H → +∞

as H → ∞. For example, for the sequential parameter estimation procedures for the CIR model (1.1), this is the
threshold H > 0 that determines the mean square estimation accuracy.
A1) There exists θ0 ∈ Θ, such that {|θ − θ0| < γ} ⊂ Θ for all sufficiently small γ > 0 and

lim
θ→θ0

lim sup
H→∞

∣∣∣∣∣∣∣ Eθτ
∗
H

Eθ0
τ∗H
− 1

∣∣∣∣∣∣∣ = 0 . (6.20)

A2) There exists θ0 ∈ Θ for which the LAN condition holds true for the scale matrix of the form ϕT = I−1/2(θ0)T−1/2

in which I(θ) is positive defined and continuous matrix for any θ from some neighborhood of the point θ0 in Θ.
Now we obtain a lower bound for this class.

Theorem 12. Assume that, the conditions A1) – A2) hold true for some θ0 from Θ. Then,

lim
H→∞

inf
δ∈ΞH

sup
θ∈Θ

Eθ |ΥH(θ)(̂θτ − θ)|
2 ≥ k , (6.21)

where ΥH(θ) = I1/2(θ)
√

Eθτ
∗
H .

Proof. First note, that, by the condition A1), for any ε > 0 there exist γ0 = γ0(ε) > 0 for which {|θ − θ0| < γ} ⊂ Θ and
H0 = H0(ε) > 0 such that, for any γ < γ0 and H > H0

sup
|θ−θ0 |<γ

Eθτ
∗

H ≤ (1 + ε)Eθ0
τ∗H

and, therefore, ΞH ⊂ HT (θ0, γ) with T = (1 + ε)Eθ0
τ∗H . Moreover, using the property (6.20) and, taking into account,

that I(θ)→ I(θ0) as θ → θ0, it is easy to deduce, that

lim
θ→θ0

lim sup
H→∞

∣∣∣ΥH(θ)Υ−1
H (θ0) − 1k

∣∣∣ = 0 , (6.22)
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where 1k is the identity matrix of the size k. Therefore, for any ε > 0 we can obtain, that for sufficiently small γ and
sufficiently large H > 0

inf
|θ−θ0 |<γ

inf
z∈Rk , |z|=1

z>(Υ−1
H (θ0))>Υ>H(θ) ΥH(θ) Υ−1

H (θ0)z ≥ (1 − ε) .

So, for such γ and H

inf
δ∈ΞH

sup
θ∈Θ

Eθ |ΥH(θ)(̂θτ − θ)|
2 ≥

(1 − ε)
(1 + ε)

inf
δ∈HT (θ0,γ)

sup
|θ−θ0 |<γ

Eθ |ϕ
−1
T (̂θτ − θ)|

2 , (6.23)

where ϕ−1
T = (1+ε)−1/2ΥH(θ0) = (I(θ0)T )1/2. Therefore, using the bound (6.2) and taking the limit lim infε→0 lim infH→∞,

we obtain the lower bound (6.21). Hence, Theorem 12.
Now we apply this theorem to study the procedure (3.10). To this end, first note, that Theorem 6 implies, that
uniformly over θ ∈ Θ for any compact Θ ⊂]σ/2 , +∞[×]0 , +∞[

ΥH(θ)
√

H
→

F̃1/2

√
σ

as H → ∞ ,

where F̃ = F/trF and the matrix F is defined in (3.3). Now, Theorem 12 for k = 2 and Theorem 7 imply the following
results.

Theorem 13. For any compact set Θ ⊂]σ/2 , +∞[×]0 , +∞[ the sequential procedure δ∗H = (τ∗H , θ
∗
H) defined in (3.10)

for the process (1.1) is asymptotically optimal in the minimax setting, i.e.

lim
H→∞

H inf
δ∈ΞH

sup
θ∈Θ

Eθ (̂θτ − θ)
>F̃ (̂θτ − θ) = lim

H→∞
H sup

θ∈Θ

Eθ (θ∗H − θ)
>F̃(θ∗H − θ) = 2σ

and

lim
H→∞

infδ∈ΞH
sup

θ∈Θ
Eθ (̂θτ − θ)

>F̃ (̂θτ − θ)

sup
θ∈Θ

Eθ (θ∗H − θ)
>F̃(θ∗H − θ)

= 2 .

