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Abstract

In this work we develop a discretisation method for the Brinkman problem that is
uniformly well-behaved in all regimes (as identified by a local dimensionless number with
the meaning of a friction coefficient) and supports general meshes as well as arbitrary
approximation orders. The method is obtained combining ideas from the Hybrid High-
Order and Discrete de Rham methods, and its robustness rests on a potential reconstruction
and stabilisation terms that change in nature according to the value of the local friction
coefficient. We derive error estimates that, thanks to the presence of cut-off factors, are
valid across the all regimes and provide extensive numerical validation.
MSC: 65N30, 65N08, 76S05, 76D07
Key words: Brinkman, Darcy, Stokes, Hybrid High-Order methods, Discrete de Rham
methods

1 Introduction
The Brinkman problem governs the flow of a viscous fluid in an inhomogeneous material where
fractures, bubbles, or channels are present within a porous matrix. Mathematically, this problem
translates into a system of partial differential equations with saddle-point structure which can
be regarded as a superposition of the Stokes and Darcy systems. As pointed out in [30], the
construction of finite element approximations that are uniformly well-behaved across the entire
range of (Stokes- or Darcy-dominated) regimes is not straightforward; a representative, but by
far not exhaustive, list of references is [2, 4, 12–14, 26, 28, 29, 34]. In [10], we introduced a
numerical method for the Brinkman problem on matching simplicial meshes and derived what
appears to be the first error estimate accounting for the local regime through a dimensionless
number which can be interpreted as a friction coefficient. Thanks to the presence of cutoff
factors, this error estimate holds in all situations, including the Stokes problem as well as the
singular limit corresponding to the pure Darcy problem.

In this work, we provide a positive answer to an open question left in the above reference,
namely whether similar robustness features and error estimates can be obtained on general
polytopal meshes. As for the original method of [10], the discretisation of the Stokes term is
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inspired by Hybrid High-Order (HHO) methods [19, 21, 23] while, for the Darcy and forcing
terms, a novel construction inspired by discrete de Rham methods [17, 20] (see also [22] for an
antecedent) replaces the one based on the Raviart–Thomas–Nédélec space [31, 32]. The first
central element in this construction is a discrete vector potential that changes in nature depending
on the value of the local friction coefficient. The other key ingredient are regime-dependent
stabilisation terms. Thanks to these novel tools, we are able to derive a robust estimate of
the adjoint error for the discrete divergence, which is the pivot result for the extension of the
techniques of [10] to polytopal meshes. The resulting error estimate, stated in Theorem 7 below,
is valid on the entire range of values for the local friction coefficient, from 0 (pure Stokes) to
+∞ (pure Darcy).

The rest of the work is organised as follows. In Section 2 we briefly recall the continuous and
discrete settings. In Section 3 we formulate the numerical scheme and state the main stability
and convergence results. Extensive numerical validation of these results on a variety of meshes
and regimes for analytical solutions is provided in Section 4, where a more physical three-
dimensional test case is also considered. Finally, the proofs of the main results are collected in
Section 5.

2 Setting
2.1 Continuous problem

Let Ω ⊂ R3 , 3 ∈ {2, 3}, denote a bounded connected open polytopal (i.e., polygonal if 3 = 2
and polyhedral if 3 = 3) domain with boundary mΩ. For the sake of simplicity, and without loss
of generality, we assume that Ω has unit diameter. Let two functions ` : Ω→ R and a : Ω→ R
be given. In what follows, we assume that there exist real numbers `, `, and a such that, almost
everywhere in Ω,

0 < ` ≤ ` ≤ `, 0 ≤ a ≤ a. (1)

Let f : Ω→ R3 and 6 : Ω→ R denote volumetric source terms. The Brinkman problem reads:
Find the velocity u : Ω→ R3 and the pressure ? : Ω→ R such that

−∇·(`∇u) + au + ∇? = f in Ω, (2a)
∇·u = 6 in Ω, (2b)

u = 0 on mΩ, (2c)∫
Ω

? = 0. (2d)

A few simplifications are made to make the exposition more compact while retaining all the
difficulties related to the robustness across the entire range of values for ` and a. First of all,
in (2a) we have considered a viscous term expressed in terms of the full gradient instead of
its symmetric part ∇s. The changes to replace ∇ with ∇s are standard in the HHO literature;
see, e.g., [11, 21] and [19, Chapter 7]. Second, we assume henceforth that both ` and a are
piecewise constant on a polytopal partition %Ω of the domain. The extension to coefficients
that vary smoothly inside each element, and are possibly full tensors, is also standard; see, in
particular, [19, Section 4.2].
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2.2 Discrete setting
2.2.1 Mesh and notation for inequalities up to a constant
We consider polytopal meshesMℎ ≔ Tℎ ∪ Fℎ matching the geometrical requirements detailed
in [19, Definition 1.4], with Tℎ set of elements and Fℎ set of faces. To avoid dealing with jumps
of the problem coefficients ` and a inside mesh elements, we additionally assume that Tℎ is
compatible with %Ω, meaning that, for each ) ∈ Tℎ, there exists l ∈ %Ω such that ) ⊂ l.
We then set `) ≔ ` |) and a) ≔ a |) for all ) ∈ Tℎ, noticing that these constant values are
uniquely defined in each element. For any . ∈ Mℎ, we denote by ℎ. its diameter, so that
ℎ = max)∈Tℎ ℎ) > 0. For every mesh element ) ∈ Tℎ, we denote by F) the subset of Fℎ
containing the faces that lie on the boundary m) of ) . For any mesh face � ∈ Fℎ, we fix once
and for all a unit normal vector n� and, for any mesh element ) ∈ Tℎ such that � ∈ F) , we let
l)� ∈ {−1, +1} denote the orientation of � relative to ) , selected so that l)�n� points out of
) . Boundary faces lying on mΩ are collected in the set F b

ℎ
.

Our focus being on the ℎ-convergence analysis, we assume thatMℎ belongs to a sequence of
refined polygonal or polyhedral meshes that is regular in the sense of [19, Definition 1.9]. This
implies, in particular, that the number of faces of each mesh element is bounded from above by
an integer independent of ℎ; see [19, Lemma 1.12].

From this point on, 0 . 1 (resp. 0 & 1) means 0 ≤ �1 (resp. 0 ≥ �1) with � only
depending on Ω, the mesh regularity parameter, and the polynomial degree : of the scheme
defined in Section 3. We stress that this means, in particular, that � is independent of the
problem parameters ` and a. We also write 0 ' 1 as a shorthand for “0 . 1 and 1 . 0”.
2.2.2 Polynomial spaces
Given . ∈ Tℎ ∪ Fℎ and an integer < ≥ 0, we denote by P< (. ) the space spanned by the
restriction to . of 3-variate polynomials of total degree ≤ <. The symbols P< (. ;R3) and
P
< (. ;R3×3) respectively denote the sets of vector- and tensor-valued functions over . whose

components are in P< (. ). For ) ∈ Tℎ, we will need the following direct decomposition of
P
< () ;R3) (see, e.g., [5, Corollary 7.4]):

P
< () ;R3) = G

< ()) ⊕ G
c,< ()),

with

G
< ()) ≔ ∇P<+1()) and G

c,< ()) ≔
{
(x − x) )⊥P<−1()) if 3 = 2,

(x − x) ) ×P<−1() ;R3) if 3 = 3,
(3)

where x) is a point such that ) is star-shaped with respect to a ball of radius & ℎ) and, in the
case 3 = 2, for any v ∈ R2 we denote by v⊥ the vector obtained rotating v by − c2 radians. Given
a polynomial (sub)space X< (. ) on . ∈ Tℎ ∪ Fℎ, the corresponding !2-orthogonal projector is
denoted by c<X,. . Boldface fonts will be used when the elements of X< (. ) are vector-valued.
The set of broken polynomials of total degree ≤ < on the mesh is denoted by P< (Tℎ), and the
corresponding !2-orthogonal projector by c<P,ℎ.
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2.2.3 Local friction coefficient
The regime inside each mesh element ) ∈ Tℎ is identified by the following dimensionless
number, which can be interpreted as a friction coefficient:

�f ,) ≔
a)ℎ

2
)

`)
. (4)

Elements for which �f ,) < 1 are in the Stokes-dominated regime, while elements for which
�f ,) ≥ 1 are in the Darcy-dominated regime. The values �f ,) = 0 and �f ,) = +∞ correspond
to pure Stokes and pure Darcy, respectively. Notice that �f ,) = +∞ is a singular limit which,
despite requiring to modify the continuous formulation (2), can be handled seamlessly by the
method developed in the next section; see Remark 8 below.

