Fast Hyperspectral Unmixing Using a Multiscale Sparse Regularization - Archive ouverte HAL
Article Dans Une Revue IEEE Geoscience and Remote Sensing Letters Année : 2022

Fast Hyperspectral Unmixing Using a Multiscale Sparse Regularization

Taner Ince

Résumé

This letter proposes a simple, fast yet efficient sparse hyperspectral unmixing algorithm. The proposed method consists of three main steps. First, a coarse approximation of the hyperspectral image is built using a off-the-shelf segmentation algorithm. Then, a low-resolution approximation of the abundance map is estimated by solving a weighted ℓ1-regularized problem on this coarse approximation of the hyperspectral data. Finally, this low-resolution abundance map is subsequently used to design a sparsity-promoting penalization which acts as a spatial regularization informed by the coarse abundance map. It is incorporated into another weighted ℓ1-regularized problem whose solution is a higher resolution abundance map. The computational efficiency of the two last steps is ensured by solving the two underlying optimization problems using an alternating direction method of multipliers. Extensive experiments conducted on simulated and real data show the effectiveness of the proposed method.
Fichier principal
Vignette du fichier
Ince_IEEE_GRS_Letters_2022b.pdf (1.56 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03928639 , version 1 (07-01-2023)

Identifiants

Citer

Taner Ince, Nicolas Dobigeon. Fast Hyperspectral Unmixing Using a Multiscale Sparse Regularization. IEEE Geoscience and Remote Sensing Letters, 2022, 19, pp.1-5. ⟨10.1109/LGRS.2022.3217872⟩. ⟨hal-03928639⟩
52 Consultations
117 Téléchargements

Altmetric

Partager

More