As to the scalar sequential procedures (2.2) and (2.12), first we note, that Theorem 2 and Theorem 4 imply, that for
these cases

lim
H→0

sup
θ∈Θ

∣∣∣∣∣∣ΥH(θ)
√

H
− σ−1/2

∣∣∣∣∣∣ = 0 .

Therefore, Theorem 12 for k = 1 and Corollaries 1 and 2 imply the following results.

Theorem 14. For any a > σ/2 and any compact set Θ ⊂]0,+∞[ the sequential procedure δ∗H = (τ∗H , θ
∗
H) defined in

(2.2) for the process (1.1) is asymptotically optimal in the minimax setting, i.e.

lim
H→∞

H inf
δ∈ΞH

sup
θ∈Θ

Eθ (̂θτ − θ)
2 = lim

H→∞
H sup

θ∈Θ

Eθ (θ∗H − θ)
2 = σ and lim

H→∞

infδ∈ΞH
sup

θ∈Θ
Eθ (̂θτ − θ)

2

sup
θ∈Θ

Eθ (θ∗H − θ)
2 = 1 . (6.24)

Theorem 15. For any fixed b > 0 and any compact set Θ ⊂]σ/2 , +∞[ the sequential procedure (2.12) for the process
(1.1) is asymptotically optimal in the minimax setting, i.e.

lim
H→∞

H inf
δ∈ΞH

sup
θ∈Θ

Eθ (̂θτ − θ)
2 = lim

H→∞
H sup

θ∈Θ

Eθ (θ∗H − θ)
2 = σ and lim

H→∞

infδ∈ΞH
sup

θ∈Θ
Eθ (̂θτ − θ)

2

sup
θ∈Θ

Eθ (θ∗H − θ)
2 = 1 . (6.25)

Remark 4. It should be noted, that the optimality properties are shown in the class of all possible sequential proce-
dures, with arbitrary fixed stopping times that determine the duration of the observation for the estimation.
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7. Conclusion

In the conclusion we emphasise, that

• The sequential estimation procedures are constructed and non asymptotic mean square accuracies are obtained
in (2.3), (2.13) and (3.12). It is usefull note here, that Theorem 3 is shown for any b ≥ 0, θ > 0, but the classical
maximum likelihood estimator can be defined only for θ ≥ σ/2 (see, Remark 1). The properties for the mean
time of observations are studied (Theorem 2, Theorem 4 and Theorem 6).

• Based on the LAN property the minimax sequential estimation theory for the model (1.1) was developed: the
conditions provided the sharp lower bounds are obtained (Theorem12), the procedures for which the upper
bounds coincide with the lower ones are constructed (Theorem 13, Theorem 14 and Theorem 15).

• For the first time for continuous time statistical models, the minimax properties for the sequential estimation
procedures are established in the class of all possible sequential procedures with arbitrary stopping times deter-
mining the duration of the observation.
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A. Appendix

A.1. Properties of the CIR process

We start with studying the Laplace transformation of the integral
∫ t

0
Xsds. To this end for any a, b, µ > 0 and t > 0 we

set the following functions

φµ(t) = −
2
σ

log
(

2ρet(b−ρ)/2

(ρ − b)e−ρt + ρ + b

)
and ψµ(t) =

2µ(1 − e−ρt)
(ρ − b)e−ρt + ρ + b

, (A.1)

where ρ =
√

b2 + 2σµ. Note, that for b = 0 these function can be rewritten as

φµ(t) =
2
σ

log
(
cosh(t

√
σµ/2)

)
and ψµ(t) =

2µ sinh(t
√
σµ/2)

ρ cosh(t
√
σµ/2)

.