3 A robust numerical scheme for the Brinkman problem
3.1 Spaces
Let an integer : ≥ 0 be fixed. We define the following HHO space:

[:
ℎ
≔

{
v
ℎ
=

(
(v) ))∈Tℎ , (v�)�∈Fℎ

)
:

v) ∈ P: () ;R3) for all ) ∈ Tℎ and v� ∈ P: (�;R3) for all � ∈ Fℎ
}
.

Themeaning of the polynomial components in[:
ℎ
is provided by the interpolator O:

ℎ
: N1(Ω;R3) →

[:
ℎ
such that, for all v ∈ N1(Ω;R3),

O:ℎv ≔
(
(0:

P,)
v))∈Tℎ , (0:P,�v)�∈Tℎ ,

)
∈ [:

ℎ
,

where it is understood that !2-orthogonal projectors are applied to restrictions or traces as
needed. The restrictions of [:

ℎ
, v

ℎ
∈ [:

ℎ
, and O:

ℎ
to a mesh element ) , respectively denoted by

[:
)
, v

)
∈ [:

)
, and O:

)
, are obtained collecting the components attached to ) and its faces.

In what follows, given a logical proposition %, we denote by 〈%〉 its truth value such that

〈%〉 ≔
{
0 if % is false,
1 if % is true.

(5)

We define the following !2-like product in[:
ℎ
: For all (w

ℎ
, v
ℎ
) ∈ [:

ℎ
×[:

ℎ
,

(w
ℎ
, v
ℎ
)[,ℎ ≔

∑
)∈Tℎ
(w

)
, v
)
)[,) with

(w
)
, v
)
)[,) ≔ _)

∫
)

w) · v) + ℎ)
∑
�∈F)

〈�f ,) < 1 or � ∉ F b
ℎ 〉

∫
�

w� · v� ,
(6)

where _) ' 1 is a factor, based on the regularity of the element ) , chosen to balance out the
element and face contributions to (·, ·)[,) (see Section 4). The corresponding local and global
seminorms are obtained setting, for • ∈ Tℎ ∪ {ℎ},

‖v•‖[,• ≔ (v•, v•)
1/2
[,•. (7)
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The following boundedness property of the interpolator in the ‖·‖[,ℎ-norm follows from the
definition of this norm along with the uniform boundedness of the !2-orthogonal projectors
0:
P,.

, . ∈ Mℎ, and continuous trace inequalities (cf. [19, Lemma 1.31]): For all ) ∈ Tℎ and all
v ∈ N1() ;R3),

‖O:)v‖[,) . ‖v‖R2 () ;R3) + ℎ) |v |N1 () ;R3) . (8)

The velocity and pressure spaces, respectively incorporating the boundary and zero-average
conditions, are

[:
ℎ,0 ≔

{
v
ℎ
∈ [:

ℎ
: v� = 0 for all � ∈ F b

ℎ

}
, %:ℎ ≔ P

: (Tℎ) ∩ !20(Ω),

where, as usual, !20(Ω) =
{
@ ∈ !2(Ω) :

∫
Ω
@ = 0

}
.

Remark 1 (Boundary degrees of freedom). Note that the degrees of freedom on the boundary
faces of a vector in[:

ℎ
may not be controlled by the seminorms ‖·‖[,•. This is, however, not an

issue as the final problem will be set on [:
ℎ,0 (see also Remark 8 for the handling of boundary

values in the limiting case of the pure Darcy problem).
3.2 Viscous term
Let ) ∈ Tℎ be fixed. For the discretisation of the viscous term, we define the discrete gradient
M:
) : [:

)
→ P

: () ;R3×3) and the Stokes potential V:+1S,) : [:
)
→ P

: () ;R3) such that, for all
v
)
∈ [:

)
,∫
)

M:
)v) : 3 = −

∫
)

v) · ∇·3 +
∑
�∈F)

l)�

∫
�

v� · 3n� ∀3 ∈ P: () ;R3×3), (9)

and
∇V:+1S,) v) = 0:

G,)
M:
)v) ,

∫
)

V:+1S,) v) =

∫
)

v) , (10)

with 0:
G,)

applied to tensor-valued fields also acting row-wise. Likewise, in the formulas above,
∇· and ∇ are understood to act row-wise.

The Stokes term in (2a) is discretised through the bilinear form 0`,ℎ : [:
ℎ
×[:

ℎ
→ R such

that, for all (w
ℎ
, v
ℎ
) ∈ [:

ℎ
×[:

ℎ
,

0`,ℎ (wℎ
, v
ℎ
) ≔

∑
)∈Tℎ

`)0S,) (w) , v) ), (11)

where, for all ) ∈ Tℎ,

0S,) (w) , v) ) ≔
∫
)

M:
)w) : M:

)v) +
min(1, �−1

f ,)
)

ℎ2
)

(w
)
− O:)V

:+1
S,) w) , v) − O:)V

:+1
S,) v) )[,) . (12)

We define the following induced seminorms: For all v
ℎ
∈ [:

ℎ
,

‖v
ℎ
‖`,ℎ ≔ 0`,ℎ (vℎ, vℎ)

1/2 and ‖v
)
‖S,) ≔ 0S,) (v) , v) )

1/2 for all ) ∈ Tℎ. (13)
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Lemma 2 (Norm equivalence). Let ) ∈ Tℎ and v
)
∈ [:

)
. Then, it holds

‖∇v) ‖2R2 () ;R3×3) +
1

ℎ)

∑
�∈F)

‖v) − v� ‖2R2 (�;R3) & ‖v) ‖
2
S,) . (14)

Assuming, moreover, �f ,) < 1, we also have

‖∇v) ‖2R2 () ;R3×3) +
1

ℎ)

∑
�∈F)

‖v) − v� ‖2R2 (�;R3) . ‖v) ‖
2
S,) . (15)

Proof. For the sake of brevity, we only prove (15). The proof of (14) hinges on similar
arguments, together with the fact thatmin(1, �−1

f ,)
) ≤ 1, and is left to the reader. Taking 3 = ∇v)

in (9), integrating by parts the first term in the right-hand side, and using Cauchy–Schwarz and
discrete trace inequalities (see [19, Lemma 1.32]) as in the proof of [19, Eq. (2.25)], we get,
after simplifying and raising to the square,

‖∇v) ‖2R2 () ;R3×3) . ‖M
:
)v) ‖

2
R2 () ;R3×3) + ℎ

−1
)

∑
�∈F)

‖v) − v� ‖2R2 (�;R3) . (16)

To estimate the second term, for any � ∈ F) , we insert ±(0:P,)V
:+1
S,) v) − 0:

P,�
V:+1S,) v) ) and use

triangle inequalities to get

ℎ−1) ‖v) − v� ‖2R2 (�;R3) . ℎ
−1
) ‖v) − 0:

P,)
V:+1S,) v) ‖

2
R2 (�;R3) + ℎ

−1
) ‖v� − 0:

P,�
V:+1S,) v) ‖

2
R2 (�;R3)

+ ℎ−1) ‖0:P,� (V
:+1
S,) v) − 0:

P,)
V:+1S,) v) )‖

2
R2 (�;R3)

. ℎ−2) ‖v) − 0:
P,)

V:+1S,) v) ‖
2
R2 () ;R3) + ℎ

−1
) ‖v� − 0:

P,�
V:+1S,) v) ‖

2
R2 (�;R3)

+ ℎ−2) ‖V:+1S,) v) − 0:
P,)

V:+1S,) v) ‖
2
R2 () ;R3)

. ℎ−2) ‖v) − O:)V
:+1
S,) v) ‖

2
[,) + ‖∇V:+1S,) v) ‖

2
R2 () ;R3×3)

.
min(1, �−1

f ,)
)

ℎ2
)

‖v
)
− O:)V

:+1
S,) v) ‖

2
[,) + ‖M

:
)v) ‖

2
R2 () ;R3×3) = ‖v) ‖

2
S,) ,

(17)

where we have used the !2-boundedness of 0:
P,�

along with discrete trace inequalities in the
second passage, the definition (7) of ‖·‖[,) along with �f ,) < 1 for the first two terms and the
approximation properties of 0:

P,)
for the last term in the third passage, and concluded noticing

that 1 = min(1, �−1
f ,)
) and that∇V:+1S,) v) is by definition the !

