A polytopal method for the Brinkman problem robust in all regimes - Archive ouverte HAL
Article Dans Une Revue Computer Methods in Applied Mechanics and Engineering Année : 2023

A polytopal method for the Brinkman problem robust in all regimes

Jérôme Droniou

Résumé

In this work we develop a discretisation method for the Brinkman problem that is uniformly well-behaved in all regimes (as identified by a local dimensionless number with the meaning of a friction coefficient) and supports general meshes as well as arbitrary approximation orders. The method is obtained combining ideas from the Hybrid High-Order and Discrete de Rham methods, and its robustness rests on a potential reconstruction and stabilisation terms that change in nature according to the value of the local friction coefficient. We derive error estimates that, thanks to the presence of cutoff factors, are valid across the all regimes and provide extensive numerical validation.
Fichier principal
Vignette du fichier
brinkman-poly.pdf (1.34 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03930849 , version 1 (09-01-2023)

Identifiants

Citer

Daniele Antonio Di Pietro, Jérôme Droniou. A polytopal method for the Brinkman problem robust in all regimes. Computer Methods in Applied Mechanics and Engineering, 2023, 409, pp.115981. ⟨10.1016/j.cma.2023.115981⟩. ⟨hal-03930849⟩
39 Consultations
32 Téléchargements

Altmetric

Partager

More