Now using the Lemmas 1 - 2 from [2] we can deduce the following form for the Laplace transformation of the integral∫ t

0
Xsds for any t > 0.

Lemma 3. For any µ > 0, the Laplace transform of
∫ t

0
Xsds is given by

Λ(t, µ) = Eθ e−µ
∫ t

0
Xsds

= e−aφµ(t)−xψµ(t) . (A.2)

Now using this lemma we study the behaviour of the integral
∫ t

0
Xsds as t → ∞.

Proposition 4. For any a > 0 and b ∈ R the following property hold∫ ∞

0
Xsds = +∞ a.s.

Proof. In order to prove this property, we show that for any µ > 0, the Laplace transform Eθ e−µ
∫ t

0
Xsds
−→
t→∞

0. This
is straightforward using the Lemma 3 since φµ(t) converges to plus infinity and ψµ(t) converges to some constant as t
tends to infinity in both cases b , 0 and b = 0.
Now we obtain the Laplace transformation for the integral

∫ t

0
X−1

s ds. To this end, for any u, v and z from R we set the
confluent hypergeometric function (see, for example, in [32]) as

B(u, v, z) = 1 +

∞∑
n=1

zn

n!

∏n−1
k=0(u + k)∏n−1
k=0(v + k)

. (A.3)

Moreover, for any a, b and t > 0 we introduce the following functions

α =
2bxebt

σ(ebt − 1)
, β =

2bx
σ(ebt − 1)

and γ = −
bat
σ

+
2bx

σ(ebt − 1)
.

It is clear, that α = β = γ = 2x/(σt) for b = 0. Now, using these functions we obtain through Lemmas 1 - 2 from [2]
the following result.

Lemma 4. For any a > 0, b ≥ 0, t > 0 and µ > 0, the Laplace transformation for the integral
∫ t

0
X−1

s ds is given as

Υ(t, µ) = E e−µ
∫ t

0
X−1

s ds
=

Γ(ν1)
Γ(ν + 1)

β
ν
2 + 1

2

ακ
e−γ B

(
ν1, ν + 1, β

)
, (A.4)

where Γ(ν) =
∫ ∞

0
zν−1e−zdz, κ = a/σ,

ν =
2
σ

√
(a − σ/2)2 + 2µσ and ν1 =

a
σ

+
ν

2
+

1
2
.
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Proposition 5. For any a > 0 and b ≥ 0 the following property hold∫ ∞

0
X−1

s ds = +∞ a.s.

Proof. Indeed, from Lemma 4 it follows directly, that for any µ > 0, the Laplace transform Υ(t, µ)→ 0 as t → ∞ and,
therefore, we get Proposition 5.
We recall the results from [24, Proposition 6.2.5], [2, Lemmas 1-2] and [1, Propositions 3-4].

First, note that, when a > σ/2 and b > 0 the CIR process is ergodic and the stationary distribution is a Gamma
law with shape 2a/σ and scale σ/2b. Moreover, by the ergodic theorem, in this case

lim
t→∞

1
t

∫ t

0
Xsds =

a
b

and lim
t→∞

1
t

∫ t

0
X−1

s ds =
2b

2a − σ
a.s. (A.5)

Now we study the moment properties or the stable CIR processes

Lemma 5. For any q > −2a/σ and compact set Θ ⊂]σ/2,+∞[×]0,+∞[

sup
t≥0

sup
θ∈Θ

EθX
q
t < ∞ . (A.6)

The proof is given in Proposition 3 from [1].

A.2. Auxiliary Lemmas
Lemma 6. Let τ be as a stopping time such that for any q > 1 and compact set Θ ⊂]σ/2,+∞[×R+ the expectation
mq = sup

θ∈Θ
Eθ τ

q < ∞. Moreover, let (ηt)t≥0 be a non-negative process such that

uε = sup
t≥0

sup
θ∈Θ

(
Eθ η

1+ε
t

)1/(1+ε)
< ∞

for some ε > 0. Then for any q > (1 + ε)/ε := r

sup
θ∈Θ

Eθ

∫ τ

0
ηt dt ≤ uε

1 +
rm1/r

q

q − r

 . (A.7)

Proof. First note, that by Fatou’s lemma for any θ ∈ Θ we obtain, that

Eθ

∫ τ

0
ηt dt ≤ lim

T→∞

∫ T

0
Eθηt1{t≤τ}dt .

Moreover, the 1 + ε and r = (1 + ε)/ε Hölder and Chebyshev inequalities imply, that for any q > r

Eθηt1{t≤τ} ≤ uεP
1/r
θ (τ ≥ t) ≤

uεm1/r
q

tq/r .