2-orthogonal projection ofM:
)v) on

G
: ())3 (see (10)), so that ‖∇V:+1S,) v) ‖R2 () ;R3×3) ≤ ‖M:

)v) ‖R2 () ;R3×3) . Plugging (17) into (16)
and using the fact that card(F) ) . 1 by mesh regularity, we get ‖∇v) ‖2R2 () ;R3×3) . ‖v) ‖

2
S,) ,

which is the sought estimate for the first term in the left-hand side of (15). The fact second term
is . ‖v

)
‖2S,) is an immediate consequence of (17) along with card(F) ) . 1. �

Remark 3 (HHO stabilisation). It is not difficult to check that the bilinear form [:
)
× [:

)
3

(w
)
, v
)
) ↦→ (w

)
− O:

)
V:+1S,) w) , v) − O:

)
V:+1S,) v) )[,) matches [19, Assumption 8.10]. As a matter

of fact, this bilinear form is clearly positive-semidefinite, it satisfies the requested seminorm
equivalence by (14) and (15), and is polynomially consistent since it only depends on its
arguments through the difference operators defined by [19, Eq. (8.30)].
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3.3 Darcy term
Let again ) ∈ Tℎ. The discretisation of the Darcy and coupling terms hinges on the discrete
divergence �:

)
: [:

)
→ P: ()) such that

�:
)v) ≔ tr(M:

)v) ) ∀v
)
∈ [:

)
. (18)

Based on this operator, we define the Darcy potential V:D,) : [:
)
→ P

: () ;R3) such that, for all
v
)
∈ [:

)
and all (@, w) ∈ P:+1()) ×Gc,: ()),∫
)

V:D,)v) · (∇@ + w) = −
∫
)

�:
)v) @ +

∑
�∈F)

l)�

∫
�

(v� · n�) @ +
∫
)

v) · w. (19)

This Darcy potential will play a key role in the discretisation of the source term, to ensure that
the scheme is fully robust in the whole range of friction coefficients; see Remark 13.
Remark 4 (Link with DDR). Recall the Discrete De Rham N(div;Ω)-like space

^:
div,ℎ ≔

{
v
ℎ
=

(
(vG,) , vcG,) ))∈Tℎ , (E�)�∈Fℎ

)
:

vG,) ∈ G:−1()) and vc
G,)
∈ Gc,: ()) for all ) ∈ Tℎ,

E� ∈ P: (�) for all � ∈ Fℎ
}
.

Noticing that G:−1()) ⊂ G
: ()) (cf. (3)), this space injects into[:

ℎ
through the mapping

^:
div,ℎ 3 vℎ ↦→

(
(ℜ:

G,)
(vG,) , vcG,) )))∈Tℎ , (E�n�)�∈Fℎ

)
∈ [:

ℎ
,

where ℜ:
G,)

: G: ()) × G
c,: ()) → P

: () ;R3) denotes the recovery operator [17, Eq. (2.17)],
which satisfies 0:

G,)
ℜ:

G,)
(vG,) , vcG,) ) = vG,) and 0c,:

G,)
ℜ:

G,)
(vG,) , vcG,) ) = vc

G,)
(where 0c,:

G,)
is

the !2-orthogonal projector on G
c,: ()). It can be checked that the discrete divergence (18)

and the Darcy potential (19) only depend on the polynomial components shared by [:
)
and

^:
div,) , and that they coincide with the corresponding DDR operators respectively defined by

[17, Eqs. (3.32) and (4.9)–(4.10)].
Accounting for the previous remark and recalling [17, Eq. (4.12) and (4.13)], it holds

0:−1
P,)

V:D,)v) = 0:−1
P,)

v) ∀v
)
∈ [:

)
, (20)

V:D,) O
:
)v = v ∀v ∈ P: () ;R3). (21)

The approximation properties of V:D,) in the !2-norm have been studied in [17, Theorem 6].
The following proposition extends the above results to general Hilbert seminorms.

Proposition 5 (Approximation properties of the Darcy potential). Let an integer A ∈ {0, . . . , :}
be given. Then, for all ) ∈ Tℎ, all v ∈ NA+1() ;R3), and all < ∈ {0, . . . , A + 1},

|v − V:D,) O
:
)v |N< () ;R3) . ℎ

A+1−<
) |v |NA+1 () ;R3) . (22)
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Proof. By [19, Proposition 1.35], V:D,) ◦ O
:
)
: N1() ;R3) → P

: () ;R3) is a projector owing to
(21). By [19, Lemma 1.43], it then suffices to prove that, for all v ∈ N1() ;R3),

‖V:D,) O
:
)v‖R2 () ;R3) . ‖v‖R2 () ;R3) + ℎ) |v |N1 () ;R3) if < = 0, (23)

|V:D,) O
:
)v |N1 () ;R3) . |v |N1 () ;R3) if < ≥ 1. (24)

To prove (23), it suffices to recall Remark 4 and use [18, Eqs. (4.24) and (4.28)]. To prove (24),
we write

|V:D,) O
:
)v |N1 () ;R3) = |V

:
D,) O

:
) (v − 00

P,)
v) |N1 () ;R3)

. ℎ−1) ‖V:D,) O
:
) (v − 00

P,)
v)‖R2 () ;R3) [19, Eq. (1.46)]

. ℎ−1) ‖v − 00
P,)

v‖R2 () ;R3) + |v − 00
P,)

v |N1 () ;R3) Eq. (23)
. |v |N1 () ;R3) ,

where the first line follows using the polynomial consistency (21) of V:D,) to write 0 =

|00
P,)

v |N1 () ;R3) = |V:D,) O
:
)
00
P,)

v |N1 () ;R3) , while the conclusion follows from a Poincaré–
Wirtinger inequality on the zero-average function v − 00

P,)
v. �

Let Ṽ:D,) : [:
)
→ P: () ;R3) be such that

Ṽ
:

D,)v) ≔ 〈�f ,) < 1〉v) + 〈�f ,) ≥ 1〉V:D,)v) ∀v
)
∈ [:

)
. (25)

The Darcy term in (2a) is discretised by means of the bilinear form 0a,ℎ : [:
ℎ
×[:

ℎ
→ R such

that, for all (w
ℎ
, v
ℎ
) ∈ [:

ℎ
×[:

ℎ
,

0a,ℎ (wℎ
, v
ℎ
) ≔

∑
)∈Tℎ

a)0D,) (w) , v) ) (26)

with, for all ) ∈ Tℎ,

0D,) (w) , v) ) ≔
∫
)

Ṽ
:

D,)w) · Ṽ
:

D,)v) +min(1, �f ,) ) (w)− O
:
)V

:
D,)w) , v)− O

:
)V

:
D,)v) , )[,) . (27)

We define the following induced norms: For all v
ℎ
∈ [:

ℎ
,

‖v
ℎ
‖a,ℎ ≔ 0a,ℎ (vℎ, vℎ)

1/2 and ‖v
)
‖D,) ≔ 0D,) (v) , v) )

1/2 for all ) ∈ Tℎ. (28)

3.4 Coupling

The coupling terms in (2a) and (2b) are discretised by the bilinear form 1ℎ : [
:
ℎ
× P: (Tℎ) → R

such that, for all (v
ℎ
, @ℎ) ∈ [:

ℎ
× P: (Tℎ),

1ℎ (vℎ, @ℎ) ≔ −
∑
)∈Tℎ

∫
)