Therefore, ∫ T

0
Eθηt1{t≤τ}dt ≤ uε

(
1 +

∫ T

1
P1/r
θ (τ ≥ t) dt

)
≤ uε

(
1 + m1/r

q

∫ T

1

1
tq/r dt

)
.

This implies the upper bound (A.7). Hence, Lemma 6.

Lemma 7. For any r > 2 and any compact set Θ ⊂]σ/2,+∞[×]0,+∞[ for the matrices (3.4) and (3.3) the following
property holds true

sup
z≥1

sup
θ∈Θ

Eθ

√z

∣∣∣∣∣∣Gtz

z
−

F
trF

∣∣∣∣∣∣
r

< ∞ . (A.8)
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Proof. First, setting Dt = Gt − Ft and using the definition (3.5) we can obtain, that

Gtz

z
−

F
trF

=
Dtz

z
+ F

( tz

z
−

1
trF

)
=

Dtz

z
−

FtrDtz

trFz

and, therefore, taking into account, that |trDtz
| ≤
√

2|Dtz
| and |F| = |F1/2F1/2| ≤ |F1/2|2 = tr F, we obtain, that

√
z

∣∣∣∣∣∣Gtz

z
−

F
trF

∣∣∣∣∣∣ ≤ (
1 +
√

2
) |Dtz

|
√

z
≤

(
1 +
√

2
) |D1,tz

| + |D2,tz
|

√
z

,

where

D1,t =

∫ t

0

(
X−1

s − f1
)

ds and D2,t =

∫ t

0

(
Xs − f2

)
ds .

We recall, that the coefficients f1 and f2 are defined in (3.3). To prove this lemma, it suffices to show, that for any
r > 2

sup
z≥1

sup
θ∈Θ

Eθ |D1,tz
|r

zr/2 < ∞ (A.9)

and

sup
z≥1

sup
θ∈Θ

Eθ |D2,tz
|r

zr/2 < ∞ . (A.10)

Note, that from (2.17) it follows, that for some positive constant c

|D1,tz
|r ≤ c

(
1 +

∣∣∣∣∣∣
∫ tz

0
X−1/2

s dWs

∣∣∣∣∣∣r + | ln Xtz
|r
)
. (A.11)

Taking into account the Burkholder - Gandy inequality (see, for example, in [27], p.75) and the definition of the
stopping time in (3.5), we can estimate the martingale term in this inequality as

Eθ

∣∣∣∣∣∣
∫ tz

0
X−1/2

s dWs

∣∣∣∣∣∣r ≤ c Eθ

∣∣∣∣∣∣
∫ tz

0
X−1

s ds

∣∣∣∣∣∣r/2 ≤ c zr/2 .

From (2.16) througth the Ito formule we can deduce, that for any integer m ≥ 2

(
ln Xt

)2m
= (ln x)2m +

∫ t

0
αudu +

∫ t

0
βudWu , (A.12)

where

αu = 2m(ln Xt)
2m−1

(
2a − σ

2Xu
− b

)
+ m(2m − 1)σ

(ln Xu)2m−2

Xu
and βu = 2m

√
σ

(ln Xu)2m−1

X1/2
u

.

Note here, that from the upper bounds (A.6) and (2.18) one can conclude, that there exists some ε > 0 such that

sup
u≥0

sup
θ∈Θ

Eθ

(
|αu|

1+ε + |βu|
2(1+ε)

)
< ∞ .

Therefore, using the property (3.31) and Lemma 6 we obtain, that for any θ ∈ Θ the expectation Eθ

∫ tz

0
β2

udu < ∞ and,

therefore, Eθ

∫ tz

0
βudWu = 0. Using this in (A.12) we obtain, that for any θ ∈ Θ

Eθ

(
ln Xtz

)2m
= (ln x)2m + Eθ

∫ tz

0
αudu ≤ (ln x)2m + Eθ

∫ tz

0
|αu|du .
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Therefore, using here Lemma 6 with q = 2r and the property (3.31) we obtain that for any m ≥ 2

sup
z≥1

sup
θ∈Θ

Eθ

(
ln Xtz

)2m

zm < ∞ . (A.13)

This implies immediately the upper bound (A.9). Moreover, to show (A.10) note, that from (2.7) and the Burkholder
- Gandy inequality it follows that for some constant c > 0 for any θ ∈ Θ

Eθ |D2,tz
|r ≤ c

1 + Eθ |Xtz
|r + Eθ

∣∣∣∣∣∣
∫ tz

0
Xsds

∣∣∣∣∣∣r/2
 ≤ c

(
1 + Eθ |Xtz

|r + zr/2
)
.

Similarly to (A.13) through the Itô formula and Lemma 6 we can obtain, that for any integer m ≥ 2

sup
z≥1

sup
θ∈Θ

Eθ X2m
tz

zm < ∞ .

Hence, Lemma 7.
Now we study the distribution properties for the moment (3.8).

Lemma 8. Assume, that the stopping time υ∗H is defined in (3.8) through the sequence (3.20) - (3.22). Then, for any
compact set Θ ⊂]σ/2,+∞[×]0,+∞[, for any r > 1, H > 1 and n > u∗H

sup
θ∈Θ

Pθ

(
υ∗H > n

)
≤ c

Lr
H Hr/2 + n%r

(n − u∗H)r , (A.14)

where u∗ = maxθ∈Θ b−2
∗

= maxθ∈Θ(|F−1|trF)2.

Proof. First of all, note, that from the definitions (3.7) and (3.16) we can deduce directly, that bn ≤ 1 and b∗ ≤ 1.
Therefore, ∣∣∣b2

n − b2
∗

∣∣∣ ≤ 2
∣∣∣bn − b∗

∣∣∣ ≤ 2
∣∣∣bn − b∗

∣∣∣ 1{λmin(Gtn
)>0} + 2 1{λmin(Gtn

)=0} .

Note here, that on the set {λmin(Gtn
) > 0} the first difference can be estimated as

∣∣∣bn − b∗
∣∣∣ ≤ ∣∣∣$n

∣∣∣ and $n =
Gtn

κn
−

F
trF

.

Moreover, note, that for any θ ∈ Θ

Pθ

(
λmin(Gtn

) = 0
)

= Pθ

(
λmin

(Gtn

κn

)
= 0

)
≤ Pθ

(∣∣∣$n

∣∣∣ ≥ l∗
)
,

where l∗ = minθ∈Θ λmin(F)/trF > 0. Using here Chebyshev’s inequality and Lemma 7, we obtain, that for any r > 1

sup
θ∈Θ

Pθ

(
λmin(Gtn

) = 0
)
≤

sup
θ∈Θ

Eθ

∣∣∣$n

∣∣∣r
lr
∗

≤ cκ−r/2
n ,

where c > 0 is some constant. So, denoting by ηn =
√
κn(b2

n − b2
∗
), we obtain, that for any r > 1

sup
n≥1

sup
θ∈Θ

Eθ|ηn|
r < ∞ .

Now, this and the definition (3.8) imply, that for any n > b−2
∗

H and r > 1

Pθ

(
υ∗H > n

)
= Pθ

 n∑
k=1

b2
k < H

 ≤ Pθ

 n∑
k=1

|ηk |
√
κk
> b2

∗
n − H

 ≤ Eθ

(∑n
k=1

|ηk |√
κk

)r

(b2
∗
n − H)r .
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Using here, the (r/(r − 1), r) - Hölder inequality we obtain, that n∑
k=1

|ηk |
√
κk

r

≤

 n∑
k=1

1
√
κk

r−1  n∑
k=1

|ηk |
r

√
κk

r

Therefore, there exists some positive constant c > 0 such that n > u∗H

sup
θ∈Θ

Pθ

(
υ∗H > n

)
≤

c
(n − u∗H)r

 n∑
k=1

1
√
κk

r

.

Using here the conditions (3.20) - (3.22), we obtain the upper bound (A.14). Hence, Lemma 8.
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