�:
)v) @) , (29)

where @) denotes the restriction of @ℎ to ) . Recalling [19, Eq. (8.36)], it holds: For all
v ∈ N1(Ω;R3),

1ℎ (O:ℎv, @ℎ) = −
∫
Ω

∇·v @ℎ ∀@ℎ ∈ P: (Tℎ). (30)
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3.5 Discrete problem and main results

The discrete problem reads: Find (u
ℎ
, ?ℎ) ∈ [:

ℎ,0 × %:ℎ such that

0`,ℎ (uℎ, vℎ) + 0a,ℎ (uℎ, vℎ) + 1ℎ (vℎ, ?ℎ) =
∑
)∈Tℎ

∫
)

f · Ṽ:D,)v) ∀v
ℎ
∈ [:

ℎ,0,

−1ℎ (uℎ, @ℎ) =
∫
Ω

6@ℎ ∀@ℎ ∈ %:ℎ .
(31)

The equivalent variational formulation is: Find (u
ℎ
, ?ℎ) ∈ [:

ℎ,0 × %:ℎ such that

Aℎ ((uℎ, ?ℎ), (vℎ, @ℎ)) =
∑
)∈Tℎ

∫
)

f · Ṽ:D,)v) +
∫
Ω

6@ℎ, (32)

with Aℎ :
(
[:
ℎ
× %:

ℎ

)2 → R such that, for all (w
ℎ
, Aℎ) and all (vℎ, @ℎ) in[

:
ℎ
× %:

ℎ
,

Aℎ ((wℎ
, Aℎ), (vℎ, @ℎ)) ≔ 0`,ℎ (wℎ

, v
ℎ
) + 0a,ℎ (wℎ

, v
ℎ
) + 1ℎ (vℎ, Aℎ) − 1ℎ (wℎ

, @ℎ). (33)

Recalling (13) and (28), we equip the space [:
ℎ,0 with the following natural energy norm:

For all v
ℎ
∈ [:

ℎ,0,

‖v
ℎ
‖`,a,ℎ ≔

(
‖v

ℎ
‖2`,ℎ + ‖vℎ‖

2
a,ℎ

)1/2
(34)

and, given a linear form ℓℎ : [
:
ℎ,0 → R, we denote its dual norm by

‖ℓℎ‖`,a,ℎ,∗ ≔ sup
v
ℎ
∈[:

ℎ,0\{0}

ℓℎ (vℎ)
‖v

ℎ
‖`,a,ℎ

.

The bilinear form 0`,ℎ + 0a,ℎ is ‖·‖`,a,ℎ-coercive with unit coercivity constant. The well-
posedness of (31) then classically follows from the theory of mixed methods (see, e.g., [19,
Lemma A.11]) thanks to the inf-sup condition on 1ℎ stated in the following lemma.

Lemma 6 (Inf-sup condition on 1ℎ). Letting V ≔ (` + a)−1/2, it holds, for all @ℎ ∈ %:ℎ ,

V‖@ℎ‖!2 (Ω) . sup
v
ℎ
∈[:

ℎ,0\{0}

1ℎ (vℎ, @ℎ)
‖v

ℎ
‖`,a,ℎ

.

Proof. See Section 5.1. �

Thanks to the presence of cut-off factors, the following error estimate is robust across the
entire range of (local) regimes.

Theorem 7 (Error estimate). Denote by (u, ?) ∈ N1
0(Ω;R3) × !20(Ω) the unique solution to

the standard weak formulation of (2) and by (u
ℎ
, ?ℎ) ∈ [:

ℎ,0 × %:ℎ the unique solution of the
numerical scheme (31) (or, equivalently, (32)). Then, recalling the notation (5) for the truth value

9



of a logical proposition and assuming, for some A ∈ {0, . . . , :}, u ∈ NA+2(Tℎ;R3), ? ∈ �1(Ω),
and, for all ) ∈ Tℎ, ? ∈ �A+1+〈�f ,) ≥1〉 ()), it holds,

‖u
ℎ
− O:ℎu‖

2
`,a,ℎ + ‖?ℎ − c

:
P,ℎ?‖

2
!2 (Ω)

.
1

W2

[ ∑
)∈Tℎ

`) min(1, �−1f ,) )ℎ
2(A+1)
)

|u |2
NA+2 () ;R3) +

∑
)∈Tℎ

a) min(1, �f ,) )ℎ2(A+1))
|u |2

NA+1 () ;R3)

+
∑
)∈Tℎ

(
`−1) 〈�f ,) < 1〉ℎ2(A+1)

)
|? |2

�A+1 ()) + a
−1
) 〈�f ,) ≥ 1〉ℎ2(A+1)

)
|? |2

�A+2 ())

) ]
,

(35)
where W−2 ≔ 4V−4 + 8V−2 + 1 with V as in Lemma 6, while, for all ) ∈ Tℎ, a−1) 〈�f ,) ≥ 1〉 ≔ 0 if
a) = 0.

Proof. See Section 5.2. �

Remark 8 (Robustness of the error estimate and application to the Darcy problem). In the spirit
of [10, Remark 13], the presence of the cutoff factorsmin(1, �−1

f ,)
),min(1, �f ,) ), `−1) 〈�f ,) < 1〉,

and a−1
)
〈�f ,) ≥ 1〉 makes the above estimate robust across the entire range �f ,) ∈ [0, +∞).

The case �f ,) = +∞ corresponds to the pure Darcy problem, which is the singular limit
obtained assuming minΩ a > 0 and �f ,) = +∞ for all ) ∈ Tℎ. In this case, a more in-depth
discussion is in order. Denoting by Wn the normal trace operator on mΩ, the space for the velocity
becomes N0(div;Ω) ≔ {v ∈ N(div;Ω) : Wn (v) = 0 on mΩ}, and the weak formulation of (2)
yields the Darcy problem in mixed form. The error estimate (35) remains valid under the
regularity assumption u ∈ NA+1(Tℎ;R3), and provided the following conventions are adopted:
`−1
)
〈�f ,) < 1〉 ≔ 0 and, for any v ∈ N0(div;Ω) ∩ N1(Tℎ;R3), all the components of the

boundary values of O:
ℎ
v are forced to zero, i.e., (O:

ℎ
v)� ≔ 0 for all � ∈ F b

ℎ
. Notice that the

tangential components of the velocity on boundary faces do not appear in the formulation of the
method when ` = 0. To check this fact:

• Concerning the Darcy contribution 0D,) (cf. (27)), recall Remark 4 for the consistent term
while, for the stabilisation term, notice that, by (6), boundary faces are not present in
(·, ·)[,) since �f ,) ≥ 1 for all ) ∈ Tℎ ;

• Concerning the coupling term 1ℎ (cf. (29)), notice that the following equivalent formula-
tion results applying the definition (9) of M:

) with 3 = @) O3 ≔ (@ℎ) |) O3 for all ) ∈ Tℎ:

1ℎ (vℎ, @ℎ) =
∑
)∈Tℎ

(∫
)

v) · ∇@) −
∑
�∈F)

l)�

∫
�

(v� · n�) @)

)
,

clearly showing that 1ℎ is independent of the tangential component of v� for all � ∈ Fℎ.
The method obtained for the pure Darcy problem has more unknowns than, say, the mixed

method of [22] or a similar one that could be obtained starting from the space ^:
div,ℎ of [17]. In

particular, the tangential components of interface unknowns are not present in the consistency
term of 0D,) (see again Remark 4), but are controlled by the stabilisation term. Despite this
difference in the discrete space for the flux, the estimate for the error on u resulting from (35)
in the pure Darcy case is analogous to the one given in [22, Theorem 6] (where the highest
regularity case corresponding to A = : is considered).
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4 Numerical tests
In this section we numerically assess the convergence properties of the scheme (31) for different
values of the friction coefficient (including the limit cases) and on both standard and genuinely
polyhedral meshes.

The code used for the numerical tests is part of the open source C++ HArDCore3D library;
see https://github.com/jdroniou/HArDCore. In order to reduce the size of the global
linear systems, static condensation was applied the scheme (31) in accordance with the principles
outlined in [19, Appendix B]; see [24, Section 6] for a discussion specific to the Stokes equations
and [9] for a study of the effect of static condensation on ?-multilevel preconditioners for the
Stokes problem. We have chosen to locally eliminate all element degrees of freedom except for
the average value of the pressure inside each element. The linear systems were solved using the
Intel MKL PARDISO library (see https://software.intel.com/en-us/mkl).

The parameter _) in (6) was chosen as ℎ3
)

|) | card(F) ), to give a larger weight to the element
contribution in (7) when ) is elongated or has many faces: this compensates the relatively larger
contribution, in these circumstances, of the boundary terms in this local norm. We have also
applied scalings to the stabilisation terms in (12) and (27): 3 for the Stokes stabilisation, 0.3 for
the Darcy stabilisation. Introducing scalings in the stabilisation terms is not strictly necessary to
observe the convergence of the scheme at the expected rates, but we noticed that they improve the
magnitudes of the relative errors. Understanding the optimal scaling of stabilisations involved
in polytopal methods is an ongoing subject of investigation; here, these numbers were found by
quick trial and error on unexpensive tests (low degree : , coarse meshes), before being used in
all the tests below.
4.1 Convergence in various regimes
Following [10], we consider a constant viscosity ` and inverse permeability a, and we evaluate
the relative velocity–pressure error

�u,? =

(
‖u

ℎ
− O:

ℎ
u‖2

`,a,ℎ
+ ‖?ℎ − c:P,ℎ?‖

2
!2 (Ω)

)1/2
(
‖O:
ℎ
u‖2

`,a,ℎ
+ ‖c:P,ℎ?‖

2
!2 (Ω)

)1/2 ,

when the nature of the exact solution (u, ?) is determined by the global friction coefficient
�f ,Ω = a/`, with the convention �f ,Ω = +∞ if ` = 0. Specifically, we consider the domain
Ω = (0, 1)3 and, setting jS(�f ,Ω) ≔ exp(−�f ,Ω), the pressure and velocity are chosen as

?(G, H, I) = sin(2cG) sin(2cH) sin(2cI) ∀(G, H, I) ∈ Ω,
u = jS(�f ,Ω)uS + (1 − jS(�f ,Ω))uD,

where uS and uD are the velocity obtained in the Stokes (�f ,Ω = 0) and Darcy (�f ,Ω = +∞)
limits, and are given by

uS(G, H, I) =
1

2


sin(2cG) cos(2cH) cos(2cI)
cos(2cG) sin(2cH) cos(2cI)
−2 cos(2cG) cos(2cH) sin(2cI)

 ∀(G, H, I) ∈ Ω,

uD =

{
−a−1∇? if a > 0,
0 otherwise.

11
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We notice that ∇·uS = 0 and that auD + ∇? = 0; these are expected relations, respectively,
for a solution of an incompressible Stokes equation, and for a solution of a Darcy equation in
mixed form (when gravity is neglected). The meshes used for the test correspond to the families
of Voronoi meshes “Voro-small-0”, of tetrahedral meshes “Tetgen-Cube-0” and of random
hexahedral meshes “Random-Hexahedra” available on the HArDCore3D repository. The errors
as a function of ℎ are presented in Figures 1, 2 and 3, showing that the predicted convergence is
observed in practice for all the considered mesh families and polynomial degrees, and that both
orders of convergence and magnitudes of errors are robust in all regimes.

: = 0; : = 1; : = 2 : = 3
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(b) ` = 1, a = 0

10−1 100

10−3

10−2

10−1

100

1

1

1

2

1

3

1

4

(c) ` = 0, a = 1

Figure 1: Voronoi meshes: errors �D,? with respect to ℎ

4.2 Lid-driven cavity in porous medium
The tests in this section are inspired by situations described in [1, 6]. In these references, a
V-crack is realised at the top of a homogeneous porous medium, and plays the role of a lid-driven
cavity (with a Stokes-dominated model in this cavity, while the rest of the medium is modelled
using pure Darcy flow), and low-order mixed finite elements on triangles/tetrahedra are used to
simulate the flow.
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(c) ` = 0, a = 1

Figure 2: Tetrahedral meshes: errors �D,? with respect to ℎ

We consider here a cavity, where a pure Stokes flow occurs, sitting in a porous medium,
with pure Darcy flow; the porous medium is heterogeneous, with permeability equal to 10−7

in the surrounding “box” and 10−2 in a “wedge” at the outset of the cavity; see Figure 4, left.
The domain is Ω = (−1, 2) × (−1, 2) × (−2, 0), with the cavity being (0, 1)3 and the wedge
{(G, H, I) ∈ R3 : 1 < G < 2 , 0 < H < 1 , −0.75(G − 1) + 0.25 < I < 0}. The domain has been
meshed using gmsh (https://gmsh.info/), with cubic elements in the cavity, andmostly tetrahedral
elements in the porous medium (together with a few pyramidal elements at the junctions cavity–
porous medium); see Figure 4, right, for an example of mesh, and Table 1 for the characteristic
of all meshes. The files describing the geometry are available in the HArDCore repository.

The forcing term f = (0, 0,−0.98) represents the gravity, while we fix 6 = 0. The boundary
conditions on the velocity are u(G, H, I) = (G(1 − G), 0, 0) on top of the cavity, and u = 0
elsewhere. Figure 5 presents the streamlines obtained on the third mesh in the family with
: = 2. These streamlines show the usual form of circulation inside the cavity for a pure Stokes
lid-driven cavity, which drives some (slower) motion inside the wedge section of the porous
medium; given the very low permeability of the rest of the medium, little material is transferred
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(c) ` = 0, a = 1

Figure 3: Random hexahedral meshes: errors �D,? with respect to ℎ

into this medium, in which the velocity remains almost zero; in the region I < −1 below the
cavity, for example, the maximum of the vertex values (obtained by averaging the potential
reconstructions in each element surrounding the vertices) of the velocity is below 6 × 10−5.

To qualitatively assess the impact of increasing the degree of approximation : of the method,
we evaluate for various meshes and degrees the flux across the interface Γ = {0} × (0, 1) ×
(−0.75, 1) between the cavity and the wedge. All the meshesMℎ we consider are compatible
with this interface, that is, setting Γℎ = {� ∈ Fℎ : � ⊂ Γ} we have Γ = ∪�∈Γℎ�. We then
consider the numerical convergence of the numerical flux defined by∑

�∈Γℎ

∫
�

u� · nΓ,

where nΓ = (1, 0, 0) is the unit normal to Γ pointing inside the wedge. The values of this
flux for different degrees of approximations : are provided in Figure 6 (left: w.r.t. the mesh
size; right: w.r.t. the total wall time, including assembly and solution time – notice that the
HArDCore library uses multi-threading processes). These results show that the lowest order of
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Figure 4: Left: geometry of the cavity (green) inside the porous medium, comprising a wedge
(green) and the surrounding box (shadow). Right: example of mesh used in the simulations.

Mesh index 1 2 3 4 5

Mesh size 0.95 0.61 0.54 0.22 0.17
Num. of elements 1,326 5,935 7,963 99,748 201,653

Table 1: Characteristics of the mesh family for the tests in Section 4.2.

approximation struggles to provide what seems to be a correct value of the flux, and that the
mesh must be extremely fine to get close to this value; on the contrary, for : ≥ 1, all results, even
on coarse meshes and with a low computational cost, seem to be very close to a given value,
indicating that convergence has already occurred in these cases. These results corroborate a
conclusion already highlighted in [3]: even on a problem where the solution is not expected to
be very regular, slightly increasing the order of approximation of the scheme (here, going from
: = 0 to : = 1) can lead to a vastly improved accuracy of the numerical outputs at a very low
computational cost.

5 Analysis
5.1 Stability
Proposition 9 (‖·‖`,a,ℎ-boundedness of the interpolator). With V as in Lemma 6, it holds, for all
v ∈ N1(Ω;R3),

V‖O:ℎv‖`,a,ℎ . ‖v‖N1 (Ω;R3) . (36)

Proof. It holds, by definition, ‖O:
ℎ
v‖2

`,a,ℎ
=

∑
)∈Tℎ [`)T1()) + a)T2()) + a)T3())] with

T1()) ≔ ‖M:
) O

:
)v‖

2
R2 () ;R3×3) +

min(1, �−1
f ,)
)

ℎ2
)

‖O:) (v − V:+1S,) O
:
)v)‖

2
[,) ,

T2()) ≔ ‖ Ṽ
:

D,) O
:
)v‖

2
R2 () ;R3) , T3()) ≔ min(1, �f ,) )‖O:) (v − V:D,) O

:
)v)‖

2
[,) .

For the first term, combining (14) and [19, Eqs. (8.25)], we obtain T1()) . |v |2N1 () ;R3) . For
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Figure 5: Streamlines for the test case of Section 4.2 (cavity and wedge displayed in shadow).
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Figure 6: Convergence of flux values from the cavity to the wedge.

the second term, if �f ,) < 1, we can write T2()) = ‖0:P,)v‖
2
R2 () ;R3) ≤ ‖v‖

2
R2 () ;R3) using the

boundedness of 0:
P,)

, while, if �f ,) ≥ 1, (23) gives T2()) . ‖v‖2R2 () ;R3) + ℎ
2
)
|v |2

N1 () ;R3) ≤
‖v‖2

N1 () ;R3) , where the conclusion follows observing that ℎ) ≤ 1 since Ω has unit diameter by
assumption. Finally, for the third term, the boundedness (8) of the interpolator in the ‖·‖[,) -
norm followed by the approximation properties (22) of V:D,) ◦ O

:
)
with (A, <) = (0, 0) and

(A, <) = (0, 1) yield

T3()) . ‖v − V:D,) O
:
)v‖

2
R2 () ;R3) + ℎ

2
) |v − V:D,) O

:
)v |

2
N1 () ;R3) . ℎ

2
) |v |2N1 () ;R3) .

Gathering the above estimates and recalling the bounds (1) on ` and a, the result follows. �

Proof of Lemma 6. Classical consequence of the continuous inf-sup condition for the divergence
∇· : N1

0(Ω;R3) → !20(Ω) (see, e.g., [8, 25, 27, 33]) along with the Fortin properties for the
interpolator corresponding to (30) and (36); see, e.g., [7, Section 5.4.3] for further details. �

5.2 Convergence
The purpose of this section is to prove Theorem 7. The proof rests on consistency results for the
Stokes, Darcy, and coupling bilinear forms as well as the forcing term linear form which make
the object of the following subsections.
5.2.1 Consistency of the Stokes bilinear form

Lemma 10 (Consistency of the Stokes bilinear form). Given w ∈ N1
0(Ω;R3) such that

∇·(`∇w) ∈ R2(Ω;R3), let the Stokes consistency error linear form E:
S,ℎ
(w; ·) : [:

ℎ,0 → R
be such that, for all v

ℎ
∈ [:

ℎ,0,

E:S,ℎ (w; vℎ) ≔ −
∑
)∈Tℎ

∫
)

∇·(`)∇w) · v) − 0`,ℎ (O:ℎw, vℎ). (37)
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Then, further assuming w ∈ NA+2(Tℎ;R3) for some A ∈ {0, . . . , :}, it holds

‖E:S,ℎ (w; ·)‖`,a,ℎ,∗ .
(∑
)∈Tℎ

`) min(1, �−1f ,) )ℎ
2(A+1)
)

|w |2
NA+2 () ;R3)

)1/2

. (38)

Proof. Let v
ℎ
∈ [:

ℎ,0 \ {0}. Proceeding as in [19, Point (ii) in Lemma 2.18] using an integration
by parts for the first term in the definition of E:

S,ℎ
along with the definitions (11) of 0`,ℎ and (9)

of M:
) for the second term, we get the following reformulation of the error:

E:S,ℎ (w; vℎ) =
∑
)∈Tℎ

∑
�∈F)

l)�

∫
�

`) (∇w − M:
) O

:
)w)n� · (v� − v) )

−
∑
)∈Tℎ

`) min(1, �−1
f ,)
)

ℎ2
)

(O:) (w − V:+1S,) O
:
)w), v) − O:)V

:+1
S,) v) )[,) .

Using Cauchy–Schwarz and Hölder inequalities along with ‖n� ‖R∞ (�;R3) ≤ 1 for all � ∈ Fℎ,
we can write

E:S,ℎ (w; vℎ) .
∑
)∈Tℎ
[T1()) + T2())] (39)

with

T1()) ≔ `
1/2
)
ℎ
1/2
)
‖∇w − M:

) O
:
)w‖R2 (m) ;R3×3)

(
`)

ℎ)

∑
�∈F)

‖v� − v) ‖2R2 (�;R3)

)1/2

,

T2()) ≔
`) min(1, �−1

f ,)
)

ℎ2
)

‖O:) (w − V:+1S,) O
:
)w)‖[,) ‖v) − O:)V

:+1
S,) v) ‖[,) .

Let us estimateT1()). Recalling thatM:
) ◦ O:) = 0:

P,)
and using the approximation properties

of this projector (cf. [15] and [19, Chapter 1] concerning the extension to non-star-shaped
elements), it is readily inferred for the first factor

`
1/2
)
ℎ
1/2
)
‖∇w − M:

) O
:
)w‖R2 (m) ;R3×3) . `

1/2
)
ℎA+1) |w |NA+2 () ;R3) .

The estimate of the second factor depends on the regime. If �f ,) < 1, using (15) we write
`)

ℎ)

∑
�∈F)

‖v� − v) ‖2R2 (�;R3) . `) ‖v) ‖
2
S,) = `) min(1, �−1f ,) )‖v) ‖

2
S,) , (40)

where the conclusion follows observing that 1 = min(1, �−1
f ,)
). If, on the other hand, �f ,) ≥ 1

(which implies, in particular, a) > 0), we insert ±V:D,)v) into the norm and use triangle and
discrete trace inequalities to write

`)

ℎ)

∑
�∈F)

‖v� − v) ‖2R2 (�;R3)

. a)�
−1
f ,)

(
ℎ)

∑
�∈F)

‖v� − V:D,)v) ‖
2
R2 (�;R3) + ‖v) − V:D,)v) ‖

2
R2 () ;R3)

)
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. a)�
−1
f ,)

(
ℎ)

∑
�∈F) ∩F b

ℎ

‖v� − V:D,)v) ‖
2
R2 (�;R3) + ‖v) − O:)V

:
D,)v) ‖

2
[,)

)
where we have additionally used the definition (4) of �f ,) in the first inequality, and continued
invoking the definition of ‖·‖[,) (see (6)–(7)) to bound the element term and the non-boundary
face terms in the second line by ‖v

)
− O:

)
V:D,)v) ‖

2
[,) . For all � ∈ F) ∩ F b

ℎ
, we have v� = 0

by definition of [:
ℎ,0 and, using discrete trace inequalities and the mesh regularity to write

card(F) ) . 1, we infer that

`)

ℎ)

∑
�∈F)

‖v� − v) ‖2R2 (�;R3) . a)�
−1
f ,)

(
‖V:D,)v) ‖

2
R2 () ;R3) + ‖v) − O:)V

:
D,)v) ‖

2
[,)

)
. a)�

−1
f ,) ‖v) ‖

2
D,) ,

where the last passage follows recalling the definitions (28) of the ‖·‖D,) -norm, (25) of Ṽ:D,)
(which is equal to V:D,) since �f ,) ≥ 1), and observing that 1 = min(1, �f ,) ). Hence, further
observing that �−1

f ,)
= min(1, �−1

f ,)
), we can go on writing

`)

ℎ)

∑
�∈F)

‖v� − v) ‖2R2 (�;R3) . a) min(1, �−1f ,) )‖v) ‖
2
D,) . (41)

Gathering (40) and (41), we arrive at

T1()) . `
1/2
)

min(1, �−1f ,) )
1/2ℎA+1) |w |NA+2 () ;R3)

(
`) ‖v) ‖

2
S,) + a) ‖v) ‖

2
D,)

)1/2
. (42)

Moving to T2()), using the ‖·‖[,) -boundedness (8) of O:) followed by the approximation
properties of V:+1S,) ◦ O:

)
(consequence, for each of its components, of [19, Eq. (2.14) and

Theorem 1.48]), we have

‖O:) (w−V
:+1
S,) O

:
)w)‖[,) . ‖w−V

:+1
S,) O

:
)w‖R2 () ;R3)+ℎ) |w−V

:+1
S,) O

:
)w |N1 () ;R3) . ℎ

A+2
) |w |NA+2 () ;R3) .

Plugging this estimate into the definition of T2()) and recalling the definition (13) of ‖·‖S,) , we
get

T2()) . `
1/2
)

min(1, �−1f ,) )
1/2ℎA+1) |w |NA+2 () ;R3) `

1/2
)
‖v
)
‖S,) . (43)

Using (42) and (43) to estimate the right-hand side of (39), we obtain

E:S,ℎ (w; vℎ) .
∑
)∈Tℎ

`
1/2
)

min(1, �−1f ,) )
1/2ℎA+1) |w |NA+2 () ;R3)

(
`) ‖v) ‖

2
S,) + a) ‖v) ‖

2
D,)

)1/2
≤

(∑
)∈Tℎ

`) min(1, �−1f ,) )ℎ
2(A+1)
)

|w |2
NA+2 () ;R3)

)1/2

‖v
ℎ
‖`,a,ℎ,

where the conclusion follows using a discrete Cauchy–Schwarz inequality on the sum over
) ∈ Tℎ along with the definition (34) of ‖·‖`,a,ℎ. Dividing by ‖v

ℎ
‖`,a,ℎ and passing to the

supremum concludes the proof of (38). �
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5.2.2 Consistency of the Darcy bilinear form

Lemma 11 (Consistency of the Darcy bilinear form). Given w ∈ N1(Ω;R3), let the Darcy
consistency error linear form E:

D,ℎ
(w; ·) : [:

ℎ
→ R be such that, for all v

ℎ
∈ [:

ℎ
,

E:D,ℎ (w; vℎ) ≔
∑
)∈Tℎ

∫
)

a)w · Ṽ
:

D,)v) − 0a,ℎ (O
:
ℎw, vℎ). (44)

Then, further assuming w ∈ NA+1(Tℎ;R3) for some A ∈ {0, . . . , :}, it holds

‖E:D,ℎ (w; ·)‖`,a,ℎ,∗ .
(∑
)∈Tℎ

a) min(1, �f ,) )ℎ2(A+1))
|w |2

NA+1 () ;R3)

)1/2

. (45)

Proof. Let v
ℎ
∈ [:

ℎ,0 \ {0}. Expanding 0a,ℎ according to its definition (26), we get

E:D,ℎ (w; vℎ) =
∑
)∈Tℎ
[T1()) + T2())] , (46)

with
T1()) ≔

∫
)

a) (w − Ṽ
:

D,) O
:
)w) · Ṽ

:

D,)v) ,

T2()) ≔ −a) min(1, �f ,) ) (O:) (w − V:D,) O
:
)w), v) − O:)V

:
D,)v) )[,) .

The estimate of T1()) depends on the regime. Let us start with the case �f ,) ≥ 1. Recalling
(25) to replace Ṽ:D,) with V:D,) and applying a Cauchy–Schwarz inequality, we get

|T1()) | . a) ‖w − V:D,) O
:
)w‖R2 () ;R3) ‖V

:
D,)v) ‖R2 () ;R3)

. a
1/2
)

min(1, �f ,) )1/2ℎA+1) |w |NA+1 () ;R3) a
1/2
)
‖v
)
‖D,) ,

where, to pass to the second line, we have used the approximation properties (22) of V:D,) ◦ O
:
)

with < = 0, the definition (28) of the ‖·‖D,) -norm, and observed that 1 = min(1, �f ,) ).
Let us now consider the case �f ,) < 1. Recalling that Ṽ:D,) O:)w = 0:

P,)
w in this case, we

can write T1()) =
∫
)
a) (w − 0:P,)w) · (v) − 0

0
P,)

v) ) and, using Cauchy–Schwarz inequalities,
continue with

|T1()) | ≤ a) ‖w − 0:
P,)

w‖R2 () ;R3) ‖v) − 00
P,)

v) ‖R2 () ;R3) . (47)

Using the approximation properties of 0:
P,)

, it is readily inferred that the first factor is .
ℎA+1
)
|w |NA+1 () ;R3) . To estimate the last factor, we use a Poincaré–Wirtinger inequality to write

‖v) − 00
P,)

v) ‖R2 () ;R3) . ℎ) ‖∇v) ‖R2 () ;R3×3) . ℎ) ‖v) ‖S,) , where the conclusion follows from
(15). Plugging the above estimates into (47), we can go on writing

|T1()) | . a
1/2
)
ℎA+1) |w |NA+1 () ;R3) a

1/2
)
ℎ) ‖v) ‖S,)

= a
1/2
)
ℎA+1) |w |NA+1 () ;R3) `

1/2
)
�

1/2
f ,)
‖v
)
‖S,) ,

= a
1/2
)

min(1, �f ,) )1/2ℎA+1) |w |NA+1 () ;R3) `
1/2
)
‖v
)
‖S,) ,
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where we have used the definition (4) of�f ,) to pass to the second line and, after rearranging the
factors, the fact that �f ,) = min(1, �f ,) ) to conclude. Gathering the above estimates, we thus
have

|T1()) | . a
1/2
)

min(1, �f ,) )1/2ℎA+1) |w |NA+1 () ;R3)
(
`) ‖v) ‖

2
S,) + a) ‖v) ‖

2
D,)

)1/2
. (48)

To estimate T2()), we use a Cauchy–Schwarz inequality to write

|T2()) |
≤ a1/2

)
min(1, �f ,) )1/2‖O:) (w − V:D,) O

:
)w)‖[,) a

1/2
)

min(1, �f ,) )1/2‖v) − O:)V
:
D,)v) ‖[,)

. a
1/2
)

min(1, �f ,) )1/2
(
‖w − V:D,) O

:
)w‖R2 () ;R3) + ℎ) |w − V:D,) O

:
)w |N1 () ;R3)

)
a
1/2
)
‖v
)
‖D,)

. a
1/2
)

min(1, �f ,) )1/2ℎA+1) |w |NA+1 () ;R3) a
1/2
)
‖v
)
‖D,) ,

(49)
where we have used the ‖·‖[,) -boundedness (8) of O:

)
along with the definition (28) of the

‖·‖D,) -norm in the second inequality and the approximation properties (22) of V:D,) ◦ O
:
)
with

< = 0 and < = 1 to conclude. Plugging (48) and (49) into (46), using discrete Cauchy–Schwarz
inequalities, dividing by ‖v

ℎ
‖`,a,ℎ, and passing to the supremum, the conclusion follows. �

5.2.3 Consistency of the coupling bilinear form
The quantity estimated in the following lemma can be interpreted as an adjoint consistency error
for the discrete divergence.

Lemma 12 (Consistency of the coupling bilinear form). Given @ ∈ �1(Ω), let the coupling
consistency error linear form E:c,ℎ (@; ·) : [

:
ℎ,0 → R be such that, for all v

ℎ
∈ [:

ℎ,0,

E:c,ℎ (@; vℎ) ≔
∑
)∈Tℎ

∫
)

∇@ · Ṽ:D,)v) − 1ℎ (vℎ, c
:
P,ℎ@). (50)

Then, further assuming, for some A ∈ {0, . . . , :}, @ ∈ �A+1+〈�f ,) ≥1〉 ()) for all ) ∈ Tℎ, it holds

‖E:c,ℎ (@; ·)‖`,a,ℎ,∗

.

[∑
)∈Tℎ

(
`−1) 〈�f ,) < 1〉ℎ2(A+1)

)
|@ |2

�A+1 ()) + a
−1
) 〈�f ,) ≥ 1〉ℎ2(A+1)

)
|@ |2

�A+2 ())

)]1/2
, (51)

where a−1
)
〈�f ,) ≥ 1〉 ≔ 0 if a) = 0 as in Theorem 7.

Proof. Let v
ℎ
∈ [:

ℎ,0 \ {0}. We start by noticing that, expanding the bilinear form 1ℎ according
to its definition (29),

E:c,ℎ (@; vℎ) =
∑
)∈Tℎ

(∫
)

∇@ · Ṽ:D,)v) +
∫
)

c:P,)@ �
:
)v) −

∑
�∈F)

l)�

∫
�

@ (v� · n�)
)
, (52)

where the insertion of the last term in parenthesis is made possible by the single-valuedness of
@ (v� · n�) at interfaces along with the fact that v� · n� = 0 for all � ∈ F b

ℎ
. Denote by T()) the
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argument of the summation in (52). To estimate this quantity, we distinguish two cases based
on the value of �f ,) .

If �f ,) < 1, Ṽ:D,)v) = v) by (25), so that

T()) =
∫
)

∇@ · v) +
∫
)

c:P,)@ �
:
)v) −

∑
�∈F)

l)�

∫
�

@ (v� · n�).

Thus, proceeding as in the derivation of [19, Eq. (8.41)], we get

T()) . ℎA+1) |@ |�A+1 ())

(
1

ℎ)

∑
�∈F)

‖v) − v� ‖2R2 (�;R3)

)1/2

. `−
1/2

)
〈�f ,) < 1〉1/2ℎA+1) |@ |�A+1 ()) `

1/2
)
‖v
)
‖S,) ,

(53)

where we have used (15) to conclude.
If �f ,) ≥ 1, on the other hand, we have Ṽ:D,) = V:D,) (cf. (25)), so that

T()) =
(∫
)

∇@ · V:D,)v) +
∫
)

c:P,)@ �
:
)v) −

∑
�∈F)

l)�

∫
�

@ (v� · n�)
)
.

Using the definition (19) of V:D,) to proceed as in [17, Theorem 11], we get

T()) . ℎA+1) |@ |�A+2 ()) ‖v) ‖D,) ≤ a
−1/2
)
〈�f ,) ≥ 1〉1/2ℎA+1) |@ |�A+2 ()) a

1/2
)
‖v
)
‖D,) , (54)

where we have additionally noticed that �f ,) ≥ 1 implies a) > 0.
To conclude, we plug (53) and (54) into (52), use a Cauchy–Schwarz inequality on the sum

over ) ∈ Tℎ, recall the definition (34) of the ‖·‖`,a,ℎ-norm, and pass to the supremum after
dividing by ‖v

ℎ
‖`,a,ℎ. �

Remark 13 (Discretisation of the source term). The use of V:D,) in the discretisation of the source
term when �f ,) ≥ 1 (see (32) and (25)) is crucial to ensure that, in this case, the consistency
error of the coupling bilinear form can be bounded above using the Darcy norm instead of the
Stokes norm; compare (54) and (53). This bound is key to establishing an error estimate in ℎA+1
that remains robust in the Darcy limit.
5.2.4 Consistency of the forcing term linear form
The following lemma estimates the difference between the standard HHO right-hand side linear
form and the one obtained, as in (2a), using Ṽ

:

D,)v) instead of v) as a test function.

Lemma 14 (Consistency of the forcing term). For any > ∈ R2(Ω;R3), define the right-hand
side consistency error linear form E:

rhs,ℎ
(>; ·) : [:

ℎ
→ R such that, for all v

ℎ
∈ [:

ℎ
,

E:rhs,ℎ (>; vℎ) ≔
∑
)∈Tℎ

∫
)

> · (v) − Ṽ
:

D,)v) ). (55)

Further assuming > ∈ NA (Tℎ;R3) for some A ∈ {0, . . . , :}, it holds

‖E:rhs,ℎ (>; ·)‖`,a,ℎ,∗ .
(∑
)∈Tℎ

`−1) min(1, �−1f ,) )ℎ
2(A+1)
)

|>|2
NA () ;R3)

)1/2

. (56)
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Proof. Denote by T()) the argument of the summation in (55). If �f ,) < 1, the definition (25)
of Ṽ:D,) yields T()) = 0. Consider now the case �f ,) ≥ 1 (which implies, in particular, a) > 0).
We first notice that, letting 0:−1

P,)
> ≔ 0 if : = 0,

‖> − 0:−1
P,)

>‖R2 () ;R3) . ℎ
A
) |>|NA () ;R3) , (57)

where the result is trivial if : = 0 (which imposes A = 0) and otherwise follows from the
approximation properties of 0:−1

P,)
, see [19, Theorem 1.45]. Recalling that, for �f ,) ≥ 1, we have

Ṽ
:

D,) = V:D,) by (25) and invoking (20) (which trivially holds also for : = 0), we then write

T()) =
∫
)

(> − 0:−1
P,)

>) · (v) − V:D,)v) )

≤ ‖> − 0:−1
P,)

>‖R2 () ;R3) ‖v) − V:D,)v) ‖R2 () ;R3)

. `−
1/2

)
ℎA) |>|NA () ;R3) ℎ)`

1/2
)
ℎ−1) ‖v) ‖D,)

= `
−1/2
)

ℎA+1) |>|NA () ;R3) a
1/2
)

min(1, �−1f ,) )
1/2‖v

)
‖D,) ,

where we have used Cauchy–Schwarz inequalities in the first passage, the approximation prop-
erties (57) of the !2-orthogonal projector for the first factor together with the definitions (7) and
(28) of ‖·‖[,) and ‖·‖D,) to write ‖v) − V:D,)v) ‖R2 () ;R3) ≤ ‖v) − O:

)
V:D,)v) ‖[,) ≤ ‖v) ‖D,)

in the second passage, while the conclusion follows from the definition (4) of �f ,) along with
�−1
f ,)
= min(1, �−1

f ,)
). Using the above estimate in (55), applying a Cauchy–Schwarz inequality

on the sum over ) ∈ Tℎ, and recalling the definition (34) of ‖·‖`,a,ℎ, (56) follows. �

5.2.5 Proof of Theorem 7
Proof of Theorem 7. Since 0`,ℎ + 0a,ℎ is 1-coercive and has norm 1 for the ‖·‖`,a,ℎ norm,
Lemma 6 and [19, Lemma A.11] show that Aℎ is W-inf-sup stable for the norm in the left-hand
side of (35). Hence, in the spirit of the third Strang lemma [16], this error estimate follows if
we bound the consistency error by the bracketed term in the right-hand side. The consistency
error for the scheme (32) is

E:ℎ (u, ?; vℎ) ≔
∑
)∈Tℎ

∫
)

f · Ṽ:D,)v) +
∫
Ω

6@ℎ − Aℎ ((O:ℎu, c
ℎ
P,: ?), (vℎ, @ℎ))

=
∑
)∈Tℎ

∫
)

∇·(`)∇u) · (v) − Ṽ
:

D,)v) ) −
∑
)∈Tℎ

∫
)

∇·(`)∇u) · v) − 0`,ℎ (O:ℎu, vℎ)

+
∑
)∈Tℎ

∫
)

a)u · Ṽ
:

D,)v) − 0a,ℎ (O
:
ℎu, vℎ) +

∑
)∈Tℎ

∫
)

∇? · Ṽ:D,)v) − 1ℎ (vℎ, c
:
P,ℎ?)

+
�����������∫
Ω

6@ℎ + 1ℎ (O:ℎu, @ℎ)

= E:rhs,ℎ (∇·(`∇u); vℎ) + E
:
S,ℎ (u; vℎ) + E

:
D,ℎ (u; vℎ) + E

:
c,ℎ (?; vℎ), (58)

where we have we have replaced f with the left-hand side of (2a), expanded Aℎ according to
its definition (33), and used (30) along with (2b) to cancel the last term in the first passage, and
used the definitions of the consistency errors (55) with > = ∇·(`∇u), (37) and (44) with w = u,
and (50) with @ = ? to conclude.
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Using, respectively, (56) (further noticing that |∇·(`)∇u) |NA () ;R3) . `) |u |NA+2 () ;R3) for all
) ∈ Tℎ), (38), (45), and (51) to estimate the terms in the right-hand side of (58), the result
follows. �
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